-
1
-
-
25444440875
-
The role of autophagy in cancer development and response to therapy
-
16148885
-
Y.Kondo, T.Kanzawa, R.Sawaya, S.Kondo. The role of autophagy in cancer development and response to therapy. Nat Rev Cancer 2005; 5:726–34; PMID:16148885; http://dx.doi.org/10.1038/nrc1692
-
(2005)
Nat Rev Cancer
, vol.5
, pp. 726-734
-
-
Kondo, Y.1
Kanzawa, T.2
Sawaya, R.3
Kondo, S.4
-
2
-
-
84877628647
-
Autophagy in human health and disease
-
23656658
-
A.M.Choi, S.W.Ryter, B.Levine. Autophagy in human health and disease. N Engl J Med 2013; 368:1845–6; PMID:23656658; http://dx.doi.org/10.1056/NEJMra1205406
-
(2013)
N Engl J Med
, vol.368
, pp. 1845-1846
-
-
Choi, A.M.1
Ryter, S.W.2
Levine, B.3
-
4
-
-
79955377420
-
Autophagy-deficient mice develop multiple liver tumors
-
21498569
-
A.Takamura, M.Komatsu, T.Hara, A.Sakamoto, C.Kishi, S.Waguri, Y.Eishi, O.Hino, K.Tanaka, N.Mizushima. Autophagy-deficient mice develop multiple liver tumors. Genes Dev 2011; 25:795–800; PMID:21498569; http://dx.doi.org/10.1101/gad.2016211
-
(2011)
Genes Dev
, vol.25
, pp. 795-800
-
-
Takamura, A.1
Komatsu, M.2
Hara, T.3
Sakamoto, A.4
Kishi, C.5
Waguri, S.6
Eishi, Y.7
Hino, O.8
Tanaka, K.9
Mizushima, N.10
-
5
-
-
9144240441
-
Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene
-
14638851
-
X.Qu, J.Yu, G.Bhagat, N.Furuya, H.Hibshoosh, A.Troxel, J.Rosen, E.L.Eskelinen, N.Mizushima, Y.Ohsumi, et al. Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene. J Clin Invest 2003; 112:1809–20; PMID:14638851; http://dx.doi.org/10.1172/JCI20039
-
(2003)
J Clin Invest
, vol.112
, pp. 1809-1820
-
-
Qu, X.1
Yu, J.2
Bhagat, G.3
Furuya, N.4
Hibshoosh, H.5
Troxel, A.6
Rosen, J.7
Eskelinen, E.L.8
Mizushima, N.9
Ohsumi, Y.10
-
6
-
-
79952229430
-
Pancreatic cancers require autophagy for tumor growth
-
21406549
-
S.Yang, X.Wang, G.Contino, M.Liesa, E.Sahin, H.Ying, A.Bause, Y.Li, J.M.Stommel, G.Dell'antonio, et al. Pancreatic cancers require autophagy for tumor growth. Genes Dev 2011; 25:717–29; PMID:21406549; http://dx.doi.org/10.1101/gad.2016111
-
(2011)
Genes Dev
, vol.25
, pp. 717-729
-
-
Yang, S.1
Wang, X.2
Contino, G.3
Liesa, M.4
Sahin, E.5
Ying, H.6
Bause, A.7
Li, Y.8
Stommel, J.M.9
Dell'antonio, G.10
-
7
-
-
33745713171
-
al. Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis
-
16843265
-
K.Degenhardt, R.Mathew, B.Beaudoin, K.Bray, D.Anderson, G.Chen, C.Mukherjee, Y.Shi, C.Gélinas, Y.Fan, et al. Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis. Cancer Cell 2006; 10:51–64; PMID:16843265; http://dx.doi.org/10.1016/j.ccr.2006.06.001
-
(2006)
Cancer Cell
, vol.10
, pp. 51-64
-
-
Degenhardt, K.1
Mathew, R.2
Beaudoin, B.3
Bray, K.4
Anderson, D.5
Chen, G.6
Mukherjee, C.7
Shi, Y.8
Gélinas, C.9
Fan, Y.10
-
8
-
-
73449102143
-
Hypoxia-induced autophagy contributes to the chemoresistance of hepatocellular carcinoma cells
-
19786832
-
J.Song, Z.Qu, X.Guo, Q.Zhao, X.Zhao, L.Gao, K.Sun, F.Shen, M.Wu, L.Wei. Hypoxia-induced autophagy contributes to the chemoresistance of hepatocellular carcinoma cells. Autophagy 2009; 5:1131–44; PMID:19786832; http://dx.doi.org/10.4161/auto.5.8.9996
-
(2009)
Autophagy
