-
1
-
-
34547984406
-
Learning convex combinations of continuously parameterized basic kernels
-
Andreas Argyriou, Charles Micchelli, and Massimiliano Pontil. Learning convex combinations of continuously parameterized basic kernels. In COLT, 2005.
-
(2005)
COLT
-
-
Argyriou, A.1
Micchelli, C.2
Pontil, M.3
-
2
-
-
33749254646
-
A DC-programming algorithm for kernel selection
-
Andreas Argyriou, Raphael Hauser, Charles Micchelli, and Massimiliano Pontil. A DC-programming algorithm for kernel selection. In ICML, 2006.
-
(2006)
ICML
-
-
Argyriou, A.1
Hauser, R.2
Micchelli, C.3
Pontil, M.4
-
3
-
-
85027388762
-
Exploring large feature spaces with hierarchical multiple kernel learning
-
Francis Bach. Exploring large feature spaces with hierarchical multiple kernel learning. In NIPS, 2008.
-
(2008)
NIPS
-
-
Bach, F.1
-
4
-
-
33749258052
-
On a theory of learning with similarity functions
-
Maria-Florina Balcan and Avrim Blum. On a theory of learning with similarity functions. In ICML, 2006.
-
(2006)
ICML
-
-
Balcan, M.1
Blum, A.2
-
5
-
-
84860524227
-
Biographies, bollywood, boom-boxes and blenders: Domain adaptation for sentiment classification
-
John Blitzer, Mark Dredze, and Fernando Pereira. Biographies, Bollywood, Boom-boxes and Blenders: Domain Adaptation for Sentiment Classification. In ACL, 2007.
-
(2007)
ACL
-
-
Blitzer, J.1
Dredze, M.2
Pereira, F.3
-
6
-
-
0026966646
-
A training algorithm for optimal margin classifiers
-
Bernhard Boser, Isabelle Guyon, and Vladimir Vapnik. A training algorithm for optimal margin classifiers. In COLT, volume 5, 1992.
-
(1992)
COLT
, vol.5
-
-
Boser, B.1
Guyon, I.2
Vapnik, V.3
-
7
-
-
0012296113
-
Algorithmic stability and generalization performance
-
Olivier Bousquet and André Elisseeff. Algorithmic stability and generalization performance. In NIPS, 2000.
-
(2000)
NIPS
-
-
Bousquet, O.1
Elisseeff, A.2
-
8
-
-
84874094866
-
On the complexity of learning the kernel matrix
-
Olivier Bousquet and Daniel J. L. Herrmann. On the complexity of learning the kernel matrix. In NIPS, 2002.
-
(2002)
NIPS
-
-
Bousquet, O.1
Herrmann, D.J.L.2
-
10
-
-
0036161011
-
Choosing multiple parameters for support vector machines
-
Olivier Chapelle, Vladimir Vapnik, Olivier Bousquet, and Sayan Mukherjee. Choosing multiple parameters for support vector machines. Machine Learning, 46(1-3), 2002.
-
(2002)
Machine Learning
, vol.46
, Issue.1-3
-
-
Chapelle, O.1
Vapnik, V.2
Bousquet, O.3
Mukherjee, S.4
-
11
-
-
77956548520
-
Invited talk: Can learning kernels help performance?
-
Corinna Cortes. Invited talk: Can learning kernels help performance? In ICML, 2009.
-
(2009)
ICML
-
-
Cortes, C.1
-
12
-
-
34249753618
-
Support-vector networks
-
Corinna Cortes and Vladimir Vapnik. Support-Vector Networks. Machine Learning, 20(3), 1995.
-
(1995)
Machine Learning
, vol.20
, Issue.3
-
-
Cortes, C.1
Vapnik, V.2
-
15
-
-
84858743760
-
Learning non-linear combinations of kernels
-
Corinna Cortes, Mehryar Mohri, and Afshin Rostamizadeh. Learning non-linear combinations of kernels. In NIPS, 2009b.
-
(2009)
NIPS
-
-
Cortes, C.1
Mohri, M.2
Rostamizadeh, A.3
-
17
-
-
77956550918
-
Generalization bounds for learning kernels
-
Corinna Cortes, Mehryar Mohri, and Afshin Rostamizadeh. Generalization bounds for learning kernels. In ICML, 2010b.
-
(2010)
ICML
-
-
Cortes, C.1
Mohri, M.2
Rostamizadeh, A.3
-
18
-
-
84859452391
-
On the impact of kernel approximation on learning accuracy
-
Corinna Cortes, Mehryar Mohri, and Ameet Talwalkar. On the Impact of Kernel Approximation on Learning Accuracy. In AISTATS, 2010c.
-
(2010)
AISTATS
-
-
Cortes, C.1
Mohri, M.2
Talwalkar, A.3
-
24
-
-
14344263221
-
Multi-task feature and kernel selection for SVMs
-
Tony Jebara. Multi-task feature and kernel selection for SVMs. In ICML, 2004.
