메뉴 건너뛰기




Volumn 47, Issue , 2016, Pages 494-514

A modified MOEA/D approach to the solution of multi-objective optimal power flow problem

Author keywords

MOEA D; MOPSO; Multi objective optimization; NSGA II; Optimal power flow

Indexed keywords

ACOUSTIC GENERATORS; ALGORITHMS; ELECTRIC LOAD FLOW; EVOLUTIONARY ALGORITHMS; OPTIMAL SYSTEMS; OPTIMIZATION; PARETO PRINCIPLE;

EID: 84976363381     PISSN: 15684946     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.asoc.2016.06.022     Document Type: Article
Times cited : (127)

References (60)
  • 1
    • 84901605428 scopus 로고    scopus 로고
    • Solution of optimal power flow using nondominated sorting multi objective gravitational search algorithm
    • A.R. Bhowmik, and A.K. Chakraborty Solution of optimal power flow using nondominated sorting multi objective gravitational search algorithm Int. J. Electr. Power Energy Syst. 62 2014 323 334
    • (2014) Int. J. Electr. Power Energy Syst. , vol.62 , pp. 323-334
    • Bhowmik, A.R.1    Chakraborty, A.K.2
  • 2
    • 84901590117 scopus 로고    scopus 로고
    • Multi-objective optimal power flow using quasi-oppositional teaching learning based optimization
    • B. Mandal, and P. Kumar Roy Multi-objective optimal power flow using quasi-oppositional teaching learning based optimization Appl. Soft Comput. 21 2014 590 606
    • (2014) Appl. Soft Comput. , vol.21 , pp. 590-606
    • Mandal, B.1    Kumar Roy, P.2
  • 3
    • 0036778849 scopus 로고    scopus 로고
    • Optimal power flow using particle swarm optimization
    • M.A. Abido Optimal power flow using particle swarm optimization Int. J. Electr. Power Energy Syst. 24 7 2002 563 571
    • (2002) Int. J. Electr. Power Energy Syst. , vol.24 , Issue.7 , pp. 563-571
    • Abido, M.A.1
  • 4
    • 84910127750 scopus 로고    scopus 로고
    • An improved teaching-learning-based optimization algorithm using Lévy mutation strategy for non-smooth optimal power flow
    • M. Ghasemi, S. Ghavidel, M. Gitizadeh, and et al. An improved teaching-learning-based optimization algorithm using Lévy mutation strategy for non-smooth optimal power flow Int. J. Electr. Power Energy Syst. 65 2015 375 384
    • (2015) Int. J. Electr. Power Energy Syst. , vol.65 , pp. 375-384
    • Ghasemi, M.1    Ghavidel, S.2    Gitizadeh, M.3
  • 5
    • 84868262339 scopus 로고    scopus 로고
    • Modified artificial bee colony algorithm based on fuzzy multi-objective technique for optimal power flow problem
    • A. Khorsandi, S.H. Hosseinian, and A. Ghazanfari Modified artificial bee colony algorithm based on fuzzy multi-objective technique for optimal power flow problem Electr. Power Syst. Res. 95 2013 206 213
    • (2013) Electr. Power Syst. Res. , vol.95 , pp. 206-213
    • Khorsandi, A.1    Hosseinian, S.H.2    Ghazanfari, A.3
  • 6
    • 84937115936 scopus 로고    scopus 로고
    • MOEA/D with biased weight adjustment inspired by user preference and its application on multi-objective reservoir flood control problem
    • (in press)
    • X. Ma, F. Liu, Y. Qi, and et al. MOEA/D with biased weight adjustment inspired by user preference and its application on multi-objective reservoir flood control problem Soft Comput. 2015 10.1007/s00500-015-1789-z (in press)
    • (2015) Soft Comput.