, vol.5
, pp. 1131-1144
-
-
Song, J.1
Qu, Z.2
Guo, X.3
Zhao, Q.4
Zhao, X.5
Gao, L.6
Sun, K.7
Shen, F.8
Wu, M.9
Wei, L.10
-
9
-
-
80053420059
-
Targeting autophagy enhances sorafenib lethality for hepatocellular carcinoma via ER stress-related apoptosis
-
21691147
-
Y.H.Shi, Z.B.Ding, J.Zhou, B.Hui, G.M.Shi, A.W.Ke, X.Y.Wang, Z.Dai, Y.F.Peng, C.Y.Gu, et al. Targeting autophagy enhances sorafenib lethality for hepatocellular carcinoma via ER stress-related apoptosis. Autophagy 2011; 7:1159–72; PMID:21691147; http://dx.doi.org/10.4161/auto.7.10.16818
-
(2011)
Autophagy
, vol.7
, pp. 1159-1172
-
-
Shi, Y.H.1
Ding, Z.B.2
Zhou, J.3
Hui, B.4
Shi, G.M.5
Ke, A.W.6
Wang, X.Y.7
Dai, Z.8
Peng, Y.F.9
Gu, C.Y.10
-
10
-
-
80052306066
-
Autophagy protects breast cancer cells from epirubicin-induced apoptosis and facilitates epirubicin-resistance development
-
21646864
-
W.L.Sun, J.Chen, Y.P.Wang, H.Zheng. Autophagy protects breast cancer cells from epirubicin-induced apoptosis and facilitates epirubicin-resistance development. Autophagy 2011; 7:1035–44; PMID:21646864; http://dx.doi.org/10.4161/auto.7.9.16521
-
(2011)
Autophagy
, vol.7
, pp. 1035-1044
-
-
Sun, W.L.1
Chen, J.2
Wang, Y.P.3
Zheng, H.4
-
11
-
-
0033978257
-
Reduced stability of retinoblastoma protein by gankyrin, an oncogenic ankyrin-repeat protein overexpressed in he patomas
-
10613832
-
H.Higashitsuji, K.Itoh, T.Nagao, S.Dawson, K.Nonoguchi, T.Kido, R.J.Mayer, S.Arii, J.Fujita. Reduced stability of retinoblastoma protein by gankyrin, an oncogenic ankyrin-repeat protein overexpressed in he patomas. Nat Med 2000; 6:96–9; PMID:10613832; http://dx.doi.org/10.1038/71600
-
(2000)
Nat Med
, vol.6
, pp. 96-99
-
-
Higashitsuji, H.1
Itoh, K.2
Nagao, T.3
Dawson, S.4
Nonoguchi, K.5
Kido, T.6
Mayer, R.J.7
Arii, S.8
Fujita, J.9
-
12
-
-
22244486994
-
The oncoprotein gankyrin binds to MDM2/HDM2, enhancing ubiquitylation and degradation of p53
-
16023600
-
H.Higashitsuji, K.Itoh, T.Sakurai, T.Nagao, Y.Sumitomo, T.Masuda, S.Dawson, Y.Shimada, R.J.Mayer, J.Fujita. The oncoprotein gankyrin binds to MDM2/HDM2, enhancing ubiquitylation and degradation of p53. Cancer Cell 2005; 8:75–87; PMID:16023600; http://dx.doi.org/10.1016/j.ccr.2005.06.006
-
(2005)
Cancer Cell
, vol.8
, pp. 75-87
-
-
Higashitsuji, H.1
Itoh, K.2
Sakurai, T.3
Nagao, T.4
Sumitomo, Y.5
Masuda, T.6
Dawson, S.7
Shimada, Y.8
Mayer, R.J.9
Fujita, J.10
-
13
-
-
78751544628
-
p28GANK overexpression accelerates hepatocellular carcinoma invasiveness and metastasis via phosphoinositol 3-kinase/AKT/hypoxia-inducible factor-1alpha pathways
-
21254169
-
J.Fu, Y.Chen, J.Cao, T.Luo, Y.W.Qian, W.Yang, Y.B.Ren, B.Su, G.W.Cao, Y.Yang, et al. p28GANK overexpression accelerates hepatocellular carcinoma invasiveness and metastasis via phosphoinositol 3-kinase/AKT/hypoxia-inducible factor-1alpha pathways. Hepatology 2011; 53:181–92; PMID:21254169; http://dx.doi.org/10.1002/hep.24015
-
(2011)
Hepatology
, vol.53
, pp. 181-192
-
-
Fu, J.1
Chen, Y.2
Cao, J.3
Luo, T.4
Qian, Y.W.5
Yang, W.6
Ren, Y.B.7
Su, B.8
Cao, G.W.9
Yang, Y.10
-
14
-
-
84861587167
-
