메뉴 건너뛰기




Volumn 20, Issue 12, 2016, Pages 4999-5023

MOEA/D with biased weight adjustment inspired by user preference and its application on multi-objective reservoir flood control problem

Author keywords

Biased weight vector adjustment; Decomposition; Evolutionary algorithm; Multi objective optimization; Preference; Reservoir flood control

Indexed keywords

ALGORITHMS; DECISION MAKING; DECOMPOSITION; EVOLUTIONARY ALGORITHMS; FLOOD CONTROL; FLOODS; MULTIOBJECTIVE OPTIMIZATION; VECTORS; WATER LEVELS;

EID: 84937115936     PISSN: 14327643     EISSN: 14337479     Source Type: Journal    
DOI: 10.1007/s00500-015-1789-z     Document Type: Article
Times cited : (49)

References (52)
  • 1
    • 0001772695 scopus 로고
    • On the relationship of the Tchebycheff norm and the efficient frontier of multiple-criteria objectives
    • Bowman V (1976) On the relationship of the Tchebycheff norm and the efficient frontier of multiple-criteria objectives. In: Lecture Notes in economics and mathematical system, vol 130, pp 76–86
    • (1976) Lecture Notes in economics and mathematical system , vol.130 , pp. 76-86
    • Bowman, V.1
  • 2
    • 57049148091 scopus 로고    scopus 로고
    • Consideration of partial user preferences in evolutionary multiobjective optimization. In: Multiobjective optimization-interactive and evolutionary approaches
    • Branke J (2008) Consideration of partial user preferences in evolutionary multiobjective optimization. In: Multiobjective optimization-interactive and evolutionary approaches, pp 157–178
    • (2008) pp 157–178
    • Branke, J.1
  • 3
    • 0035370797 scopus 로고    scopus 로고
    • Guidance in evolutionary multi-objective optimization
    • Branke J, Kaubler T, Schmeck H (2001) Guidance in evolutionary multi-objective optimization. Adv Eng Softw 32:499–507
    • (2001) Adv Eng Softw , vol.32 , pp. 499-507
    • Branke, J.1    Kaubler, T.2    Schmeck, H.3
  • 4
    • 84991827108 scopus 로고    scopus 로고
    • Integrating user preference into evolutionary multi-objective optimization. In: Knowledge incorporation in evolutionary computation
    • Branke J, Deb K (2005) Integrating user preference into evolutionary multi-objective optimization. In: Knowledge incorporation in evolutionary computation, pp 461–478
    • (2005) pp 461–478
    • Branke, J.1    Deb, K.2
  • 6
    • 33244473987 scopus 로고    scopus 로고
    • Parameterisation effect on the behaviour of a headdependent hydro chain using a nonlinear model
    • Catal J, Mariano S (2006) Parameterisation effect on the behaviour of a headdependent hydro chain using a nonlinear model. Electr Power Syst Res 76:404–412
    • (2006) Electr Power Syst Res , vol.76 , pp. 404-412
    • Catal, J.1    Mariano, S.2
  • 7
    • 0033672413 scopus 로고    scopus 로고
    • Handling preference in evolution multiobjective optimization: a survey. In: Congress on evolutionary computation IEEE
    • Coello Coello C (2000) Handling preference in evolution multiobjective optimization: a survey. In: Congress on evolutionary computation IEEE, pp 30–37
    • (2000) pp 30–37
    • Coello Coello, C.1
  • 9
    • 0032348480 scopus 로고    scopus 로고
    • Normal-bounday intersection: a new method for generating Pareto optimal points in multicriteria optimization problems
    • Das I, Dennis J (1998) Normal-bounday intersection: a new method for generating Pareto optimal points in multicriteria optimization problems. SIAM J Optim 8(3):631–657
    • (1998) SIAM J Optim , vol.8 , Issue.3 , pp. 631-657
    • Das, I.1    Dennis, J.2
  • 10
    • 70350025854 scopus 로고    scopus 로고
    • Multi-Objective Optimization using Evolutionary Algorithms
    • Deb K (2001) Multi-Objective Optimization using Evolutionary Algorithms. Wiley
    • (2001) Wiley
    • Deb, K.1
  • 11
    • 84991779794 scopus 로고    scopus 로고
    • Multi-objective evolutionary algorithms: introducing bias among pareto optimal solutions. In: Advances in evolutionary computing: theory and applications
    • Deb K (2003) Multi-objective evolutionary algorithms: introducing bias among pareto optimal solutions. In: Advances in evolutionary computing: theory and applications, pp 263–292