    • Ma, X.1    Liu, F.2    Qi, Y.3
  • 7
    • 78650914770 scopus 로고    scopus 로고
    • Solving multiobjective optimal reactive power dispatch using modified NSGA-II
    • S. Jeyadevi, S. Baskar, C.K. Babulal, and et al. Solving multiobjective optimal reactive power dispatch using modified NSGA-II Int. J. Electr. Power Energy Syst. 33 2 2011 219 228
    • (2011) Int. J. Electr. Power Energy Syst. , vol.33 , Issue.2 , pp. 219-228
    • Jeyadevi, S.1    Baskar, S.2    Babulal, C.K.3
  • 8
    • 0036530772 scopus 로고    scopus 로고
    • A fast and elitist multiobjective genetic algorithm: NSGA
    • K. Deb, A. Pratap, S. Agarwal, and et al. A fast and elitist multiobjective genetic algorithm: NSGA IEEE Trans. Evol. Comput. 6 2 2002 182 197
    • (2002) IEEE Trans. Evol. Comput. , vol.6 , Issue.2 , pp. 182-197
    • Deb, K.1    Pratap, A.2    Agarwal, S.3
  • 9
    • 3142756516 scopus 로고    scopus 로고
    • Handling multiple objectives with particle swarm optimization
    • C. Coello, G.T. Pulido, and M.S. Lechuga Handling multiple objectives with particle swarm optimization IEEE Trans. Evol. Comput. 8 3 2004 256 279
    • (2004) IEEE Trans. Evol. Comput. , vol.8 , Issue.3 , pp. 256-279
    • Coello, C.1    Pulido, G.T.2    Lechuga, M.S.3
  • 10
    • 40749132490 scopus 로고    scopus 로고
    • Optimal reactive power flow incorporating static voltage stability based on multi-objective adaptive immune algorithm
    • H. Xiong, H. Cheng, and H. Li Optimal reactive power flow incorporating static voltage stability based on multi-objective adaptive immune algorithm Energy Convers. Manage. 49 5 2008 1175 1181
    • (2008) Energy Convers. Manage. , vol.49 , Issue.5 , pp. 1175-1181
    • Xiong, H.1    Cheng, H.2    Li, H.3
  • 11
    • 84856528501 scopus 로고    scopus 로고
    • A novel immune clonal algorithm for MO problems
    • R. Shang, L. Jiao, F. Liu, and et al. A novel immune clonal algorithm for MO problems IEEE Trans. Evol. Comput. 16 1 2012 35 50
    • (2012) IEEE Trans. Evol. Comput. , vol.16 , Issue.1 , pp. 35-50
    • Shang, R.1    Jiao, L.2    Liu, F.3
  • 12
    • 84897442872 scopus 로고    scopus 로고
    • An improved decomposition-based memetic algorithm for multi-objective capacitated arc routing problem
    • R. Shang, J. Wang, L. Jiao, and et al. An improved decomposition-based memetic algorithm for multi-objective capacitated arc routing problem Appl. Soft Comput. 19 2014 343 361
    • (2014) Appl. Soft Comput. , vol.19 , pp. 343-361
    • Shang, R.1    Wang, J.2    Jiao, L.3
  • 13
    • 77950858346 scopus 로고    scopus 로고
    • Optimal power flow using differential evolution algorithm
    • A.A. Abou El Ela, M.A. Abido, and S.R. Spea Optimal power flow using differential evolution algorithm Electr. Power Syst. Res. 80 7 2010 878 885
    • (2010) Electr. Power Syst. Res. , vol.80 , Issue.7 , pp. 878-885
    • Abou El Ela, A.A.1    Abido, M.A.2    Spea, S.R.3
  • 14
    • 47149094048 scopus 로고    scopus 로고
    • Solving multi-objective optimal power flow using differential evolution
    • M. Varadarajan, and K.S. Swarup Solving multi-objective optimal power flow using differential evolution IET Gener. Transm. Distrib. 2 5 2008 720 730
    • (2008) IET Gener. Transm. Distrib. , vol.2 , Issue.5 , pp. 720-730
    • Varadarajan, M.1    Swarup, K.S.2
  • 15
    • 84861489996 scopus 로고    scopus 로고
    • Multi-objective optimal power flow using differential evolution
    • M.A. Abido, and N.A. Al-Ali Multi-objective optimal power flow using differential evolution Arab. J. Sci. Eng. 37 4 2012 991 1005
