메뉴 건너뛰기




Volumn 56, Issue 6, 2016, Pages 1063-1077

CSAR 2014: A Benchmark Exercise Using Unpublished Data from Pharma

Author keywords

[No Author keywords available]

Indexed keywords

AMINO ACIDS; COMPLEXATION; CRYSTALS; DOCKS; HYDRAULIC STRUCTURES; KNOWLEDGE BASED SYSTEMS; PROTEINS;

EID: 84976522313     PISSN: 15499596     EISSN: 1549960X     Source Type: Journal    
DOI: 10.1021/acs.jcim.5b00523     Document Type: Article
Times cited : (90)

References (109)
  • 1
    • 33846000313 scopus 로고    scopus 로고
    • Ensemble Docking of Multiple Protein Structures: Considering Protein Structural Variations in Molecular Docking
    • Huang, S.-Y.; Zou, X. Ensemble Docking of Multiple Protein Structures: Considering Protein Structural Variations in Molecular Docking Proteins: Struct., Funct., Bioinfo. 2007, 66, 399-421 10.1002/prot.21214
    • (2007) Proteins: Struct., Funct., Bioinfo. , vol.66 , pp. 399-421
    • Huang, S.-Y.1    Zou, X.2
  • 2
  • 3
    • 62449330667 scopus 로고    scopus 로고
    • Empirical Scoring Functions for Advanced Protein-Ligand Docking with PLANTS
    • Korb, O.; Stützle, T.; Exner, T. E. Empirical Scoring Functions for Advanced Protein-Ligand Docking with PLANTS J. Chem. Inf. Model. 2009, 49, 84-96 10.1021/ci800298z
    • (2009) J. Chem. Inf. Model. , vol.49 , pp. 84-96
    • Korb, O.1    Stützle, T.2    Exner, T.E.3
  • 4
    • 84863100633 scopus 로고    scopus 로고
    • Exhaustive Search and Solvated Interaction Energy (SIE) for Virtual Screening and Affinity Prediction
    • Sulea, T.; Hogues, H.; Purisima, E. O. Exhaustive Search and Solvated Interaction Energy (SIE) for Virtual Screening and Affinity Prediction J. Comput.-Aided Mol. Des. 2012, 26, 617-633 10.1007/s10822-011-9529-7
    • (2012) J. Comput.-Aided Mol. Des. , vol.26 , pp. 617-633
    • Sulea, T.1    Hogues, H.2    Purisima, E.O.3
  • 5
    • 0031552362 scopus 로고    scopus 로고
    • Development and Validation of a Genetic Algorithm for Flexible Docking
    • Jones, G.; Willett, P.; Glen, R. C.; Leach, A. R.; Taylor, R. Development and Validation of a Genetic Algorithm for Flexible Docking J. Mol. Biol. 1997, 267, 727-748 10.1006/jmbi.1996.0897
    • (1997) J. Mol. Biol. , vol.267 , pp. 727-748
    • Jones, G.1    Willett, P.2    Glen, R.C.3    Leach, A.R.4    Taylor, R.5
  • 6
    • 84883247468 scopus 로고    scopus 로고
    • Lessons Learned in Empirical Scoring with Smina from the CSAR 2011 Benchmarking Exercise
    • Koes, D. R.; Baumgartner, M. P.; Camacho, C. J. Lessons Learned in Empirical Scoring with Smina from the CSAR 2011 Benchmarking Exercise J. Chem. Inf. Model. 2013, 53, 1893-1904 10.1021/ci300604z
    • (2013) J. Chem. Inf. Model. , vol.53 , pp. 1893-1904
    • Koes, D.R.1    Baumgartner, M.P.2    Camacho, C.J.3
  • 7
    • 34147107263 scopus 로고    scopus 로고
    • PELE: Protein Energy Landscape Exploration. A Novel Monte Carlo Based Technique
    • Borrelli, K. W.; Vitalis, A.; Alcantara, R.; Guallar, V. PELE: Protein Energy Landscape Exploration. A Novel Monte Carlo Based Technique J. Chem. Theory Comput. 2005, 1, 1304-1311 10.1021/ct0501811
    • (2005) J. Chem. Theory Comput. , vol.1 , pp. 1304-1311
    • Borrelli, K.W.1    Vitalis, A.2    Alcantara, R.3    Guallar, V.4
  • 8
    • 0030599010 scopus 로고    scopus 로고
    • A Fast Flexible Docking Method Using an Incremental Construction Algorithm
    • Rarey, M.; Kramer, B.; Lengauer, T.; Klebe, G. A Fast Flexible Docking Method Using an Incremental Construction Algorithm J. Mol. Biol. 1996, 261, 470-489 10.1006/jmbi.1996.0477
    • (1996) J. Mol. Biol. , vol.261 , pp. 470-489
    • Rarey, M.1    Kramer, B.2    Lengauer, T.3    Klebe, G.4
  • 9
    • 77957237749 scopus 로고    scopus 로고
    • Rapid Flexible Docking Using a Stochastic Rotamer Library of Ligands
    • Ding, F.; Yin, S.; Dokholyan, N. V. Rapid Flexible Docking Using a Stochastic Rotamer Library of Ligands J. Chem. Inf. Model. 2010, 50, 1623-1632 10.1021/ci100218t
    • (2010) J. Chem. Inf. Model. , vol.50 , pp. 1623-1632
    • Ding, F.1    Yin, S.2    Dokholyan, N.V.3
  • 10
    • 33750574927 scopus 로고    scopus 로고
    • An Iterative Knowledge-Based Scoring Function to Predict Protein-ligand Interactions: II. Validation of the Scoring Function
    • Huang, S.-Y.; Zou, X. An Iterative Knowledge-Based Scoring Function to Predict Protein-ligand Interactions: II. Validation of the Scoring Function J. Comput. Chem. 2006, 27, 1876-1882 10.1002/jcc.20505
    • (2006) J. Comput. Chem. , vol.27 , pp. 1876-1882
    • Huang, S.-Y.1    Zou, X.2
  • 11
    • 84976522772 scopus 로고    scopus 로고
    • HybridDock: A Hybrid Protein-Ligand Docking Protocol Integrating Protein- and Ligand-Based Approaches
    • Huang, S.-Y.; Li, M.; Wang, J.; Pan, Y. HybridDock: A Hybrid Protein-Ligand Docking Protocol Integrating Protein- and Ligand-Based Approaches J. Chem. Inf. Model. 2015, 10.1021/acs.jcim.5b00275
    • (2015) J. Chem. Inf. Model.