-
(2004)
ICML
-
-
Jebara, T.1
-
25
-
-
1942514135
-
-
technical report 120, Department of Computer Science, Univ. of London, UK
-
Jaz S. Kandola, John Shawe-Taylor, and Nello Cristianini. On the extensions of kernel alignment. technical report 120, Department of Computer Science, Univ. of London, UK, 2002a.
-
(2002)
On the Extensions of Kernel Alignment
-
-
Kandola, J.S.1
Shawe-Taylor, J.2
Cristianini, N.3
-
26
-
-
1942417983
-
-
technical report 121, Dept. of CS, Univ. of London, UK
-
Jaz S. Kandola, John Shawe-Taylor, and Nello Cristianini. Optimizing kernel alignment over combinations of kernels. technical report 121, Dept. of CS, Univ. of London, UK, 2002b.
-
(2002)
Optimizing Kernel Alignment over Combinations of Kernels
-
-
Kandola, J.S.1
Shawe-Taylor, J.2
Cristianini, N.3
-
27
-
-
33749246584
-
Optimal kernel selection in kernel fisher discriminant analysis
-
Seung-Jean Kim, Alessandro Magnani, and Stephen Boyd. Optimal kernel selection in kernel fisher discriminant analysis. In ICML, 2006.
-
(2006)
ICML
-
-
Kim, S.1
Magnani, A.2
Boyd, S.3
-
28
-
-
84860650487
-
Sparse recovery in large ensembles of kernel machines
-
Vladimir Koltchinskii and Ming Yuan. Sparse recovery in large ensembles of kernel machines. In COLT, 2008.
-
(2008)
COLT
-
-
Koltchinskii, V.1
Yuan, M.2
-
29
-
-
8844278523
-
Learning the kernel matrix with semidefinite programming
-
Gert Lanckriet, Nello Cristianini, Peter Bartlett, Laurent El Ghaoui, and Michael Jordan. Learning the kernel matrix with semidefinite programming. JMLR, 5, 2004.
-
(2004)
JMLR
, vol.5
-
-
Lanckriet, G.1
Cristianini, N.2
Bartlett, P.3
El Ghaoui, L.4
Jordan, M.5
-
31
-
-
0001035413
-
On the method of bounded differences
-
Colin McDiarmid. On the method of bounded differences. Surveys in combinatorics, 141, 1989.
-
(1989)
Surveys in Combinatorics
, vol.141
-
-
McDiarmid, C.1
-
32
-
-
78650177454
-
Data centering in feature space
-
Marina Meila. Data centering in feature space. In AISTATS, 2003.
-
(2003)
AISTATS
-
-
Meila, M.1
-
33
-
-
23244434257
-
Learning the kernel function via regularization
-
Charles Micchelli and Massimiliano Pontil. Learning the kernel function via regularization. JMLR, 6, 2005.
-
(2005)
JMLR
, vol.6
-
-
Micchelli, C.1
Pontil, M.2
-
34
-
-
21844468979
-
Learning the kernel with hyperkernels
-
Cheng Soon Ong, Alexander Smola, and Robert Williamson. Learning the kernel with hyperkernels. JMLR, 6, 2005.
-
(2005)
JMLR
, vol.6
-
-
Soon Ong, C.1
Smola, A.2
Williamson, R.3
-
35
-
-
51449115136
-
Optimizing kernel alignment by data translation in feature space
-
Jean-Baptiste Pothin and Cédric Richard. Optimizing kernel alignment by data translation in feature space. In ICASSP, 2008.
-
(2008)
ICASSP
-
-
Pothin, J.1
Richard, C.2
-
36
-
-
70450199207
-
Ridge regression learning algorithm in dual variables
-
Craig Saunders, A. Gammerman, and Volodya Vovk. Ridge regression learning algorithm in dual variables. In ICML, 1998.
-
(1998)
ICML
-
-
Saunders, C.1
Gammerman, A.2
Vovk, V.3
-
37
-
-
33745776113
-
Large scale multiple kernel learning
-
Sören Sonnenburg, Gunnar Rätsch, Christin Schäfer, and Bernhard Schölkopf. Large scale multiple kernel learning. Journal of Machine Learning Research, 7:1531-1565, 2006. (Pubitemid 44373694)
-
(2006)
Journal of Machine Learning Research
, vol.7
, pp. 1531-1565
-
-
Sonnenburg, S.1
Ratsch, G.2
Schafer, C.3
Scholkopf, B.4
-
38
-
-
77956508938
-
Learning bounds for support vector machines with learned kernels
-
Nathan Srebro and Shai Ben-David. Learning bounds for support vector machines with learned kernels. In COLT, 2006.
-
(2006)
COLT
-
-
Srebro, N.1
Ben-David, S.2
-
40
-
-
71149100224
-
More generality in efficient multiple kernel learning
-
Manik Varma and Bodla Rakesh Babu. More generality in efficient multiple kernel learning. In ICML, 2009.
-
(2009)
ICML
-
-
Varma, M.1
Rakesh Babu, B.2
-
41
-
-
77956540615
-
Multiclass multiple kernel learning
-
Alexander Zien and Cheng Soon Ong. Multiclass multiple kernel learning. In ICML, 2007.
-
(2007)
ICML
-
-
Zien, A.1
Soon Ong, C.2
|