    • (2012) Arab. J. Sci. Eng. , vol.37 , Issue.4 , pp. 991-1005
    • Abido, M.A.1    Al-Ali, N.A.2
  • 16
    • 77950858346 scopus 로고    scopus 로고
    • Optimal power flow using differential evolution algorithm
    • A.A. Abou El Ela, M.A. Abido, and S.R. Spea Optimal power flow using differential evolution algorithm Electr. Power Syst. Res. 80 7 2010 878 885
    • (2010) Electr. Power Syst. Res. , vol.80 , Issue.7 , pp. 878-885
    • Abou El Ela, A.A.1    Abido, M.A.2    Spea, S.R.3
  • 17
    • 84890421030 scopus 로고    scopus 로고
    • Multi-objective differential evolution for voltage security constrained optimal power flow in deregulated power systems
    • J.P. Roselyn, D. Devaraj, and S.S. Dash Multi-objective differential evolution for voltage security constrained optimal power flow in deregulated power systems Int. J. Emerging Electr. Power Syst. 14 6 2013 591 607
    • (2013) Int. J. Emerging Electr. Power Syst. , vol.14 , Issue.6 , pp. 591-607
    • Roselyn, J.P.1    Devaraj, D.2    Dash, S.S.3
  • 18
    • 84872043313 scopus 로고    scopus 로고
    • A study on multi-objective optimal power flow under contingency using differential evolution
    • B. Mahdad, and K. Srairi A study on multi-objective optimal power flow under contingency using differential evolution J. Electr. Eng. Technol. 8 1 2013 53 63
    • (2013) J. Electr. Eng. Technol. , vol.8 , Issue.1 , pp. 53-63
    • Mahdad, B.1    Srairi, K.2
  • 19
    • 84877948107 scopus 로고    scopus 로고
    • Artificial bee colony algorithm for solving multi-objective optimal power flow problem
    • M. Rezaei Adaryani, and A. Karami Artificial bee colony algorithm for solving multi-objective optimal power flow problem Int. J. Electr. Power Energy Syst. 53 1 2013 219 230
    • (2013) Int. J. Electr. Power Energy Syst. , vol.53 , Issue.1 , pp. 219-230
    • Rezaei Adaryani, M.1    Karami, A.2
  • 20
    • 84928676815 scopus 로고    scopus 로고
    • An improved artificial bee colony algorithm and its application to multi-objective optimal power flow
    • X. He, W. Wang, J. Jiang, and et al. An improved artificial bee colony algorithm and its application to multi-objective optimal power flow Energies 8 4 2015 2412 2437
    • (2015) Energies , vol.8 , Issue.4 , pp. 2412-2437
    • He, X.1    Wang, W.2    Jiang, J.3
  • 21
    • 84919918643 scopus 로고    scopus 로고
    • Improved multi-objective artificial bee colony algorithm for optimal power flow problem
    • L. Ma, K. Hu, Y. Zhu, and et al. Improved multi-objective artificial bee colony algorithm for optimal power flow problem J. Cent. South Univ. 21 11 2014 4220 4227
    • (2014) J. Cent. South Univ. , vol.21 , Issue.11 , pp. 4220-4227
    • Ma, L.1    Hu, K.2    Zhu, Y.3
  • 22
    • 84932095651 scopus 로고    scopus 로고
    • Multi-objective dynamic optimal power flow using improved artificial bee colony algorithm based on Pareto optimization
    • R.H. Liang, C.Y. Wu, Y.T. Chen, and et al. Multi-objective dynamic optimal power flow using improved artificial bee colony algorithm based on Pareto optimization Int. Trans. Electr. Energy Syst. 26 4 2016 692 712
    • (2016) Int. Trans. Electr. Energy Syst. , vol.26 , Issue.4 , pp. 692-712
    • Liang, R.H.1    Wu, C.Y.2    Chen, Y.T.3
  • 23
    • 77950351039 scopus 로고    scopus 로고
    • Enhanced genetic algorithm based computation technique for multi-objective optimal power flow solution
    • M.S. Kumari, and S. Maheswarapu Enhanced genetic algorithm based computation technique for multi-objective optimal power flow solution Int. J. Electr. Power Energy Syst. 32 6 2010 736 742