    • Huang, S.-Y.1    Li, M.2    Wang, J.3    Pan, Y.4
  • 12
    • 76149120388 scopus 로고    scopus 로고
    • AutoDock Vina: Improving the Speed and Accuracy of Docking with a New Scoring Function, Efficient Optimization, and Multithreading
    • Trott, O.; Olson, A. J. AutoDock Vina: Improving the Speed and Accuracy of Docking with a New Scoring Function, Efficient Optimization, and Multithreading J. Comput. Chem. 2010, 31, 455-461 10.1002/jcc.21334
    • (2010) J. Comput. Chem. , vol.31 , pp. 455-461
    • Trott, O.1    Olson, A.J.2
  • 13
    • 84976469356 scopus 로고    scopus 로고
    • Choosing the Optimal Rigid Receptor for Docking and Scoring in the CSAR 2013/2014 Experiment
    • Baumgartner, M. P.; Camacho, C. J. Choosing the Optimal Rigid Receptor for Docking and Scoring in the CSAR 2013/2014 Experiment J. Chem. Inf. Model. 2015, 10.1021/acs.jcim.5b00338
    • (2015) J. Chem. Inf. Model.
    • Baumgartner, M.P.1    Camacho, C.J.2
  • 14
    • 84874111137 scopus 로고    scopus 로고
    • A Consistent Description of HYdrogen Bond and DEhydration Energies in Protein-ligand Complexes: Methods behind the HYDE Scoring Function
    • Schneider, N.; Lange, G.; Hindle, S.; Klein, R.; Rarey, M. A Consistent Description of HYdrogen Bond and DEhydration Energies in Protein-ligand Complexes: Methods behind the HYDE Scoring Function J. Comput.-Aided Mol. Des. 2013, 27, 15-29 10.1007/s10822-012-9626-2
    • (2013) J. Comput.-Aided Mol. Des. , vol.27 , pp. 15-29
    • Schneider, N.1    Lange, G.2    Hindle, S.3    Klein, R.4    Rarey, M.5
  • 15
    • 84976495621 scopus 로고    scopus 로고
    • ROCS v. 3.2.1; OpenEye Scientific Software, Inc. Santa Fe, NM, USA. 2015, accessed: February 23
    • ROCS v. 3.2.1; OpenEye Scientific Software, Inc., Santa Fe, NM, USA., 2015, accessed: February 23, 2016.
    • (2016)
  • 16
    • 84976376865 scopus 로고    scopus 로고
    • Application of Shape Similarity in Pose Selection and Virtual Screening in CSARdock2014 Exercise
    • Kumar, A.; Zhang, K. Y. J. Application of Shape Similarity in Pose Selection and Virtual Screening in CSARdock2014 Exercise J. Chem. Inf. Model. 2015, 10.1021/acs.jcim.5b00279
    • (2015) J. Chem. Inf. Model.
    • Kumar, A.1    Zhang, K.Y.J.2
  • 20
    • 77957934896 scopus 로고    scopus 로고
    • Docking and Scoring Protein Interactions: CAPRI 2009
    • Lensink, M. F.; Wodak, S. J. Docking and Scoring Protein Interactions: CAPRI 2009 Proteins: Struct., Funct., Bioinfo. 2010, 78, 3073-3084 10.1002/prot.22818
    • (2010) Proteins: Struct., Funct., Bioinfo. , vol.78 , pp. 3073-3084
    • Lensink, M.F.1    Wodak, S.J.2
  • 21
    • 84888289172 scopus 로고    scopus 로고
    • Docking, Scoring, and Affinity Prediction in CAPRI
    • Lensink, M. F.; Wodak, S. J. Docking, Scoring, and Affinity Prediction in CAPRI Proteins: Struct., Funct., Bioinfo. 2013, 81, 2082-2095 10.1002/prot.24428
    • (2013) Proteins: Struct., Funct., Bioinfo. , vol.81 , pp. 2082-2095
    • Lensink, M.F.1    Wodak, S.J.2
  • 22
    • 39749178969 scopus 로고    scopus 로고
    • Predicting Small-Molecule Solvation Free Energies: An Informal Blind Test for Computational Chemistry
    • Nicholls, A.; Mobley, D. L.; Guthrie, J. P.; Chodera, J. D.; Bayly, C. I.; Cooper, M. D.; Pande, V. S. Predicting Small-Molecule Solvation Free Energies: An Informal Blind Test for Computational Chemistry J. Med. Chem. 2008, 51, 769-779 10.1021/jm070549+
    • (2008) J. Med. Chem. , vol.51 , pp. 769-779