p28(GANK) prevents degradation of Oct4 and promotes expansion of tumor-initiating cells in hepatocarcinogenesis
-
e14, 22387393
-
Y.W.Qian, Y.Chen, W.Yang, J.Fu, J.Cao, Y.B.Ren, J.J.Zhu, B.Su, T.Luo, X.F.Zhao, et al. p28(GANK) prevents degradation of Oct4 and promotes expansion of tumor-initiating cells in hepatocarcinogenesis. Gastroenterology 2012; 142:1547–58 e14; PMID:22387393; http://dx.doi.org/10.1053/j.gastro.2012.02.042
-
(2012)
Gastroenterology
, vol.142
, pp. 1547-1558
-
-
Qian, Y.W.1
Chen, Y.2
Yang, W.3
Fu, J.4
Cao, J.5
Ren, Y.B.6
Zhu, J.J.7
Su, B.8
Luo, T.9
Zhao, X.F.10
-
15
-
-
84862295360
-
Guidelines for the use and interpretation of assays for monitoring autophagy
-
22966490
-
D.J.Klionsky, F.C.Abdalla, H.Abeliovich, R.T.Abraham, A.Acevedo-Arozena, K.Adeli, L.Agholme, M.Agnello, P.Agostinis, J.A.Aguirre-Ghiso, et al. Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy 2012; 8:445–544; PMID:22966490; http://dx.doi.org/10.4161/auto.19496
-
(2012)
Autophagy
, vol.8
, pp. 445-544
-
-
Klionsky, D.J.1
Abdalla, F.C.2
Abeliovich, H.3
Abraham, R.T.4
Acevedo-Arozena, A.5
Adeli, K.6
Agholme, L.7
Agnello, M.8
Agostinis, P.9
Aguirre-Ghiso, J.A.10
-
16
-
-
44649141966
-
Regulation of autophagy by cytoplasmic p53
-
18454141
-
E.Tasdemir, M.C.Maiuri, L.Galluzzi, I.Vitale, M.Djavaheri-Mergny, M.D'Amelio, A.Criollo, E.Morselli, C.Zhu, F.Harper, et al. Regulation of autophagy by cytoplasmic p53. Nat Cell Biol 2008; 10:676–87; PMID:18454141; http://dx.doi.org/10.1038/ncb1730
-
(2008)
Nat Cell Biol
, vol.10
, pp. 676-687
-
-
Tasdemir, E.1
Maiuri, M.C.2
Galluzzi, L.3
Vitale, I.4
Djavaheri-Mergny, M.5
D'Amelio, M.6
Criollo, A.7
Morselli, E.8
Zhu, C.9
Harper, F.10
-
17
-
-
80053319810
-
Gankyrin-mediated dedifferentiation facilitates the tumorigenicity of rat hepatocytes and hepatoma cells
-
21735473
-
W.Sun, J.Ding, K.Wu, B.F.Ning, W.Wen, H.Y.Sun, T.Han, L.Huang, L.W.Dong, W.Yang, et al. Gankyrin-mediated dedifferentiation facilitates the tumorigenicity of rat hepatocytes and hepatoma cells. Hepatology 2011; 54:1259–72; PMID:21735473; http://dx.doi.org/10.1002/hep.24530
-
(2011)
Hepatology
, vol.54
, pp. 1259-1272
-
-
Sun, W.1
Ding, J.2
Wu, K.3
Ning, B.F.4
Wen, W.5
Sun, H.Y.6
Han, T.7
Huang, L.8
Dong, L.W.9
Yang, W.10
-
18
-
-
37149040167
-
Oncoprotein p28 GANK binds to RelA and retains NF-kappaB in the cytoplasm through nuclear export
-
18040287
-
Y.Chen, H.H.Li, J.Fu, X.F.Wang, Y.B.Ren, L.W.Dong, S.H.Tang, S.Q.Liu, M.C.Wu, H.Y.Wang. Oncoprotein p28 GANK binds to RelA and retains NF-kappaB in the cytoplasm through nuclear export. Cell Res 2007; 17:1020–9; PMID:18040287; http://dx.doi.org/10.1038/cr.2007.99
-
(2007)
Cell Res
, vol.17
, pp. 1020-1029
-
-
Chen, Y.1
Li, H.H.2
Fu, J.3
Wang, X.F.4
Ren, Y.B.5
Dong, L.W.6
Tang, S.H.7
Liu, S.Q.8
Wu, M.C.9
Wang, H.Y.10
-
19
-
-
77954237882
-
Network organization of the human autophagy system
-
20562859
-
C.Behrends, M.E.Sowa, S.P.Gygi, J.W.Harper. Network organization of the human autophagy system. Nature 2010; 466:68–76; PMID:20562859; http://dx.doi.org/10.1038/nature09204
-
(2010)
Nature
, vol.466
, pp. 68-76
-
-
Behrends, C.1
Sowa, M.E.2
Gygi, S.P.3
Harper, J.W.4
-
20