    • (2010) Int. J. Electr. Power Energy Syst. , vol.32 , Issue.6 , pp. 736-742
    • Kumari, M.S.1    Maheswarapu, S.2
  • 24
    • 79551476548 scopus 로고    scopus 로고
    • A multi-objective optimal power flow using particle swarm optimization
    • J. Hazra, and A.K. Sinha A multi-objective optimal power flow using particle swarm optimization Eur. Trans. Electr. Power 21 1 2011 1028 1045
    • (2011) Eur. Trans. Electr. Power , vol.21 , Issue.1 , pp. 1028-1045
    • Hazra, J.1    Sinha, A.K.2
  • 25
    • 84862154294 scopus 로고    scopus 로고
    • Improved particle swarm optimisation for multi-objective optimal power flow considering the cost: Loss, emission and voltage stability index
    • T. Niknam, M.R. Narimani, J. Aghaei, and et al. Improved particle swarm optimisation for multi-objective optimal power flow considering the cost: loss, emission and voltage stability index IET Gener. Transm. Distrib. 6 6 2012 515 527
    • (2012) IET Gener. Transm. Distrib. , vol.6 , Issue.6 , pp. 515-527
    • Niknam, T.1    Narimani, M.R.2    Aghaei, J.3
  • 26
    • 84856851082 scopus 로고    scopus 로고
    • Quasi-oppositional biogeography-based optimization for multi-objective optimal power flow
    • P.K. Roy, and D. Mandal Quasi-oppositional biogeography-based optimization for multi-objective optimal power flow Electr. Power Compon. Syst. 40 2 2012 236 256
    • (2012) Electr. Power Compon. Syst. , vol.40 , Issue.2 , pp. 236-256
    • Roy, P.K.1    Mandal, D.2
  • 27
    • 79952002456 scopus 로고    scopus 로고
    • Multi-objective harmony search algorithm for optimal power flow problem
    • S. Sivasubramani, and K.S. Swarup Multi-objective harmony search algorithm for optimal power flow problem Int. J. Electr. Power Energy Syst. 33 3 2011 745 752
    • (2011) Int. J. Electr. Power Energy Syst. , vol.33 , Issue.3 , pp. 745-752
    • Sivasubramani, S.1    Swarup, K.S.2
  • 28
    • 80655124471 scopus 로고    scopus 로고
    • A modified shuffle frog leaping algorithm for multi-objective optimal power flow
    • T. Niknam, M.R. Narimani, M. Jabbari, and et al. A modified shuffle frog leaping algorithm for multi-objective optimal power flow Energy 36 11 2011 6420 6432
    • (2011) Energy , vol.36 , Issue.11 , pp. 6420-6432
    • Niknam, T.1    Narimani, M.R.2    Jabbari, M.3
  • 29
    • 84892936061 scopus 로고    scopus 로고
    • Modified shuffled frog leaping algorithm for multi-objective optimal power flow with FACTS devices
    • R. Azizipanah-Abarghooee, M.R. Narimani, B. Bahmani-Firouzi, and et al. Modified shuffled frog leaping algorithm for multi-objective optimal power flow with FACTS devices J. Intell. Fuzzy Syst. 26 2 2014 681 692
    • (2014) J. Intell. Fuzzy Syst. , vol.26 , Issue.2 , pp. 681-692
    • Azizipanah-Abarghooee, R.1    Narimani, M.R.2    Bahmani-Firouzi, B.3
  • 30
    • 84908429224 scopus 로고    scopus 로고
    • Solution of optimal power flow using non dominated sorting multi objective opposition based gravitational search algorithm
    • A.R. Bhowmik, and A.K. Chakraborty Solution of optimal power flow using non dominated sorting multi objective opposition based gravitational search algorithm Int. J. Electr. Power Energy Syst. 64 2015 1237 1250
    • (2015) Int. J. Electr. Power Energy Syst. , vol.64 , pp. 1237-1250
    • Bhowmik, A.R.1    Chakraborty, A.K.2
  • 31
    • 84864758524 scopus 로고    scopus 로고
    • Solution of multi-objective optimal power flow using gravitational search algorithm
    • A. Bhattacharya, and P.K. Roy Solution of multi-objective optimal power flow using gravitational search algorithm IET Gener. Transm. Distrib. 6 8 2012 751 763