    • Nicholls, A.1    Mobley, D.L.2    Guthrie, J.P.3    Chodera, J.D.4    Bayly, C.I.5    Cooper, M.D.6    Pande, V.S.7
  • 23
    • 77953321666 scopus 로고    scopus 로고
    • SAMPL2 Challenge: Prediction of Solvation Energies and Tautomer Ratios
    • Skillman, A. G.; Geballe, M. T.; Nicholls, A. SAMPL2 Challenge: Prediction of Solvation Energies and Tautomer Ratios J. Comput.-Aided Mol. Des. 2010, 24, 257-258 10.1007/s10822-010-9358-0
    • (2010) J. Comput.-Aided Mol. Des. , vol.24 , pp. 257-258
    • Skillman, A.G.1    Geballe, M.T.2    Nicholls, A.3
  • 24
    • 84863100210 scopus 로고    scopus 로고
    • SAMPL3: Blinded Prediction of Host-guest Binding Affinities, Hydration Free Energies, and Trypsin Inhibitors
    • Skillman, A. G. SAMPL3: Blinded Prediction of Host-guest Binding Affinities, Hydration Free Energies, and Trypsin Inhibitors J. Comput.-Aided Mol. Des. 2012, 26, 473-474 10.1007/s10822-012-9580-z
    • (2012) J. Comput.-Aided Mol. Des. , vol.26 , pp. 473-474
    • Skillman, A.G.1
  • 25
    • 84899935825 scopus 로고    scopus 로고
    • SAMPL4, a Blind Challenge for Computational Solvation Free Energies: The Compounds Considered
    • Guthrie, J. P. SAMPL4, a Blind Challenge for Computational Solvation Free Energies: The Compounds Considered J. Comput.-Aided Mol. Des. 2014, 28, 151-168 10.1007/s10822-014-9738-y
    • (2014) J. Comput.-Aided Mol. Des. , vol.28 , pp. 151-168
    • Guthrie, J.P.1
  • 26
    • 84883209345 scopus 로고    scopus 로고
    • CSAR Benchmark Exercise 2011-2012: Evaluation of Results from Docking and Relative Ranking of Blinded Congeneric Series
    • Damm-Ganamet, K. L.; Smith, R. D.; Dunbar, J. B.; Stuckey, J. A.; Carlson, H. A. CSAR Benchmark Exercise 2011-2012: Evaluation of Results from Docking and Relative Ranking of Blinded Congeneric Series J. Chem. Inf. Model. 2013, 53, 1853-1870 10.1021/ci400025f
    • (2013) J. Chem. Inf. Model. , vol.53 , pp. 1853-1870
    • Damm-Ganamet, K.L.1    Smith, R.D.2    Dunbar, J.B.3    Stuckey, J.A.4    Carlson, H.A.5
  • 30
    • 3042647771 scopus 로고    scopus 로고
    • Comparative Genomic Assessment of Novel Broad-Spectrum Targets for Antibacterial Drugs
    • White, T. A.; Kell, D. B. Comparative Genomic Assessment of Novel Broad-Spectrum Targets for Antibacterial Drugs Comp. Funct. Genomics 2004, 5, 304-327 10.1002/cfg.411
    • (2004) Comp. Funct. Genomics , vol.5 , pp. 304-327
    • White, T.A.1    Kell, D.B.2
  • 31
    • 84976475450 scopus 로고    scopus 로고
    • Identification of the First Potent Inhibitors of tRNA (m1G37) Methlytransferase (TrmD) via an Integrated Screening Approach. Abstracts, 64th Southeast Regional Meeting of the American Chemical Society, November 14-17
    • Price, A. T. Identification of the First Potent Inhibitors of tRNA (m1G37) Methlytransferase (TrmD) via an Integrated Screening Approach., Abstracts, 64th Southeast Regional Meeting of the American Chemical Society, November 14-17, 2012.
    • (2012)
    • Price, A.T.1
  • 32
    • 84976466767 scopus 로고    scopus 로고
    • Spleen Tyrosine Kinase: A Novel Target in Autoimmunity
    • Kapur, S. InTech: Rijeka, Croatia
    • McAdoo, S. P.; Tam, F. W. K. Spleen Tyrosine Kinase: A Novel Target in Autoimmunity. In Immunosuppression-Role in Health and Diseases; Kapur, S., Ed.; InTech: Rijeka, Croatia, 2012.
    • (2012) Immunosuppression - Role in Health and Diseases
    • McAdoo, S.P.1    Tam, F.W.K.2
  • 33
    • 84897112247 scopus 로고    scopus 로고
    • Spleen Tyrosine Kinase Inhibitors for Rheumatoid Arthritis: Where Are We Now?