-
-
33646800306
-
Loss of autophagy in the central nervous system causes neurodegeneration in mice
-
16625205
-
M.Komatsu, S.Waguri, T.Chiba, S.Murata, J.Iwata, I.Tanida, T.Ueno, M.Koike, Y.Uchiyama, E.Kominami, et al. Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature 20 06; 441:880–4; PMID:16625205; http://dx.doi.org/10.1038/nature04723
-
(2006)
Nature
, vol.441
, pp. 880-884
-
-
Komatsu, M.1
Waguri, S.2
Chiba, T.3
Murata, S.4
Iwata, J.5
Tanida, I.6
Ueno, T.7
Koike, M.8
Uchiyama, Y.9
Kominami, E.10
-
21
-
-
21044455137
-
Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice
-
15866887
-
M.Komatsu, S.Waguri, T.Ueno, J.Iwata, S.Murata, I.Tanida, J.Ezaki, N.Mizushima, Y.Ohsumi, Y.Uchiyama, et al. Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice. J Cell Biol 2005; 169:425–34; PMID:15866887; http://dx.doi.org/10.1083/jcb.200412022
-
(2005)
J Cell Biol
, vol.169
, pp. 425-434
-
-
Komatsu, M.1
Waguri, S.2
Ueno, T.3
Iwata, J.4
Murata, S.5
Tanida, I.6
Ezaki, J.7
Mizushima, N.8
Ohsumi, Y.9
Uchiyama, Y.10
-
22
-
-
84859639962
-
Atg7 modulates p53 activity to regulate cell cycle and survival during metabolic stress
-
22499945
-
I.H.Lee, Y.Kawai, M.M.Fergusson, I.I.Rovira, A.J.Bishop, N.Motoyama, L.Cao, T.Finkel. Atg7 modulates p53 activity to regulate cell cycle and survival during metabolic stress. Science 2012; 336:225–8; PMID:22499945; http://dx.doi.org/10.1126/science.1218395
-
(2012)
Science
, vol.336
, pp. 225-228
-
-
Lee, I.H.1
Kawai, Y.2
Fergusson, M.M.3
Rovira, I.I.4
Bishop, A.J.5
Motoyama, N.6
Cao, L.7
Finkel, T.8
-
23
-
-
84856487167
-
The FAP motif within human ATG7, an autophagy-related E1-like enzyme, is essential for the E2-substrate reaction of LC3 lipidation
-
22170151
-
I.Tanida, M.Yamasaki, M.Komatsu, T.Ueno. The FAP motif within human ATG7, an autophagy-related E1-like enzyme, is essential for the E2-substrate reaction of LC3 lipidation. Autophagy 2012; 8:88–97; PMID:22170151; http://dx.doi.org/10.4161/auto.8.1.18339
-
(2012)
Autophagy
, vol.8
, pp. 88-97
-
-
Tanida, I.1
Yamasaki, M.2
Komatsu, M.3
Ueno, T.4
-
24
-
-
79960342396
-
Atg7 induces basal autophagy and rescues autophagic deficiency in CryABR120G cardiomyocytes
-
21617129
-
J.S.Pattison, H.Osinska, J.Robbins. Atg7 induces basal autophagy and rescues autophagic deficiency in CryABR120G cardiomyocytes. Circ Res 2011; 109:151–60; PMID:21617129; http://dx.doi.org/10.1161/CIRCRESAHA.110.237339
-
(2011)
Circ Res
, vol.109
, pp. 151-160
-
-
Pattison, J.S.1
Osinska, H.2
Robbins, J.3
-
25
-
-
84875976376
-
Heat shock factor 1 (HSF1) controls chemoresistance and autophagy through transcriptional regulation of autophagy-related protein 7 (ATG7)
-
23386620
-
S.Desai, Z.Liu, J.Yao, N.Patel, J.Chen, Y.Wu, E.E.Ahn, O.Fodstad, M.Tan. Heat shock factor 1 (HSF1) controls chemoresistance and autophagy through transcriptional regulation of autophagy-related protein 7 (ATG7). J Biol Chem 2013; 288:9165–76; PMID:23386620; http://dx.doi.org/10.1074/jbc.M112.422071
-
(2013)
J Biol Chem
, vol.288
, pp. 9165-9176
-
-
Desai, S.1
Liu, Z.2
Yao, J.3
Patel, N.4
Chen, J.5
Wu, Y.6
Ahn, E.E.7
Fodstad, O.8
Tan, M.9