    • (2012) IET Gener. Transm. Distrib. , vol.6 , Issue.8 , pp. 751-763
    • Bhattacharya, A.1    Roy, P.K.2
  • 32
    • 84866551333 scopus 로고    scopus 로고
    • Multi-objective economic emission load dispatch solution using gravitational search algorithm and considering wind power penetration
    • S. Mondal, A. Bhattacharya, and S.H. Nee Dey Multi-objective economic emission load dispatch solution using gravitational search algorithm and considering wind power penetration Int. J. Electr. Power Energy Syst. 44 1 2013 282 292
    • (2013) Int. J. Electr. Power Energy Syst. , vol.44 , Issue.1 , pp. 282-292
    • Mondal, S.1    Bhattacharya, A.2    Nee Dey, S.H.3
  • 33
    • 84860487415 scopus 로고    scopus 로고
    • Optimal power flow using gravitational search algorithm
    • S. Duman, U. Güvenç, Y. Sönmez, and et al. Optimal power flow using gravitational search algorithm Energy Convers. Manage. 59 2012 86 95
    • (2012) Energy Convers. Manage. , vol.59 , pp. 86-95
    • Duman, S.1    Güvenç, U.2    Sönmez, Y.3
  • 34
    • 84864758524 scopus 로고    scopus 로고
    • Solution of multi-objective optimal power flow using gravitational search algorithm
    • A. Bhattacharya, and P.K. Roy Solution of multi-objective optimal power flow using gravitational search algorithm IET Gener. Transm. Distrib. 6 8 2012 751 763
    • (2012) IET Gener. Transm. Distrib. , vol.6 , Issue.8 , pp. 751-763
    • Bhattacharya, A.1    Roy, P.K.2
  • 35
    • 84904622510 scopus 로고    scopus 로고
    • Application of imperialist competitive algorithm with its modified techniques for multi-objective optimal power flow problem: A comparative study
    • M. Ghasemi, S. Ghavidel, M.M. Ghanbarian, and et al. Application of imperialist competitive algorithm with its modified techniques for multi-objective optimal power flow problem: a comparative study Inf. Sci. 281 2014 225 247
    • (2014) Inf. Sci. , vol.281 , pp. 225-247
    • Ghasemi, M.1    Ghavidel, S.2    Ghanbarian, M.M.3
  • 36
    • 84910149525 scopus 로고    scopus 로고
    • Multi-objective optimal power flow considering the cost, emission, voltage deviation and power losses using multi-objective modified imperialist competitive algorithm
    • M. Ghasemi, S. Ghavidel, M.M. Ghanbarian, and et al. Multi-objective optimal power flow considering the cost, emission, voltage deviation and power losses using multi-objective modified imperialist competitive algorithm Energy 78 2014 276 289
    • (2014) Energy , vol.78 , pp. 276-289
    • Ghasemi, M.1    Ghavidel, S.2    Ghanbarian, M.M.3
  • 37
    • 84897398557 scopus 로고    scopus 로고
    • Multi-hive bee foraging algorithm for multi-objective optimal power flow considering the cost, loss, and emission
    • H. Chen, M.L. Bo, and Y. Zhu Multi-hive bee foraging algorithm for multi-objective optimal power flow considering the cost, loss, and emission Int. J. Electr. Power Energy Syst. 60 2014 203 220
    • (2014) Int. J. Electr. Power Energy Syst. , vol.60 , pp. 203-220
    • Chen, H.1    Bo, M.L.2    Zhu, Y.3
  • 38
    • 84887216323 scopus 로고    scopus 로고
    • A modified teaching-learning based optimization for multi-objective optimal power flow problem
    • A. Shabanpour-Haghighi, A.R. Seifi, and T. Niknam A modified teaching-learning based optimization for multi-objective optimal power flow problem Energy Convers. Manage. 77 2014 597 607
    • (2014) Energy Convers. Manage. , vol.77 , pp. 597-607
    • Shabanpour-Haghighi, A.1    Seifi, A.R.2    Niknam, T.3
  • 39
    • 84944053040 scopus 로고    scopus 로고