    • (2003) pp 263–292
    • Deb, K.1
  • 12
    • 0035374993 scopus 로고    scopus 로고
    • Self-adaptive genetic algorithms with simulated binary crossover
    • Deb K, Beyer H (2001) Self-adaptive genetic algorithms with simulated binary crossover. Evol Comput 9(2):197–221
    • (2001) Evol Comput , vol.9 , Issue.2 , pp. 197-221
    • Deb, K.1    Beyer, H.2
  • 13
    • 0036530772 scopus 로고    scopus 로고
    • A fast and elitist multiobjective genetic algorithm: NSGA-II
    • Deb K, Agrawal S, Pratap A, Meyarivan T (2002a) A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Comput 6(2):182–197
    • (2002) IEEE Trans Evol Comput , vol.6 , Issue.2 , pp. 182-197
    • Deb, K.1    Agrawal, S.2    Pratap, A.3    Meyarivan, T.4
  • 14
    • 77957600209 scopus 로고    scopus 로고
    • An interactive evolutionary multiobjective optimization method based on progressively approximated value functions
    • Deb K, Sinha A, Korhonen P, Wallenius J (2010) An interactive evolutionary multiobjective optimization method based on progressively approximated value functions. IEEE Trans Evol Comput 14(5):723–739
    • (2010) IEEE Trans Evol Comput , vol.14 , Issue.5 , pp. 723-739
    • Deb, K.1    Sinha, A.2    Korhonen, P.3    Wallenius, J.4
  • 15
    • 84866674468 scopus 로고    scopus 로고
    • An improved NSGA-II procedure for many-objective optimization, part I: solving problems with box constraints. Tech. Rep. 2012009
    • Deb K, Jain H (2012) An improved NSGA-II procedure for many-objective optimization, part I: solving problems with box constraints. Tech. Rep. 2012009, KanGAL
    • (2012) KanGAL
    • Deb, K.1    Jain, H.2
  • 16
    • 84866638341 scopus 로고    scopus 로고
    • Light beam search based multi-objective optimization using evolutionary algorithms. Tech. Rep. 2007005
    • Deb K, Kumar A (2007) Light beam search based multi-objective optimization using evolutionary algorithms. Tech. Rep. 2007005, KanGAL
    • (2007) KanGAL
    • Deb, K.1    Kumar, A.2
  • 17
    • 84901420886 scopus 로고    scopus 로고
    • Scalable multi-objective optimization test problems. In: Proceedings of congress on evolutionary computation
    • Deb K, Thiele L, Laumanns M (2002b) Scalable multi-objective optimization test problems. In: Proceedings of congress on evolutionary computation, pp 825–830
    • (2002) pp 825–830
    • Deb, K.1    Thiele, L.2    Laumanns, M.3
  • 18
    • 0001953837 scopus 로고
    • Genetic algorithms for multiobjective optimization: formulation, discussion, and generalization. In: International conference on genetic algorithms
    • Fonseca C, Fleming P (1993) Genetic algorithms for multiobjective optimization: formulation, discussion, and generalization. In: International conference on genetic algorithms, pp 416–423
    • (1993) pp 416–423
    • Fonseca, C.1    Fleming, P.2
  • 19
    • 84991797456 scopus 로고    scopus 로고
    • Generalized decomposition and cross entropy methods for many-objective optimization. Tech. Rep. 1029
    • Giagkiozis I, Purshouse R, Fleming P (2012) Generalized decomposition and cross entropy methods for many-objective optimization. Tech. Rep. 1029, ACSE RESEARCH
    • (2012) ACSE RESEARCH
    • Giagkiozis, I.1    Purshouse, R.2    Fleming, P.3
  • 20
    • 84860395580 scopus 로고    scopus 로고
    • Interactive moea/d for multi-objective decision making. In: Proceedings of the 13th annual conference on genetic and evolutionary computation, GECCO’11
    • Gong M, Liu F, Zhang W, Jiao L, Zhang Q (2011) Interactive moea/d for multi-objective decision making. In: Proceedings of the 13th annual conference on genetic and evolutionary computation, GECCO’11, pp 721–728
    • (2011) pp 721–728
    • Gong, M.1    Liu, F.2    Zhang, W.3    Jiao, L.4    Zhang, Q.5
  • 21
    • 84991766830 scopus 로고    scopus 로고
    • Fitness functions for multiple objective optimization problems: combining preferences with pareto rankings. In: Foundations of genetic algorithms
    • Greenwood G, Hu X, DAmbrosio J (1997) Fitness functions for multiple objective optimization problems: combining preferences with pareto rankings. In: Foundations of genetic algorithms, pp 437–455
    • (1997) pp 437–455