-
26
-
-
34548658230
-
Heat shock factor 1 is a powerful multifaceted modifier of carcinogenesis
-
17889646
-
C.Dai, L.Whitesell, A.B.Rogers, S.Lindquist. Heat shock factor 1 is a powerful multifaceted modifier of carcinogenesis. Cell 2007; 130:1005–18; PMID:17889646; http://dx.doi.org/10.1016/j.cell.2007.07.020
-
(2007)
Cell
, vol.130
, pp. 1005-1018
-
-
Dai, C.1
Whitesell, L.2
Rogers, A.B.3
Lindquist, S.4
-
27
-
-
79959947025
-
Heat shock transcription factor 1 is a key determinant of HCC development by regulating hepatic steatosis and metabolic syndrome
-
21723507
-
X.Jin, D.Moskophidis, N.F.Mivechi. Heat shock transcription factor 1 is a key determinant of HCC development by regulating hepatic steatosis and metabolic syndrome. Cell Metab 2011; 14:91–103; PMID:21723507; http://dx.doi.org/10.1016/j.cmet.2011.03.025
-
(2011)
Cell Metab
, vol.14
, pp. 91-103
-
-
Jin, X.1
Moskophidis, D.2
Mivechi, N.F.3
-
28
-
-
84864585171
-
HSF1 drives a transcriptional program distinct from heat shock to support highly malignant human cancers
-
22863008
-
M.L.Mendillo, S.Santagata, M.Koeva, G.W.Bell, R.Hu, R.M.Tamimi, E.Fraenkel, T.A.Ince, L.Whitesell, S.Lindquist. HSF1 drives a transcriptional program distinct from heat shock to support highly malignant human cancers. Cell 2012; 150:549–62; PMID:22863008; http://dx.doi.org/10.1016/j.cell.2012.06.031
-
(2012)
Cell
, vol.150
, pp. 549-562
-
-
Mendillo, M.L.1
Santagata, S.2
Koeva, M.3
Bell, G.W.4
Hu, R.5
Tamimi, R.M.6
Fraenkel, E.7
Ince, T.A.8
Whitesell, L.9
Lindquist, S.10
-
29
-
-
18244384703
-
Analysis of phosphorylation of human heat shock factor 1 in cells experiencing a stress
-
15760475
-
T.Guettouche, F.Boellmann, W.S.Lane, R.Voellmy. Analysis of phosphorylation of human heat shock factor 1 in cells experiencing a stress. BMC Biochem 2005; 6:4; PMID:15760475; http://dx.doi.org/10.1186/1471-2091-6-4
-
(2005)
BMC Biochem
, vol.6
, pp. 4
-
-
Guettouche, T.1
Boellmann, F.2
Lane, W.S.3
Voellmy, R.4
-
30
-
-
77950487987
-
Mechanisms of cross-talk between the ubiquitin-proteasome and autophagy-lysosome systems
-
20040365
-
V.I.Korolchuk, F.M.Menzies, D.C.Rubinsztein. Mechanisms of cross-talk between the ubiquitin-proteasome and autophagy-lysosome systems. FEBS Lett 2010; 584:1393–8; PMID:20040365; http://dx.doi.org/10.1016/j.febslet.2009.12.047
-
(2010)
FEBS Lett
, vol.584
, pp. 1393-1398
-
-
Korolchuk, V.I.1
Menzies, F.M.2
Rubinsztein, D.C.3
-
31
-
-
34250183177
-
HDAC6 rescues neurodegeneration and provides an essential link between autophagy and the UPS
-
17568747
-
U.B.Pandey, Z.Nie, Y.Batlevi, B.A.McCray, G.P.Ritson, N.B.Nedelsky, S.L.Schwartz, N.A.DiProspero, M.A.Knight, O.Schuldiner, et al. HDAC6 rescues neurodegeneration and provides an essential link between autophagy and the UPS. Nature 2007; 447:859–63; PMID:17568747; http://dx.doi.org/10.1038/nature05853
-
(2007)
Nature
, vol.447
, pp. 859-863
-
-
Pandey, U.B.1
Nie, Z.2
Batlevi, Y.3
McCray, B.A.4
Ritson, G.P.5
Nedelsky, N.B.6
Schwartz, S.L.7
DiProspero, N.A.8
Knight, M.A.9
Schuldiner, O.10
-
32
-
-
77951248828
-
Autophagy: links with the proteasome
-
19962293
-