    • Scott, I. C.; Scott, D. L. Spleen Tyrosine Kinase Inhibitors for Rheumatoid Arthritis: Where Are We Now? Drugs 2014, 74, 415-422 10.1007/s40265-014-0193-9
    • (2014) Drugs , vol.74 , pp. 415-422
    • Scott, I.C.1    Scott, D.L.2
  • 34
    • 84912051613 scopus 로고    scopus 로고
    • Effects of Fostamatinib, an Oral Spleen Tyrosine Kinase Inhibitor, in Rheumatoid Arthritis Patients with an Inadequate Response to Methotrexate: Results from a Phase III, Multicenter, Randomized, Double-Blind, Placebo-Controlled, Parallel-Group Study
    • Weinblatt, M. E.; Genovese, M. C.; Ho, M.; Hollis, S.; Rosiak-Jedrychowicz, K.; Kavanaugh, A.; Millson, D. S.; Leon, G.; Wang, M.; van der Heijde, D. Effects of Fostamatinib, an Oral Spleen Tyrosine Kinase Inhibitor, in Rheumatoid Arthritis Patients With an Inadequate Response to Methotrexate: Results From a Phase III, Multicenter, Randomized, Double-Blind, Placebo-Controlled, Parallel-Group Study Arthritis Rheumatol. 2014, 66, 3255-3264 10.1002/art.38851
    • (2014) Arthritis Rheumatol. , vol.66 , pp. 3255-3264
    • Weinblatt, M.E.1    Genovese, M.C.2    Ho, M.3    Hollis, S.4    Rosiak-Jedrychowicz, K.5    Kavanaugh, A.6    Millson, D.S.7    Leon, G.8    Wang, M.9    Van Der Heijde, D.10
  • 38
    • 38349147756 scopus 로고    scopus 로고
    • New Oral Anticoagulants in Atrial Fibrillation
    • Turpie, A. G. G. New Oral Anticoagulants in Atrial Fibrillation Eur. Heart J. 2007, 29, 155-165 10.1093/eurheartj/ehm575
    • (2007) Eur. Heart J. , vol.29 , pp. 155-165
    • Turpie, A.G.G.1
  • 39
    • 40949163431 scopus 로고    scopus 로고
    • Role of the Active-Site Solvent in the Thermodynamics of Factor Xa Ligand Binding
    • Abel, R.; Young, T.; Farid, R.; Berne, B. J.; Friesner, R. A. Role of the Active-Site Solvent in the Thermodynamics of Factor Xa Ligand Binding J. Am. Chem. Soc. 2008, 130, 2817-2831 10.1021/ja0771033
    • (2008) J. Am. Chem. Soc. , vol.130 , pp. 2817-2831
    • Abel, R.1    Young, T.2    Farid, R.3    Berne, B.J.4    Friesner, R.A.5
  • 41
    • 33749256087 scopus 로고    scopus 로고
    • Arylsulfonamides: A Study of the Relationship between Activity and Conformational Preferences for a Series of Factor Xa Inhibitors
    • Senger, S.; Convery, M. A.; Chan, C.; Watson, N. S. Arylsulfonamides: A Study of the Relationship between Activity and Conformational Preferences for a Series of Factor Xa Inhibitors Bioorg. Med. Chem. Lett. 2006, 16, 5731-5735 10.1016/j.bmcl.2006.08.092
    • (2006) Bioorg. Med. Chem. Lett. , vol.16 , pp. 5731-5735
    • Senger, S.1    Convery, M.A.2    Chan, C.3    Watson, N.S.4
  • 52
    • 84883260321 scopus 로고    scopus 로고
    • Check Your Confidence: Size Really Does Matter
    • Carlson, H. A. Check Your Confidence: Size Really Does Matter J. Chem. Inf. Model. 2013, 53, 1837-1841 10.1021/ci4004249
    • (2013) J. Chem. Inf. Model. , vol.53 , pp. 1837-1841
    • Carlson, H.A.1
  • 53
    • 84976495470 scopus 로고    scopus 로고
    • Chemical Computing Group, Inc. Montreal, QC, Canada, 2011
    • MOE2011.10; Chemical Computing Group, Inc.: Montreal, QC, Canada, 2011.
    • MOE2011.10
  • 55
    • 84976500586 scopus 로고    scopus 로고
    • Chemical Computing Group, Inc. Montreal, QC, Canada, 2013
    • MOE2013.08; Chemical Computing Group, Inc.: Montreal, QC, Canada, 2013.
    • MOE2013.08
  • 56
    • 84976496589 scopus 로고    scopus 로고
    • OpenEye Scientific Software, Inc. 2007
    • Babel, Version 3.3; OpenEye Scientific Software, Inc. 2007.
    • Babel, Version 3.3
  • 57
    • 84976521130 scopus 로고    scopus 로고
    • SAS Institute, Inc. Cary, NC
    • JMP Pro 10; SAS Institute, Inc.: Cary, NC.
    • JMP Pro 10
  • 58
    • 0002532939 scopus 로고
    • On the "probable Error" of a Coefficient of Correlation Deduced from a Small Sample
    • Fisher, R. A. On the "Probable Error" of a Coefficient of Correlation Deduced from a Small Sample Metron 1921, 1, 3-31
    • (1921) Metron , vol.1 , pp. 3-31
    • Fisher, R.A.1
  • 59
    • 0034147705 scopus 로고    scopus 로고
    • Sample Size Requirements for Estimating Pearson, Kendall and Spearman Correlations
    • Bonett, D. G.; Wright, T. A. Sample Size Requirements for Estimating Pearson, Kendall and Spearman Correlations Psychometrika 2000, 65, 23-28 10.1007/BF02294183
    • (2000) Psychometrika , vol.65 , pp. 23-28
    • Bonett, D.G.1    Wright, T.A.2
  • 60
    • 84876691506 scopus 로고    scopus 로고
    • Systematic and Efficient Side Chain Optimization for Molecular Docking Using a Cheapest-Path Procedure
    • Schumann, M.; Armen, R. S. Systematic and Efficient Side Chain Optimization for Molecular Docking Using a Cheapest-Path Procedure J. Comput. Chem. 2013, 34, 1258-1269 10.1002/jcc.23251
    • (2013) J. Comput. Chem. , vol.34 , pp. 1258-1269
    • Schumann, M.1    Armen, R.S.2
  • 62
    • 20444422149 scopus 로고    scopus 로고
    • The PDBbind Database: Methodologies and Updates
    • Wang, R.; Fang, X.; Lu, Y.; Yang, C.-Y.; Wang, S. The PDBbind Database: Methodologies and Updates J. Med. Chem. 2005, 48, 4111-4119 10.1021/jm048957q
    • (2005) J. Med. Chem. , vol.48 , pp. 4111-4119
    • Wang, R.1    Fang, X.2    Lu, Y.3    Yang, C.-Y.4    Wang, S.5
  • 63
    • 84976481255 scopus 로고    scopus 로고
    • OpenEye Scientific Software, Inc. Santa Fe, NM, 2011
    • SZMAP, 1.0.0; OpenEye Scientific Software, Inc.: Santa Fe, NM, 2011.