    • Greenwood, G.1    Hu, X.2    Dambrosio, J.3
  • 22
    • 84991791113 scopus 로고    scopus 로고
    • Handbook of evolutionary computation
    • Horn J (1997) Handbook of evolutionary computation. Oxford University Press, pp 21–36
    • (1997) Oxford University Press , pp. 21-36
    • Horn, J.1
  • 23
    • 0033102253 scopus 로고    scopus 로고
    • The light beam search approach—an overview of methodology and applications
    • Jaszkiewicz A, Slowinski R (1999) The light beam search approach—an overview of methodology and applications. Eur J Oper Res 113(2):300–314
    • (1999) Eur J Oper Res , vol.113 , Issue.2 , pp. 300-314
    • Jaszkiewicz, A.1    Slowinski, R.2
  • 24
    • 33750253049 scopus 로고    scopus 로고
    • A fast and effective method for pruning of non-dominated solutions in many-objective problem. In: International conference on parallel problem solving from nature
    • Kukkonen S, Deb K (2006) A fast and effective method for pruning of non-dominated solutions in many-objective problem. In: International conference on parallel problem solving from nature, pp 553–562
    • (2006) pp 553–562
    • Kukkonen, S.1    Deb, K.2
  • 25
    • 67349108023 scopus 로고    scopus 로고
    • Multiobjective optimization problems with complicated Pareto sets, MOEA/D and NSGA-II
    • Li H, Zhang Q (2009) Multiobjective optimization problems with complicated Pareto sets, MOEA/D and NSGA-II. IEEE Trans Evol Comput 12(2):284–302
    • (2009) IEEE Trans Evol Comput , vol.12 , Issue.2 , pp. 284-302
    • Li, H.1    Zhang, Q.2
  • 26
    • 0039148666 scopus 로고
    • The use of storage water in a hydroelectric system
    • Little J (1955) The use of storage water in a hydroelectric system. Oper Res 3:187–197
    • (1955) Oper Res , vol.3 , pp. 187-197
    • Little, J.1
  • 27
    • 70349327858 scopus 로고    scopus 로고
    • A multiobjective evolutionary algorithm using min–max strategy and sphere coordinate transformation
    • Liu H, Wang Y, Cheung Y (2009) A multiobjective evolutionary algorithm using min–max strategy and sphere coordinate transformation. Intell Autom Soft Comput 15:361–384
    • (2009) Intell Autom Soft Comput , vol.15 , pp. 361-384
    • Liu, H.1    Wang, Y.2    Cheung, Y.3
  • 28
    • 0037210748 scopus 로고    scopus 로고
    • The long-term hydro-scheduling problem: a new algorithm
    • Mantawy A, Soliman S (2003) The long-term hydro-scheduling problem: a new algorithm. Electr Power Syst Res 64:67–72
    • (2003) Electr Power Syst Res , vol.64 , pp. 67-72
    • Mantawy, A.1    Soliman, S.2
  • 30
    • 27744449034 scopus 로고    scopus 로고
    • Synchronous approach in interactive multiobjective optimization
    • Miettinen K, Makela M (2006) Synchronous approach in interactive multiobjective optimization. Eur J Oper Res 170(3):909–922
    • (2006) Eur J Oper Res , vol.170 , Issue.3 , pp. 909-922
    • Miettinen, K.1    Makela, M.2
  • 31
    • 57049161539 scopus 로고    scopus 로고
    • Introduction to multiobjective optimization: Interactive approaches. In: Multiobjective optimization- interactive and evolutionary approaches
    • Miettinen K, Ruiz F, Wierzbicki A (2008) Introduction to multiobjective optimization: Interactive approaches. In: Multiobjective optimization- interactive and evolutionary approaches, pp 27–57
    • (2008) pp 27–57
    • Miettinen, K.1    Ruiz, F.2    Wierzbicki, A.3
  • 32
    • 84866867193 scopus 로고    scopus 로고
    • Reference point based multi-objective optimization through decomposition. In: Proceedings of congress of evolutionary computation, CEC’12
    • Mohammadi A, Omidvar M, Li X (2012) Reference point based multi-objective optimization through decomposition. In: Proceedings of congress of evolutionary computation, CEC’12, pp 1150–1157
    • (2012) pp 1150–1157
    • Mohammadi, A.1    Omidvar, M.2    Li, X.3
  • 33
    • 0001576341 scopus 로고
    • Satisficing trade-off method for multiobjective programming
    • Nakayama H, Sawaragi Y (1984) Satisficing trade-off method for multiobjective programming. In: Interactive decision analysis, vol 229, pp 113–122
    • (1984) Interactive decision analysis , vol.229 , pp. 113-122
    • Nakayama, H.1    Sawaragi, Y.2