    • Approximate ideal multi-objective solution Q(λ) learning for optimal carbon-energy combined-flow in multi-energy power systems
    • X. Zhang, T. Yu, B. Yang, and et al. Approximate ideal multi-objective solution Q(λ) learning for optimal carbon-energy combined-flow in multi-energy power systems Energy Convers. Manage. 106 2015 543 556
    • (2015) Energy Convers. Manage. , vol.106 , pp. 543-556
    • Zhang, X.1    Yu, T.2    Yang, B.3
  • 40
    • 34548108555 scopus 로고    scopus 로고
    • MOEA/D: A multiobjective evolutionary algorithm based on decomposition
    • Q. Zhang, and H. Li MOEA/D: A multiobjective evolutionary algorithm based on decomposition IEEE Trans. Evol. Comput. 11 6 2007 712 731
    • (2007) IEEE Trans. Evol. Comput. , vol.11 , Issue.6 , pp. 712-731
    • Zhang, Q.1    Li, H.2
  • 41
    • 80055086054 scopus 로고    scopus 로고
    • An adaptive evolutionary multi-objective approach based on simulated annealing
    • H. Li, and D. Landa-Silva An adaptive evolutionary multi-objective approach based on simulated annealing Evol. Comput. 19 4 2011 561 595
    • (2011) Evol. Comput. , vol.19 , Issue.4 , pp. 561-595
    • Li, H.1    Landa-Silva, D.2
  • 42
    • 84976449446 scopus 로고    scopus 로고
    • Multiobjective combinatorial optimization by using decomposition and ant colony
    • L. Ke, Q. Zhang, and R. Battiti Multiobjective combinatorial optimization by using decomposition and ant colony Citeseer 2010 http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.303.3091&rep=rep1&type=pdf
    • (2010) Citeseer
    • Ke, L.1    Zhang, Q.2    Battiti, R.3
  • 43
    • 84873244117 scopus 로고    scopus 로고
    • MOEA/D with uniform design for solving multiobjective knapsack problems
    • Y. Tan, and Y. Jiao MOEA/D with uniform design for solving multiobjective knapsack problems J. Comput. (Finl.) 8 2 2013 302 307
    • (2013) J. Comput. (Finl.) , vol.8 , Issue.2 , pp. 302-307
    • Tan, Y.1    Jiao, Y.2
  • 44
    • 84863061633 scopus 로고    scopus 로고
    • MOEA/D with uniform design for the multiobjective 0/1 knapsack problem
    • December 3, 2011-December 4, 2011, Sanya, Hainan, China IEEE Computer Society
    • Y. Tan, Y. Jiao, and X. Wang MOEA/D with uniform design for the multiobjective 0/1 knapsack problem 2011 7th International Conference on Computational Intelligence and Security, CIS 2011 December 3, 2011-December 4, 2011, Sanya, Hainan, China 2011 IEEE Computer Society
    • (2011) 2011 7th International Conference on Computational Intelligence and Security, CIS 2011
    • Tan, Y.1    Jiao, Y.2    Wang, X.3
  • 45
    • 84930535977 scopus 로고    scopus 로고
    • A modified MOEA/D with adaptive mutation mechanism for multi-objective job shop scheduling problem
    • F. Zhao, Z. Chen, C. Zhang, and et al. A modified MOEA/D with adaptive mutation mechanism for multi-objective job shop scheduling problem J. Comput. Inf. Syst. 11 8 2015 2833 2840
    • (2015) J. Comput. Inf. Syst. , vol.11 , Issue.8 , pp. 2833-2840
    • Zhao, F.1    Chen, Z.2    Zhang, C.3
  • 46
    • 84922553445 scopus 로고    scopus 로고
    • A GPU implementation of MOEA/D-ACO for the multiobjective traveling salesman problem
    • October 19, 2014-October 23, 2014, Sao Carlos, Sao Paulo, Brazil Institute of Electrical and Electronics Engineers Inc
    • M.Z. De Souza, and A.T.R. Pozo A GPU implementation of MOEA/D-ACO for the multiobjective traveling salesman problem 3rd Brazilian Conference on Intelligent Systems, BRACIS 2014 October 19, 2014-October 23, 2014, Sao Carlos, Sao Paulo, Brazil 2014 Institute of Electrical and Electronics Engineers Inc.