    • SZMAP, 1.0.0
  • 64
    • 84976488321 scopus 로고    scopus 로고
    • OpenEye Scientific Software, Santa Fe, NM
    • SZYBKI 1.8.0.2; OpenEye Scientific Software, Santa Fe, NM, 2016.
    • (2016) SZYBKI 1.8.0.2
  • 66
    • 84867328344 scopus 로고    scopus 로고
    • FRED and HYBRID Docking Performance on Standardized Datasets
    • McGann, M. FRED and HYBRID Docking Performance on Standardized Datasets J. Comput.-Aided Mol. Des. 2012, 26, 897-906 10.1007/s10822-012-9584-8
    • (2012) J. Comput.-Aided Mol. Des. , vol.26 , pp. 897-906
    • McGann, M.1
  • 67
    • 0035470889 scopus 로고    scopus 로고
    • Greedy Function Approximation: A Gradient Boosting Machine
    • Friedman, J. H. Greedy Function Approximation: A Gradient Boosting Machine Ann. Stat. 2001, 29, 1189-1232 10.1214/aos/1013203451
    • (2001) Ann. Stat. , vol.29 , pp. 1189-1232
    • Friedman, J.H.1
  • 69
    • 77952825581 scopus 로고    scopus 로고
    • A Machine Learning Approach to Predicting Protein-ligand Binding Affinity with Applications to Molecular Docking
    • Ballester, P. J.; Mitchell, J. B. A Machine Learning Approach to Predicting Protein-ligand Binding Affinity with Applications to Molecular Docking Bioinformatics 2010, 26, 1169-1175 10.1093/bioinformatics/btq112
    • (2010) Bioinformatics , vol.26 , pp. 1169-1175
    • Ballester, P.J.1    Mitchell, J.B.2
  • 70
    • 80053324958 scopus 로고    scopus 로고
    • SHAFTS: A Hybrid Approach for 3D Molecular Similarity Calculation. 1. Method and Assessment of Virtual Screening
    • Liu, X.; Jiang, H.; Li, H. SHAFTS: A Hybrid Approach for 3D Molecular Similarity Calculation. 1. Method and Assessment of Virtual Screening J. Chem. Inf. Model. 2011, 51, 2372-2385 10.1021/ci200060s
    • (2011) J. Chem. Inf. Model. , vol.51 , pp. 2372-2385
    • Liu, X.1    Jiang, H.2    Li, H.3
  • 71
    • 79959746008 scopus 로고    scopus 로고
    • Pharmer: Efficient and Exact Pharmacophore Search
    • Koes, D. R.; Camacho, C. J. Pharmer: Efficient and Exact Pharmacophore Search J. Chem. Inf. Model. 2011, 51, 1307-1314 10.1021/ci200097m
    • (2011) J. Chem. Inf. Model. , vol.51 , pp. 1307-1314
    • Koes, D.R.1    Camacho, C.J.2
  • 72
    • 84976394415 scopus 로고    scopus 로고
    • Integration of Ligand and Structure Based Approaches for CSAR-2014
    • Prathipati, P.; Mizuguchi, K. Integration of Ligand and Structure Based Approaches for CSAR-2014 J. Chem. Inf. Model. 2015, 10.1021/acs.jcim.5b00477
    • (2015) J. Chem. Inf. Model.
    • Prathipati, P.1    Mizuguchi, K.2
  • 73
    • 0034645763 scopus 로고    scopus 로고
    • Knowledge-Based Scoring Function to Predict Protein-Ligand interactions1
    • Gohlke, H.; Hendlich, M.; Klebe, G. Knowledge-Based Scoring Function to Predict Protein-Ligand interactions1 J. Mol. Biol. 2000, 295, 337-356 10.1006/jmbi.1999.3371
    • (2000) J. Mol. Biol. , vol.295 , pp. 337-356
    • Gohlke, H.1    Hendlich, M.2    Klebe, G.3
  • 74
    • 0036022960 scopus 로고    scopus 로고
    • Further Development and Validation of Empirical Scoring Functions for Structure-Based Binding Affinity Prediction
    • Wang, R.; Lai, L.; Wang, S. Further Development and Validation of Empirical Scoring Functions for Structure-Based Binding Affinity Prediction J. Comput.-Aided Mol. Des. 2002, 16, 11-26 10.1023/A:1016357811882
    • (2002) J. Comput.-Aided Mol. Des. , vol.16 , pp. 11-26
    • Wang, R.1    Lai, L.2    Wang, S.3
  • 75
    • 52049118327 scopus 로고    scopus 로고
    • MedusaScore: An Accurate Force Field-Based Scoring Function for Virtual Drug Screening
    • Yin, S.; Biedermannova, L.; Vondrasek, J.; Dokholyan, N. V. MedusaScore: An Accurate Force Field-Based Scoring Function for Virtual Drug Screening J. Chem. Inf. Model. 2008, 48, 1656-1662 10.1021/ci8001167
    • (2008) J. Chem. Inf. Model. , vol.48 , pp. 1656-1662
    • Yin, S.1    Biedermannova, L.2    Vondrasek, J.3    Dokholyan, N.V.4
  • 76
    • 84976394935 scopus 로고    scopus 로고
    • Predicting Binding Poses and Affinities in the CSAR 2013-2014 Docking Exercises Using the Knowledge-Based Convex-PL Potential
    • Grudinin, S.; Popov, P.; Neveu, E.; Cheremovskiy, G. Predicting Binding Poses and Affinities in the CSAR 2013-2014 Docking Exercises Using the Knowledge-Based Convex-PL Potential J. Chem. Inf. Model. 2015, 10.1021/acs.jcim.5b00339
    • (2015) J. Chem. Inf. Model.
