메뉴 건너뛰기




Volumn 14, Issue PART C, 2014, Pages 363-380

A modified objective function method with feasible-guiding strategy to solve constrained multi-objective optimization problems

Author keywords

Constrained multi objective optimization; Constraint handling; Feasible guiding strategy; Modified objective function method

Indexed keywords

CONSTRAINED MULTI-OBJECTIVE OPTIMIZATIONS; CONSTRAINT HANDLING; CONSTRAINT VIOLATION; FEASIBLE-GUIDING STRATEGY; NONDOMINATED SOLUTIONS; OBJECTIVE FUNCTION VALUES; OBJECTIVE FUNCTIONS; TEST PROBLEM;

EID: 84889087501     PISSN: 15684946     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.asoc.2013.10.008     Document Type: Article
Times cited : (95)

References (40)
  • 1
    • 80051980106 scopus 로고    scopus 로고
    • A hybrid constraint handling mechanism with differential evolution for constrained multiobjective optimization
    • IEEE
    • M.N. Hsieh, T.C. Chiang, and L.C. Fu A hybrid constraint handling mechanism with differential evolution for constrained multiobjective optimization IEEE Congress on Evolutionary Computation (CEC), 2011 IEEE 2011 1785 1792
    • (2011) IEEE Congress on Evolutionary Computation (CEC), 2011 , pp. 1785-1792
    • Hsieh, M.N.1    Chiang, T.C.2    Fu, L.C.3
  • 2
    • 25444524580 scopus 로고    scopus 로고
    • Evolutionary algorithms for constrained parameter optimization problems
    • Z. Michalewicz, and M. Schoenauer Evolutionary algorithms for constrained parameter optimization problems Evolutionary Computation 4 1 1996 1 32 (Pubitemid 126707158)
    • (1996) Evolutionary Computation , vol.4 , Issue.1 , pp. 1-32
    • Michalewicz, Z.1
  • 6
    • 65549118660 scopus 로고    scopus 로고
    • Infeasibility driven evolutionary algorithm for constrained optimization
    • Springer Berlin Heidelberg
    • T. Ray, H.K. Singh, A. Isaacs, and W. Smith Infeasibility driven evolutionary algorithm for constrained optimization Constraint-Handling in Evolutionary Optimization 2009 Springer Berlin Heidelberg 145 165
    • (2009) Constraint-Handling in Evolutionary Optimization , pp. 145-165
    • Ray, T.1    Singh, H.K.2    Isaacs, A.3    Smith, W.4
  • 8
    • 84878614816 scopus 로고    scopus 로고
    • A Decoder-Based evolutionary algorithm for constrained parameter optimization problems
    • Parallel Problems Solving from Nature - PPSN V
    • S. Koziel, and Z. Michalewicz A decoder-based evolutionary algorithm for constrained parameter optimization problems Parallel Problem Solving from Nature - PPSN V 1998 Springer Berlin Heidelberg 231 240 (Pubitemid 128145954)
    • (1998) Lecture Notes in Computer Science , Issue.1498 , pp. 231-240
    • Koziel, S.1    Michalewicz, Z.2
  • 9
    • 0033094194 scopus 로고    scopus 로고
    • Evolutionary algorithms homomorphous mappings and constrained parameter optimization
    • S. Koziel, and Z. Michalewicz Evolutionary algorithms homomorphous mappings and constrained parameter optimization Evolutionary Computation 7 1 1999 19 44
    • (1999) Evolutionary Computation , vol.7 , Issue.1 , pp. 19-44
    • Koziel, S.1    Michalewicz, Z.2
  • 14
    • 80053573922 scopus 로고    scopus 로고
    • Gene silencing: A genetic operator for constrained optimization
    • S. Siva Sathya, and S. Kuppuswami Gene silencing: a genetic operator for constrained optimization Applied Soft Computing 11 8 2011 5801 5808
    • (2011) Applied Soft Computing , vol.11 , Issue.8 , pp. 5801-5808
    • Siva Sathya, S.1    Kuppuswami, S.2
  • 16
    • 0033729054 scopus 로고    scopus 로고
    • An efficient constraint handling method for genetic algorithms
    • K. Deb An efficient constraint handling method for genetic algorithms Computer Methods in Applied Mechanics and Engineering 186 2 2000 311 338