T.Lamark, T.Johansen. Autophagy:links with the proteasome. Curr Opin Cell Biol 2010; 22:192–8; PMID:19962293; http://dx.doi.org/10.1016/j.ceb.2009.11.002
-
(2010)
Curr Opin Cell Biol
, vol.22
, pp. 192-198
-
-
Lamark, T.1
Johansen, T.2
-
33
-
-
65849101541
-
Multiple proteasome-interacting proteins assist the assembly of the yeast 19S regulatory particle
-
19446323
-
Y.Saeki, E.A.Toh, T.Kudo, H.Kawamura, K.Tanaka. Multiple proteasome-interacting proteins assist the assembly of the yeast 19S regulatory particle. Cell 2009; 137:900–13; PMID:19446323; http://dx.doi.org/10.1016/j.cell.2009.05.005
-
(2009)
Cell
, vol.137
, pp. 900-913
-
-
Saeki, Y.1
Toh, E.A.2
Kudo, T.3
Kawamura, H.4
Tanaka, K.5
-
34
-
-
33749238553
-
Discovery and development of sorafenib: a multikinase inhibitor for treating cancer
-
17016424
-
S.Wilhelm, C.Carter, M.Lynch, T.Lowinger, J.Dumas, R.A.Smith, B.Schwartz, R.Simantov, S.Kelley. Discovery and development of sorafenib:a multikinase inhibitor for treating cancer. Nat Rev Drug Discov 2006; 5:835–44; PMID:17016424; http://dx.doi.org/10.1038/nrd2130
-
(2006)
Nat Rev Drug Discov
, vol.5
, pp. 835-844
-
-
Wilhelm, S.1
Carter, C.2
Lynch, M.3
Lowinger, T.4
Dumas, J.5
Smith, R.A.6
Schwartz, B.7
Simantov, R.8
Kelley, S.9
-
35
-
-
84857698541
-
Inhibition of autophagy potentiates the antitumor effect of the multikinase inhibitor sorafenib in hepatocellular carcinoma
-
21858812
-
S.Shimizu, T.Takehara, H.Hikita, T.Kodama, H.Tsunematsu, T.Miyagi, A.Hosui, H.Ishida, T.Tatsumi, T.Kanto, et al. Inhibition of autophagy potentiates the antitumor effect of the multikinase inhibitor sorafenib in hepatocellular carcinoma. Int J Cancer 2012; 131:548–57; PMID:21858812; http://dx.doi.org/10.1002/ijc.26374
-
(2012)
Int J Cancer
, vol.131
, pp. 548-557
-
-
Shimizu, S.1
Takehara, T.2
Hikita, H.3
Kodama, T.4
Tsunematsu, H.5
Miyagi, T.6
Hosui, A.7
Ishida, H.8
Tatsumi, T.9
Kanto, T.10
-
36
-
-
84873949249
-
Role of sorafenib in the treatment of advanced hepatocellular carcinoma: an update
-
23145926
-
A.Gauthier, M.Ho. Role of sorafenib in the treatment of advanced hepatocellular carcinoma:an update. Hepatol Res 2013; 43:147–54; PMID:23145926; http://dx.doi.org/10.1111/j.1872-034X.2012.01113.x
-
(2013)
Hepatol Res
, vol.43
, pp. 147-154
-
-
Gauthier, A.1
Ho, M.2
-
37
-
-
79952228407
-
Activated Ras requires autophagy to maintain oxidative metabolism and tumorigenesis
-
21317241
-
J.Y.Guo, H.Y.Chen, R.Mathew, J.Fan, A.M.Strohecker, G.Karsli-Uzunbas, J.J.Kamphorst, G.Chen, J.M.Lemons, V.Karantza, et al. Activated Ras requires autophagy to maintain oxidative metabolism and tumorigenesis. Genes Dev 2011; 25:460–70; PMID:21317241; http://dx.doi.org/10.1101/gad.2016311
-
(2011)
Genes Dev
, vol.25
, pp. 460-470
-
-
Guo, J.Y.1
Chen, H.Y.2
Mathew, R.3
Fan, J.4
Strohecker, A.M.5
Karsli-Uzunbas, G.6
Kamphorst, J.J.7
Chen, G.8
Lemons, J.M.9
Karantza, V.10
-
38
-
-
84255169600
-
Autophagic targeting of Src promotes cancer cell survival following reduced FAK signalling
-
22138575
-