    • Grudinin, S.1    Popov, P.2    Neveu, E.3    Cheremovskiy, G.4
  • 77
    • 84976351167 scopus 로고    scopus 로고
    • Evaluation of the Wilma-SIE Virtual Screening Method in Community Structure-Activity Resource 2013 and 2014 Blind Challenges
    • Hogues, H.; Sulea, T.; Purisima, E. O. Evaluation of the Wilma-SIE Virtual Screening Method in Community Structure-Activity Resource 2013 and 2014 Blind Challenges J. Chem. Inf. Model. 2015, 10.1021/acs.jcim.5b00278
    • (2015) J. Chem. Inf. Model.
    • Hogues, H.1    Sulea, T.2    Purisima, E.O.3
  • 78
    • 84976383871 scopus 로고    scopus 로고
    • Blind Pose Prediction, Scoring, and Affinity Ranking of the CSAR 2014 Dataset
    • Martiny, V. Y.; Martz, F.; Selwa, E.; Iorga, B. I. Blind Pose Prediction, Scoring, and Affinity Ranking of the CSAR 2014 Dataset J. Chem. Inf. Model. 2015, 10.1021/acs.jcim.5b00337
    • (2015) J. Chem. Inf. Model.
    • Martiny, V.Y.1    Martz, F.2    Selwa, E.3    Iorga, B.I.4
  • 79
    • 84976420300 scopus 로고    scopus 로고
    • CSAR Benchmark of Flexible MedusaDock in Affinity Prediction and Nativelike Binding Pose Selection
    • Nedumpully-Govindan, P.; Jemec, D. B.; Ding, F. CSAR Benchmark of Flexible MedusaDock in Affinity Prediction and Nativelike Binding Pose Selection J. Chem. Inf. Model. 2015, 10.1021/acs.jcim.5b00303
    • (2015) J. Chem. Inf. Model.
    • Nedumpully-Govindan, P.1    Jemec, D.B.2    Ding, F.3
  • 80
    • 84976406317 scopus 로고    scopus 로고
    • Evaluation of GalaxyDock Based on the Community Structure-Activity Resource 2013 and 2014 Benchmark Studies
    • Shin, W.-H.; Lee, G. R.; Seok, C. Evaluation of GalaxyDock Based on the Community Structure-Activity Resource 2013 and 2014 Benchmark Studies J. Chem. Inf. Model. 2015, 10.1021/acs.jcim.5b00309
    • (2015) J. Chem. Inf. Model.
    • Shin, W.-H.1    Lee, G.R.2    Seok, C.3
  • 81
    • 84976482811 scopus 로고    scopus 로고
    • Iterative Knowledge-Based Scoring Functions Derived from Rigid and Flexible Decoy Structures: Evaluation with the 2013 and 2014 CSAR Benchmarks
    • Yan, C.; Grinter, S. Z.; Merideth, B. R.; Ma, Z.; Zou, X. Iterative Knowledge-Based Scoring Functions Derived from Rigid and Flexible Decoy Structures: Evaluation with the 2013 and 2014 CSAR Benchmarks J. Chem. Inf. Model. 2015, 10.1021/acs.jcim.5b00504
    • (2015) J. Chem. Inf. Model.
    • Yan, C.1    Grinter, S.Z.2    Merideth, B.R.3    Ma, Z.4    Zou, X.5
  • 82
    • 84976475543 scopus 로고    scopus 로고
    • Combined Approach of Patch-Surfer and PL-PatchSurfer for Protein-Ligand Binding Prediction in CSAR 2013 and 2014
    • Zhu, X.; Shin, W.-H.; Kim, H.; Kihara, D. Combined Approach of Patch-Surfer and PL-PatchSurfer for Protein-Ligand Binding Prediction in CSAR 2013 and 2014 J. Chem. Inf. Model. 2015, 10.1021/acs.jcim.5b00625
    • (2015) J. Chem. Inf. Model.
    • Zhu, X.1    Shin, W.-H.2    Kim, H.3    Kihara, D.4
  • 83
    • 20644449471 scopus 로고    scopus 로고
    • Modification of the Generalized Born Model Suitable for Macromolecules
    • Onufriev, A.; Bashford, D.; Case, D. A. Modification of the Generalized Born Model Suitable for Macromolecules J. Phys. Chem. B 2000, 104, 3712-3720 10.1021/jp994072s
    • (2000) J. Phys. Chem. B , vol.104 , pp. 3712-3720
    • Onufriev, A.1    Bashford, D.2    Case, D.A.3
  • 84
    • 70349100806 scopus 로고    scopus 로고
    • Theory of Free Energy and Entropy in Noncovalent Binding
    • Zhou, H.-X.; Gilson, M. K. Theory of Free Energy and Entropy in Noncovalent Binding Chem. Rev. 2009, 109, 4092-4107 10.1021/cr800551w
    • (2009) Chem. Rev. , vol.109 , pp. 4092-4107
    • Zhou, H.-X.1    Gilson, M.K.2
  • 85
    • 80053334687 scopus 로고    scopus 로고