    • (2000) Computer Methods in Applied Mechanics and Engineering , vol.186 , Issue.2 , pp. 311-338
    • Deb, K.1
  • 17
    • 27344446970 scopus 로고    scopus 로고
    • Constrained optimization by applying the α constrained method to the nonlinear simplex method with mutations
    • DOI 10.1109/TEVC.2005.850256
    • T. Takahama, and S. Sakai Constrained optimization by applying the α constrained method to the nonlinear simplex method with mutations IEEE Transactions on Evolutionary Computation 9 5 2005 437 451 (Pubitemid 41522755)
    • (2005) IEEE Transactions on Evolutionary Computation , vol.9 , Issue.5 , pp. 437-451
    • Takahama, T.1    Sakai, S.2
  • 18
    • 79959446440 scopus 로고    scopus 로고
    • Constrained optimization by the É constrained differential evolution with an archive and gradient-based mutation
    • IEEE
    • T. Takahama, and S. Sakai Constrained optimization by the É constrained differential evolution with an archive and gradient-based mutation IEEE Congress on Evolutionary Computation (CEC), 2010 IEEE 2010 1 9
    • (2010) IEEE Congress on Evolutionary Computation (CEC), 2010 , pp. 1-9
    • Takahama, T.1    Sakai, S.2
  • 19
  • 20
    • 79959453520 scopus 로고    scopus 로고
    • Performance of infeasibility empowered memetic algorithm for CEC 2010 constrained optimization problems
    • IEEE
    • H.K. Singh, T. Ray, and W. Smith Performance of infeasibility empowered memetic algorithm for CEC 2010 constrained optimization problems IEEE Congress on Evolutionary Computation (CEC), 2010 IEEE 2010 1 8
    • (2010) IEEE Congress on Evolutionary Computation (CEC), 2010 , pp. 1-8
    • Singh, H.K.1    Ray, T.2    Smith, W.3
  • 21
    • 24144433474 scopus 로고    scopus 로고
    • A generic framework for constrained optimization using genetic algorithms
    • DOI 10.1109/TEVC.2005.846817
    • S. Venkatraman, and G.G. Yen A generic framework for constrained optimization using genetic algorithms IEEE Transactions on Evolutionary Computation 9 4 2005 424 435 (Pubitemid 41226915)
    • (2005) IEEE Transactions on Evolutionary Computation , vol.9 , Issue.4 , pp. 424-435
    • Venkatraman, S.1    Yen, G.G.2
  • 24
    • 79959443028 scopus 로고    scopus 로고
    • Differential evolution with ensemble of constraint handling techniques for solving CEC 2010 benchmark problems
    • IEEE
    • R. Mallipeddi, and P.N. Suganthan Differential evolution with ensemble of constraint handling techniques for solving CEC 2010 benchmark problems IEEE Congress on Evolutionary Computation (CEC), 2010 IEEE 2010 1 8
    • (2010) IEEE Congress on Evolutionary Computation (CEC), 2010 , pp. 1-8
    • Mallipeddi, R.1    Suganthan, P.N.2
  • 25
    • 37049003045 scopus 로고    scopus 로고
    • A new constrained multiobjective optimization algorithm based on artificial immune systems
    • DOI 10.1109/ICMA.2007.4304060, 4304060, Proceedings of the 2007 IEEE International Conference on Mechatronics and Automation, ICMA 2007
    • H. Xiao, and J.W. Zu A new constrained multiobjective optimization algorithm based on artificial immune systems International Conference on Mechatronics and Automation, 2007. ICMA 2007 IEEE 2007 3122 3127 (Pubitemid 350245146)
    • (2007) Proceedings of the 2007 IEEE International Conference on Mechatronics and Automation, ICMA 2007 , pp. 3122-3127
    • Xiao, H.1    Zu, J.W.2
  • 26
    • 34047265178 scopus 로고    scopus 로고
    • Immune optimization algorithm for constrained nonlinear multiobjective optimization problems
    • DOI 10.1016/j.asoc.2006.02.008, PII S1568494606000366
    • Z. Zhang Immune optimization algorithm for constrained nonlinear multiobjective optimization problems Applied Soft Computing 7 3 2007 840 857 (Pubitemid 46551921)