    • (2014) 3rd Brazilian Conference on Intelligent Systems, BRACIS 2014
    • De Souza, M.Z.1    Pozo, A.T.R.2
  • 47
    • 84892593476 scopus 로고    scopus 로고
    • MOEA/D with guided local search: Some preliminary experimental results
    • September 17, 2013-September 18, 2013, Colchester, United Kingdom IEEE Computer Society
    • A. Alhindi, and Q. Zhang MOEA/D with guided local search: some preliminary experimental results 2013 5th Computer Science and Electronic Engineering Conference, CEEC 2013 September 17, 2013-September 18, 2013, Colchester, United Kingdom 2013 IEEE Computer Society
    • (2013) 2013 5th Computer Science and Electronic Engineering Conference, CEEC 2013
    • Alhindi, A.1    Zhang, Q.2
  • 48
    • 58149236790 scopus 로고    scopus 로고
    • Comparison between MOEA/D and NSGA-II on the multi-objective travelling salesman problem
    • Springer
    • W. Peng, Q. Zhang, and H. Li Comparison between MOEA/D and NSGA-II on the multi-objective travelling salesman problem Multi-Objective Memetic Algorithms 2009 Springer 309 324
    • (2009) Multi-Objective Memetic Algorithms , pp. 309-324
    • Peng, W.1    Zhang, Q.2    Li, H.3
  • 49
    • 77955867216 scopus 로고    scopus 로고
    • Simultaneous use of different scalarizing functions in MOEA/D
    • July 7, 2010-July 11, 2010, Portland, OR, United States Association for Computing Machinery
    • H. Lshibuchi, Y. Sakane, N. Tsukamoto, and et al. Simultaneous use of different scalarizing functions in MOEA/D 12th Annual Genetic and Evolutionary Computation Conference, GECCO-2010 July 7, 2010-July 11, 2010, Portland, OR, United states 2010 Association for Computing Machinery
    • (2010) 12th Annual Genetic and Evolutionary Computation Conference, GECCO-2010
    • Lshibuchi, H.1    Sakane, Y.2    Tsukamoto, N.3
  • 50
    • 84899475724 scopus 로고    scopus 로고
    • A variable neighborhood MOEA/D for multiobjective test task scheduling problem
    • H. Lu, Z. Zhu, X. Wang, and et al. A variable neighborhood MOEA/D for multiobjective test task scheduling problem Math. Probl. Eng. 2014 2014 1 14
    • (2014) Math. Probl. Eng. , vol.2014 , pp. 1-14
    • Lu, H.1    Zhu, Z.2    Wang, X.3
  • 51
    • 84861066867 scopus 로고    scopus 로고
    • Multi-objective energy-efficient dense deployment in Wireless Sensor Networks using a hybrid problem-specific MOEA/D
    • A. Konstantinidis, and K. Yang Multi-objective energy-efficient dense deployment in Wireless Sensor Networks using a hybrid problem-specific MOEA/D Appl. Soft Comput. 12 7 2012 1847 1864
    • (2012) Appl. Soft Comput. , vol.12 , Issue.7 , pp. 1847-1864
    • Konstantinidis, A.1    Yang, K.2
  • 52
    • 77953083432 scopus 로고    scopus 로고
    • Expensive multiobjective optimization by MOEA/D with Gaussian process model
    • Q. Zhang, W. Liu, E. Tsang, and et al. Expensive multiobjective optimization by MOEA/D with gaussian process model IEEE Trans. Evol. Comput. 14 3 2010 456 474
    • (2010) IEEE Trans. Evol. Comput. , vol.14 , Issue.3 , pp. 456-474
    • Zhang, Q.1    Liu, W.2    Tsang, E.3
  • 53
    • 84901773961 scopus 로고    scopus 로고
    • A multi-population cooperative coevolutionary algorithm for multi-objective capacitated arc routing problem