    • Solvated Interaction Energy (SIE) for Scoring Protein-Ligand Binding Affinities. 2. Benchmark in the CSAR-2010 Scoring Exercise
    • Sulea, T.; Cui, Q.; Purisima, E. O. Solvated Interaction Energy (SIE) for Scoring Protein-Ligand Binding Affinities. 2. Benchmark in the CSAR-2010 Scoring Exercise J. Chem. Inf. Model. 2011, 51, 2066-2081 10.1021/ci2000242
    • (2011) J. Chem. Inf. Model. , vol.51 , pp. 2066-2081
    • Sulea, T.1    Cui, Q.2    Purisima, E.O.3
  • 86
    • 0001509942 scopus 로고    scopus 로고
    • Prediction of Physicochemical Parameters by Atomic Contributions
    • Wildman, S. A.; Crippen, G. M. Prediction of Physicochemical Parameters by Atomic Contributions J. Chem. Inf. Comput. Sci. 1999, 39, 868-873 10.1021/ci990307l
    • (1999) J. Chem. Inf. Comput. Sci. , vol.39 , pp. 868-873
    • Wildman, S.A.1    Crippen, G.M.2
  • 87
    • 84862276184 scopus 로고    scopus 로고
    • The Experimental Uncertainty of Heterogeneous Public Ki Data
    • Kramer, C.; Kalliokoski, T.; Gedeck, P.; Vulpetti, A. The Experimental Uncertainty of Heterogeneous Public Ki Data J. Med. Chem. 2012, 55, 5165-5173 10.1021/jm300131x
    • (2012) J. Med. Chem. , vol.55 , pp. 5165-5173
    • Kramer, C.1    Kalliokoski, T.2    Gedeck, P.3    Vulpetti, A.4
  • 88
    • 80053303462 scopus 로고    scopus 로고
    • Three Descriptor Model Sets a High Standard for the CSAR-NRC HiQ Benchmark
    • Kramer, C.; Gedeck, P. Three Descriptor Model Sets a High Standard for the CSAR-NRC HiQ Benchmark J. Chem. Inf. Model. 2011, 51, 2139-2145 10.1021/ci200030h
    • (2011) J. Chem. Inf. Model. , vol.51 , pp. 2139-2145
    • Kramer, C.1    Gedeck, P.2
  • 89
    • 84872223600 scopus 로고    scopus 로고
    • QSARs, Data and Error in the Modern Age of Drug Discovery
    • Kramer, C.; Lewis, R. QSARs, Data and Error in the Modern Age of Drug Discovery Curr. Top. Med. Chem. 2012, 12, 1896-1902 10.2174/156802612804547380
    • (2012) Curr. Top. Med. Chem. , vol.12 , pp. 1896-1902
    • Kramer, C.1    Lewis, R.2
  • 90
    • 84876174816 scopus 로고    scopus 로고
    • Comparability of Mixed IC50 Data-a Statistical Analysis
    • Kalliokoski, T.; Kramer, C.; Vulpetti, A.; Gedeck, P. Comparability of Mixed IC50 Data-a Statistical Analysis PLoS One 2013, 8, e61007 10.1371/journal.pone.0061007
    • (2013) PLoS One , vol.8 , pp. e61007
    • Kalliokoski, T.1    Kramer, C.2    Vulpetti, A.3    Gedeck, P.4
  • 91
    • 84865271039 scopus 로고    scopus 로고
    • Variability in Docking Success Rates due to Dataset Preparation
    • Corbeil, C. R.; Williams, C. I.; Labute, P. Variability in Docking Success Rates due to Dataset Preparation J. Comput.-Aided Mol. Des. 2012, 26, 775-786 10.1007/s10822-012-9570-1
    • (2012) J. Comput.-Aided Mol. Des. , vol.26 , pp. 775-786
    • Corbeil, C.R.1    Williams, C.I.2    Labute, P.3
  • 92
    • 84855945133 scopus 로고    scopus 로고
    • Rosetta Ligand Docking with Flexible XML Protocols
    • Lemmon, G.; Meiler, J. Rosetta Ligand Docking with Flexible XML Protocols Methods Mol. Biol. 2012, 819, 143-155 10.1007/978-1-61779-465-0-10
    • (2012) Methods Mol. Biol. , vol.819 , pp. 143-155
    • Lemmon, G.1    Meiler, J.2
  • 94
    • 84976506818 scopus 로고    scopus 로고
    • Molecular Docking for Drug Discovery: Machine-Learning Approaches for Native Pose Prediction of Protein-Ligand Complexes
    • Formenti, E. Tagliaferri, R. Wit, E. Lecture Notes in Computer Science; Springer International Publishing
    • Ashtawy, H. M.; Mahapatra, N. R. Molecular Docking for Drug Discovery: Machine-Learning Approaches for Native Pose Prediction of Protein-Ligand Complexes. In Computational Intelligence Methods for Bioinformatics and Biostatistics; Formenti, E.; Tagliaferri, R.; Wit, E., Eds.; Lecture Notes in Computer Science; Springer International Publishing, 2013; pp 15-32.