    • (2007) Applied Soft Computing Journal , vol.7 , Issue.3 , pp. 840-857
    • Zhang, Z.1
  • 27
    • 79951858405 scopus 로고    scopus 로고
    • A modified artificial bee colony (ABC) algorithm for constrained optimization problems
    • D. Karaboga, and B. Akay A modified artificial bee colony (ABC) algorithm for constrained optimization problems Applied Soft Computing 11 3 2011 3021 3031
    • (2011) Applied Soft Computing , vol.11 , Issue.3 , pp. 3021-3031
    • Karaboga, D.1    Akay, B.2
  • 28
    • 0036530772 scopus 로고    scopus 로고
    • A fast and elitist multiobjective genetic algorithm: NSGA-II
    • DOI 10.1109/4235.996017, PII S1089778X02041012
    • K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan A fast and elitist multiobjective genetic algorithm: NSGA-II IEEE Transactions on Evolutionary Computation 6 2 2002 182 197 (Pubitemid 34555372)
    • (2002) IEEE Transactions on Evolutionary Computation , vol.6 , Issue.2 , pp. 182-197
    • Deb, K.1    Pratap, A.2    Agarwal, S.3    Meyarivan, T.4
  • 29
    • 0000543755 scopus 로고    scopus 로고
    • Multiobjective design optimization by an evolutionary algorithm
    • T. Ray, K. Tai, and K.C. Seow Multiobjective design optimization by an evolutionary algorithm Engineering Optimization 33 4 2001 399 424 (Pubitemid 33816781)
    • (2001) Engineering Optimization , vol.33 , Issue.4 , pp. 399-424
    • Ray, T.1    Tai, K.2    Seow, K.C.3
  • 32
    • 0000852513 scopus 로고
    • Multiobjective optimization using nondominated sorting in genetic algorithms
    • N. Srinivas, and K. Deb Multiobjective optimization using nondominated sorting in genetic algorithms Evolutionary Computation 2 3 1994 221 248
    • (1994) Evolutionary Computation , vol.2 , Issue.3 , pp. 221-248
    • Srinivas, N.1    Deb, K.2
  • 35
    • 0029388566 scopus 로고
    • A new method to solve generalized multicriteria optimization problems using the simple genetic algorithm
    • A. Osyczka, and S. Kundu A new method to solve generalized multicriteria optimization problems using the simple genetic algorithm Structural Optimization 10 2 1995 94 99
    • (1995) Structural Optimization , vol.10 , Issue.2 , pp. 94-99
    • Osyczka, A.1    Kundu, S.2
  • 36
    • 5144223249 scopus 로고    scopus 로고
    • An evolutionary algorithm with a multilevel pairing strategy for single and multiobjective optimization
    • T. Ray, and K. Tai An evolutionary algorithm with a multilevel pairing strategy for single and multiobjective optimization Foundations of Computing and Decision Sciences 26 1 2001 75 98 (Pubitemid 33250195)
    • (2001) Foundations of Computing And Decision Sciences , vol.26 , Issue.1 , pp. 75-98
    • Ray, T.1    Tai, K.2
  • 37
    • 84931462011 scopus 로고    scopus 로고
    • Constrained Test Problems for Multi-objective Evolutionary Optimization
    • Evolutionary Multi-Criterion Optimization
    • K. Deb, A. Pratap, and T. Meyarivan Constrained test problems for multi-objective evolutionary optimization Evolutionary Multi-Criterion Optimization 2001 Springer Berlin Heidelberg 284 298 (Pubitemid 33241394)
    • (2001) Lecture Notes in Computer Science , Issue.1993 , pp. 284-298
    • Deb, K.1    Pratap, A.2    Meyarivan, T.3
  • 40
    • 0034199979 scopus 로고    scopus 로고
    • Comparison of multiobjective evolutionary algorithms: Empirical results
    • E. Zitzler, K. Deb, and L. Thiele Comparison of multiobjective evolutionary algorithms: empirical results Evolutionary Computation 8 2 2000 173 195
    • (2000) Evolutionary Computation , vol.8 , Issue.2 , pp. 173-195
    • Zitzler, E.1    Deb, K.2    Thiele, L.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.