E.Sandilands, B.Serrels, D.G.McEwan, J.P.Morton, J.P.Macagno, K.McLeod, C.Stevens, V.G.Brunton, W.Y.Langdon, M.Vidal, et al. Autophagic targeting of Src promotes cancer cell survival following reduced FAK signalling. Nat Cell Biol 2012; 14:51–60; PMID:22138575; http://dx.doi.org/10.1038/ncb2386
-
(2012)
Nat Cell Biol
, vol.14
, pp. 51-60
-
-
Sandilands, E.1
Serrels, B.2
McEwan, D.G.3
Morton, J.P.4
Macagno, J.P.5
McLeod, K.6
Stevens, C.7
Brunton, V.G.8
Langdon, W.Y.9
Vidal, M.10
-
39
-
-
84859857694
-
VHL-regulated MiR-204 suppresses tumor growth through inhibition of LC3B-mediated autophagy in renal clear cell carcinoma
-
22516261
-
O.Mikhaylova, Y.Stratton, D.Hall, E.Kellner, B.Ehmer, A.F.Drew, C.A.Gallo, D.R.Plas, J.Biesiada, J.Meller, et al. VHL-regulated MiR-204 suppresses tumor growth through inhibition of LC3B-mediated autophagy in renal clear cell carcinoma. Cancer Cell 2012; 21:532–46; PMID:22516261; http://dx.doi.org/10.1016/j.ccr.2012.02.019
-
(2012)
Cancer Cell
, vol.21
, pp. 532-546
-
-
Mikhaylova, O.1
Stratton, Y.2
Hall, D.3
Kellner, E.4
Ehmer, B.5
Drew, A.F.6
Gallo, C.A.7
Plas, D.R.8
Biesiada, J.9
Meller, J.10
-
40
-
-
84870546460
-
ER stress-mediated autophagy promotes Myc-dependent transformation and tumor growth
-
23143306
-
L.S.Hart, J.T.Cunningham, T.Datta, S.Dey, F.Tameire, S.L.Lehman, B.Qiu, H.Zhang, G.Cerniglia, M.Bi, et al. ER stress-mediated autophagy promotes Myc-dependent transformation and tumor growth. J Clin Invest 2012; 122:4621–34; PMID:23143306; http://dx.doi.org/10.1172/JCI62973
-
(2012)
J Clin Invest
, vol.122
, pp. 4621-4634
-
-
Hart, L.S.1
Cunningham, J.T.2
Datta, T.3
Dey, S.4
Tameire, F.5
Lehman, S.L.6
Qiu, B.7
Zhang, H.8
Cerniglia, G.9
Bi, M.10
-
41
-
-
34848886914
-
Autophagosome formation: core machinery and adaptations
-
17909521
-
Z.Xie, D.J.Klionsky. Autophagosome formation:core machinery and adaptations. Nat Cell Biol 2007; 9:1102–9; PMID:17909521; http://dx.doi.org/10.1038/ncb1007-1102
-
(2007)
Nat Cell Biol
, vol.9
, pp. 1102-1109
-
-
Xie, Z.1
Klionsky, D.J.2
-
42
-
-
84862750365
-
miR-375 inhibits autophagy and reduces viability of hepatocellular carcinoma cells under hypoxic conditions
-
e8, 22504094
-
Y.Chang, W.Yan, X.He, L.Zhang, C.Li, H.Huang, G.Nace, D.A.Geller, J.Lin, A.Tsung. miR-375 inhibits autophagy and reduces viability of hepatocellular carcinoma cells under hypoxic conditions. Gastroenterology 2012; 143:177–87 e8; PMID:22504094; http://dx.doi.org/10.1053/j.gastro.2012.04.009
-
(2012)
Gastroenterology
, vol.143
, pp. 177-187
-
-
Chang, Y.1
Yan, W.2
He, X.3
Zhang, L.4
Li, C.5
Huang, H.6
Nace, G.7
Geller, D.A.8
Lin, J.9
Tsung, A.10
-
43
-
-
80955177196
-
TFEB links autophagy to lysosomal biogenesis
-
21617040
-
C.Settembre, C.Di Malta, V.A.Polito, M.Garcia Arencibia, F.Vetrini, S.Erdin, S.U.Erdin, T.Huynh, D.Medina, P.Colella, et al. TFEB links autophagy to lysosomal biogenesis. Science 2011; 332:1429–33; PMID:21617040; http://dx.doi.org/10.1126/science.1204592
-
(2011)
Science
, vol.332
, pp. 1429-1433
-
-
Settembre, C.1
Di Malta, C.2
Polito, V.A.3
Garcia Arencibia, M.4
Vetrini, F.5
Erdin, S.6
Erdin, S.U.7
Huynh, T.8
Medina, D.9
Colella, P.10
-
44
-
-
84882846112
-
The histone H4 lysine 16 acetyltransferase hMOF regulates the outcome of autophagy