    • R. Shang, Y. Wang, J. Wang, and et al. A multi-population cooperative coevolutionary algorithm for multi-objective capacitated arc routing problem Inf. Sci. 277 2014 609 642
    • (2014) Inf. Sci. , vol.277 , pp. 609-642
    • Shang, R.1    Wang, Y.2    Wang, J.3
  • 54
    • 84905106019 scopus 로고    scopus 로고
    • Using MOEA/D for optimizing ontology alignments
    • X. Xue, Y. Wang, and W. Hao Using MOEA/D for optimizing ontology alignments Soft Comput. 18 8 2014 1589 1601
    • (2014) Soft Comput. , vol.18 , Issue.8 , pp. 1589-1601
    • Xue, X.1    Wang, Y.2    Hao, W.3
  • 55
    • 79151479984 scopus 로고    scopus 로고
    • MATPOWER: Steady-state operations, planning, and analysis tools for power systems research and education
    • R.D. Zimmerman, C.E. Murillo-Sánchez, and R.J. Thomas MATPOWER: steady-state operations, planning, and analysis tools for power systems research and education IEEE Trans. Power Syst. 26 1 2011 12 19
    • (2011) IEEE Trans. Power Syst. , vol.26 , Issue.1 , pp. 12-19
    • Zimmerman, R.D.1    Murillo-Sánchez, C.E.2    Thomas, R.J.3
  • 56
    • 85018104842 scopus 로고    scopus 로고
    • Pareto simulated annealing - A metaheuristic technique for multiple-objective combinatorial optimization
    • P. Czyzzak, and A. Jaszkiewicz Pareto simulated annealing - a metaheuristic technique for multiple-objective combinatorial optimization J. Multi-Criteria Decis. Anal. 7 1 1998 34 47
    • (1998) J. Multi-Criteria Decis. Anal. , vol.7 , Issue.1 , pp. 34-47
    • Czyzzak, P.1    Jaszkiewicz, A.2
  • 57
    • 84864615370 scopus 로고    scopus 로고
    • Using the averaged Hausdorff distance as a performance measure in evolutionary multiobjective optimization
    • O. Schütze, X. Esquivel, A. Lara, and et al. Using the averaged Hausdorff distance as a performance measure in evolutionary multiobjective optimization IEEE Trans. Evol. Comput. 16 4 2012 504 522
    • (2012) IEEE Trans. Evol. Comput. , vol.16 , Issue.4 , pp. 504-522
    • Schütze, O.1    Esquivel, X.2    Lara, A.3
  • 58
    • 0004140075 scopus 로고    scopus 로고
    • SPEA2: Improving the strength Pareto evolutionary algorithm
    • Institut für Technische Informatik und Kommunikationsnetze (TIK), Zürich, Switzerland
    • E. Zitzler, M. Laumanns, L. Thiele, et al., SPEA2: improving the strength Pareto evolutionary algorithm, Eidgenössische Technische Hochschule Zürich (ETH), Institut für Technische Informatik und Kommunikationsnetze (TIK), Zürich, Switzerland, 2001. http://www.kddresearch.org/Courses/Spring-2007/CIS830/Handouts/P8.pdf.
    • (2001) Eidgenössische Technische Hochschule Zürich (ETH)
    • Zitzler, E.1    Laumanns, M.2    Thiele, L.3
  • 60
    • 84889087501 scopus 로고    scopus 로고
    • A modified objective function method with feasible-guiding strategy to solve constrained multi-objective optimization problems
    • L. Jiao, J. Luo, R. Shang, and et al. A modified objective function method with feasible-guiding strategy to solve constrained multi-objective optimization problems Appl. Soft Comput. 14 2014 363 380
    • (2014) Appl. Soft Comput. , vol.14 , pp. 363-380
    • Jiao, L.1    Luo, J.2    Shang, R.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.