    • (2013) Computational Intelligence Methods for Bioinformatics and Biostatistics , pp. 15-32
    • Ashtawy, H.M.1    Mahapatra, N.R.2
  • 95
    • 84859783507 scopus 로고    scopus 로고
    • Specificity Quantification of Biomolecular Recognition and Its Implication for Drug Discovery
    • Yan, Z.; Wang, J. Specificity Quantification of Biomolecular Recognition and Its Implication for Drug Discovery Sci. Rep. 2012, 2, 309 10.1038/srep00309
    • (2012) Sci. Rep. , vol.2 , pp. 309
    • Yan, Z.1    Wang, J.2
  • 96
    • 84871604119 scopus 로고    scopus 로고
    • GalaxyDock: Protein-Ligand Docking with Flexible Protein Side-Chains
    • Shin, W.-H.; Seok, C. GalaxyDock: Protein-Ligand Docking with Flexible Protein Side-Chains J. Chem. Inf. Model. 2012, 52, 3225-3232 10.1021/ci300342z
    • (2012) J. Chem. Inf. Model. , vol.52 , pp. 3225-3232
    • Shin, W.-H.1    Seok, C.2
  • 97
    • 13844320566 scopus 로고    scopus 로고
    • LigandScout: 3-D Pharmacophores Derived from Protein-Bound Ligands and Their Use as Virtual Screening Filters
    • Wolber, G.; Langer, T. LigandScout: 3-D Pharmacophores Derived from Protein-Bound Ligands and Their Use as Virtual Screening Filters J. Chem. Inf. Model. 2005, 45, 160-169 10.1021/ci049885e
    • (2005) J. Chem. Inf. Model. , vol.45 , pp. 160-169
    • Wolber, G.1    Langer, T.2
  • 101
    • 1642310340 scopus 로고    scopus 로고
    • Glide: A New Approach for Rapid, Accurate Docking and Scoring. 2. Enrichment Factors in Database Screening
    • Halgren, T. A.; Murphy, R. B.; Friesner, R. A.; Beard, H. S.; Frye, L. L.; Pollard, W. T.; Banks, J. L. Glide: A New Approach for Rapid, Accurate Docking and Scoring. 2. Enrichment Factors in Database Screening J. Med. Chem. 2004, 47, 1750-1759 10.1021/jm030644s
    • (2004) J. Med. Chem. , vol.47 , pp. 1750-1759
    • Halgren, T.A.1    Murphy, R.B.2    Friesner, R.A.3    Beard, H.S.4    Frye, L.L.5    Pollard, W.T.6    Banks, J.L.7
  • 102
    • 84921629247 scopus 로고    scopus 로고
    • Target-Specific Native/Decoy Pose Classifier Improves the Accuracy of Ligand Ranking in the CSAR 2013 Benchmark
    • Fourches, D.; Politi, R.; Tropsha, A. Target-Specific Native/Decoy Pose Classifier Improves the Accuracy of Ligand Ranking in the CSAR 2013 Benchmark J. Chem. Inf. Model. 2015, 55, 63-71 10.1021/ci500519w
    • (2015) J. Chem. Inf. Model. , vol.55 , pp. 63-71
    • Fourches, D.1    Politi, R.2    Tropsha, A.3
  • 103
    • 84905496054 scopus 로고    scopus 로고
    • Development and Application of Site Mapping Methods for the Design of Glycosaminoglycans
    • Agostino, M.; Gandhi, N. S.; Mancera, R. L. Development and Application of Site Mapping Methods for the Design of Glycosaminoglycans Glycobiology 2014, 24, 840 10.1093/glycob/cwu045
    • (2014) Glycobiology , vol.24 , pp. 840
    • Agostino, M.1    Gandhi, N.S.2    Mancera, R.L.3
  • 104
    • 84885410322 scopus 로고    scopus 로고
    • Electrostatic Similarities between Protein and Small Molecule Ligands Facilitate the Design of Protein-Protein Interaction Inhibitors
    • Voet, A.; Berenger, F.; Zhang, K. Y. J. Electrostatic Similarities between Protein and Small Molecule Ligands Facilitate the Design of Protein-Protein Interaction Inhibitors PLoS One 2013, 8, e75762 10.1371/journal.pone.0075762
    • (2013) PLoS One , vol.8 , pp. e75762
    • Voet, A.1    Berenger, F.2    Zhang, K.Y.J.3
  • 105
    • 77952358441 scopus 로고    scopus 로고
    • Rapid Prediction of Solvation Free Energy. 2. the First-Shell Hydration (FiSH) Continuum Model
    • Corbeil, C. R.; Sulea, T.; Purisima, E. O. Rapid Prediction of Solvation Free Energy. 2. The First-Shell Hydration (FiSH) Continuum Model J. Chem. Theory Comput. 2010, 6, 1622-1637 10.1021/ct9006037
    • (2010) J. Chem. Theory Comput. , vol.6 , pp. 1622-1637
    • Corbeil, C.R.1    Sulea, T.2    Purisima, E.O.3
  • 106
    • 84921629247 scopus 로고    scopus 로고
    • Target-Specific Native/Decoy Pose Classifier Improves the Accuracy of Ligand Ranking in the CSAR 2013 Benchmark
    • Fourches, D.; Politi, R.; Tropsha, A. Target-Specific Native/Decoy Pose Classifier Improves the Accuracy of Ligand Ranking in the CSAR 2013 Benchmark J. Chem. Inf. Model. 2015, 55, 63-71 10.1021/ci500519w
    • (2015) J. Chem. Inf. Model. , vol.55 , pp. 63-71
    • Fourches, D.1    Politi, R.2    Tropsha, A.3
  • 107
    • 84876691506 scopus 로고    scopus 로고
    • Systematic and Efficient Side Chain Optimization for Molecular Docking Using a Cheapest-Path Procedure
    • Schumann, M.; Armen, R. S. Systematic and Efficient Side Chain Optimization for Molecular Docking Using a Cheapest-Path Procedure J. Comput. Chem. 2013, 34, 1258-1269 10.1002/jcc.23251
    • (2013) J. Comput. Chem. , vol.34 , pp. 1258-1269
    • Schumann, M.1    Armen, R.S.2
  • 108
    • 0031226772 scopus 로고    scopus 로고
    • Empirical Scoring Functions: I. the Development of a Fast Empirical Scoring Function to Estimate the Binding Affinity of Ligands in Receptor Complexes
    • Eldridge, M. D.; Murray, C. W.; Auton, T. R.; Paolini, G. V.; Mee, R. P. Empirical Scoring Functions: I. The Development of a Fast Empirical Scoring Function to Estimate the Binding Affinity of Ligands in Receptor Complexes J. Comput.-Aided Mol. Des. 1997, 11, 425-445 10.1023/A:1007996124545
    • (1997) J. Comput.-Aided Mol. Des. , vol.11 , pp. 425-445
    • Eldridge, M.D.1    Murray, C.W.2    Auton, T.R.3    Paolini, G.V.4    Mee, R.P.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.