-
23863932
-
J.Fullgrabe, M.A.Lynch-Day, N.Heldring, W.Li, R.B.Struijk, Q.Ma, O.Hermanson, M.G.Rosenfeld, D.J.Klionsky, B.Joseph. The histone H4 lysine 16 acetyltransferase hMOF regulates the outcome of autophagy. Nature 2013; 500:468–71; PMID:23863932; http://dx.doi.org/10.1038/nature12313
-
(2013)
Nature
, vol.500
, pp. 468-471
-
-
Fullgrabe, J.1
Lynch-Day, M.A.2
Heldring, N.3
Li, W.4
Struijk, R.B.5
Ma, Q.6
Hermanson, O.7
Rosenfeld, M.G.8
Klionsky, D.J.9
Joseph, B.10
-
45
-
-
84874503997
-
Farnesoid X receptor inhibits gankyrin in mouse livers and prevents development of liver cancer
-
23172628
-
Y.Jiang, P.Iakova, J.Jin, E.Sullivan, V.Sharin, I.H.Hong, S.Anakk, A.Mayor, G.Darlington, M.Finegold, et al. Farnesoid X receptor inhibits gankyrin in mouse livers and prevents development of liver cancer. Hepatology 2013; 57:1098–106; PMID:23172628; http://dx.doi.org/10.1002/hep.26146
-
(2013)
Hepatology
, vol.57
, pp. 1098-1106
-
-
Jiang, Y.1
Iakova, P.2
Jin, J.3
Sullivan, E.4
Sharin, V.5
Hong, I.H.6
Anakk, S.7
Mayor, A.8
Darlington, G.9
Finegold, M.10
-
46
-
-
30744443510
-
Imbalance in liver homeostasis leading to hyperplasia by overexpressing either one of the Bcl-2-related genes, zfBLP1 and zfMcl-1a
-
16273521
-
G.M.Her, C.H.Cheng, J.R.Hong, G.S.Sundaram, J.L.Wu. Imbalance in liver homeostasis leading to hyperplasia by overexpressing either one of the Bcl-2-related genes, zfBLP1 and zfMcl-1a. Dev Dyn 2006; 235:515–23; PMID:16273521; http://dx.doi.org/10.1002/dvdy.20624
-
(2006)
Dev Dyn
, vol.235
, pp. 515-523
-
-
Her, G.M.1
Cheng, C.H.2
Hong, J.R.3
Sundaram, G.S.4
Wu, J.L.5
-
47
-
-
36448968532
-
FoxO3 coordinately activates protein degradation by the autophagic/lysosomal and proteasomal pathways in atrophying muscle cells
-
18054316
-
J.Zhao, J.J.Brault, A.Schild, P.Cao, M.Sandri, S.Schiaffino, S.H.Lecker, A.L.Goldberg. FoxO3 coordinately activates protein degradation by the autophagic/lysosomal and proteasomal pathways in atrophying muscle cells. Cell Metab 2007; 6:472–83; PMID:18054316; http://dx.doi.org/10.1016/j.cmet.2007.11.004
-
(2007)
Cell Metab
, vol.6
, pp. 472-483
-
-
Zhao, J.1
Brault, J.J.2
Schild, A.3
Cao, P.4
Sandri, M.5
Schiaffino, S.6
Lecker, S.H.7
Goldberg, A.L.8
-
48
-
-
34548299555
-
Linking of autophagy to ubiquitin-proteasome system is important for the regulation of endoplasmic reticulum stress and cell viability
-
17620365
-
W.X.Ding, H.M.Ni, W.Gao, T.Yoshimori, D.B.Stolz, D.Ron, X.M.Yin. Linking of autophagy to ubiquitin-proteasome system is important for the regulation of endoplasmic reticulum stress and cell viability. Am J Pathol 2007; 171:513–24; PMID:17620365; http://dx.doi.org/10.2353/ajpath.2007.070188
-
(2007)
Am J Pathol
, vol.171
, pp. 513-524
-
-
Ding, W.X.1
Ni, H.M.2
Gao, W.3
Yoshimori, T.4
Stolz, D.B.5
Ron, D.6
Yin, X.M.7
-
49
-
-
80053634368
-
The dynamic nature of autophagy in cancer
-
21979913
-
A.C.Kimmelman. The dynamic nature of autophagy in cancer. Genes Dev 2011; 25:1999–2010; PMID:21979913; http://dx.doi.org/10.1101/gad.17558811
-
(2011)
Genes Dev
, vol.25
, pp. 1999-2010
-
-
Kimmelman, A.C.1
|