  • 34
    • 84861872018 scopus 로고    scopus 로고
    • Multi-objective immune algorithm with baldwinian learning
    • Qi Y, Liu F, Liu M, Gong M, Jiao L (2012) Multi-objective immune algorithm with baldwinian learning. Appl Soft Comput 12:2654–2674
    • (2012) Appl Soft Comput , vol.12 , pp. 2654-2674
    • Qi, Y.1    Liu, F.2    Liu, M.3    Gong, M.4    Jiao, L.5
  • 35
    • 67649233473 scopus 로고    scopus 로고
    • Multi-objective optimization of reservoir flood dispatch based on multi-objective differential evolution algorithm
    • Qin H, Zhou J, Wang G, Zhang Y (2009) Multi-objective optimization of reservoir flood dispatch based on multi-objective differential evolution algorithm. J Hydraul Eng 40(5):513–519
    • (2009) J Hydraul Eng , vol.40 , Issue.5 , pp. 513-519
    • Qin, H.1    Zhou, J.2    Wang, G.3    Zhang, Y.4
  • 36
    • 77957584426 scopus 로고    scopus 로고
    • The r-dominance: a new dominance relation for interactive evolutionary multicriteria decision making
    • Said L, Bechikh S, Ghedira K (2010) The r-dominance: a new dominance relation for interactive evolutionary multicriteria decision making. IEEE Trans Evol Comput 14(5):801–818
    • (2010) IEEE Trans Evol Comput , vol.14 , Issue.5 , pp. 801-818
    • Said, L.1    Bechikh, S.2    Ghedira, K.3
  • 37
    • 0000806563 scopus 로고
    • Experiments with mixtures
    • Scheffe H (1958) Experiments with mixtures. J R Stat Soc Ser B 20:344–360
    • (1958) J R Stat Soc Ser B , vol.20 , pp. 344-360
    • Scheffe, H.1
  • 38
    • 0000511388 scopus 로고
    • Simplex-centroid designs for experiments with mixtures
    • Scheffe H (1963) Simplex-centroid designs for experiments with mixtures. J R Stat Soc Ser B 25:235–263
    • (1963) J R Stat Soc Ser B , vol.25 , pp. 235-263
    • Scheffe, H.1
  • 39
    • 84901389798 scopus 로고    scopus 로고
    • Evolutionary algorithms with goal and priority information for multi-objective optimization. In: Congress on evolutionary computation
    • Tan K, Lee T, Khor E (1999) Evolutionary algorithms with goal and priority information for multi-objective optimization. In: Congress on evolutionary computation, pp 106–113
    • (1999) pp 106–113
    • Tan, K.1    Lee, T.2    Khor, E.3
  • 40
    • 70349620402 scopus 로고    scopus 로고
    • A preference-based evolutionary algorithm for multi-objective optimization
    • Thiele L, Miettinen K, Korhonen P, Luque J (2009) A preference-based evolutionary algorithm for multi-objective optimization. Evol Comput 17(3):411–436
    • (2009) Evol Comput , vol.17 , Issue.3 , pp. 411-436
    • Thiele, L.1    Miettinen, K.2    Korhonen, P.3    Luque, J.4
  • 41
    • 57049174694 scopus 로고    scopus 로고
    • A method for including a-priori-preference in multicriteria optimization
    • Trautmann H, Mehnen J (2005) A method for including a-priori-preference in multicriteria optimization. Tech. Rep. 49/2005
    • (2005) Tech. Rep , vol.49
    • Trautmann, H.1    Mehnen, J.2
  • 42
    • 84866180575 scopus 로고    scopus 로고
    • Multi-objective optimization of reservoir flood dispatch based on mopso algorithm. In: International conference on natural computation
    • Wang S, Lei X, Huang X (2012) Multi-objective optimization of reservoir flood dispatch based on mopso algorithm. In: International conference on natural computation, pp 827–832
    • (2012) pp 827–832
    • Wang, S.1    Lei, X.2    Huang, X.3
  • 43
    • 84991748954 scopus 로고
    • The use of reference objectives in multiobjective optimization. In: Multiple criteria decision making theory and application
    • Wierzbicki A (1977) The use of reference objectives in multiobjective optimization. In: Multiple criteria decision making theory and application, pp 469–486
    • (1977) pp 469–486
    • Wierzbicki, A.1
  • 44
    • 84991792357 scopus 로고
    • The use of reference objectives in multiobjective optimization. In: Multiple criteria decision making theory and applications
    • Wierzbicki A (1980) The use of reference objectives in multiobjective optimization. In: Multiple criteria decision making theory and applications, pp 468–486
    • (1980) pp 468–486
    • Wierzbicki, A.1
  • 45
    • 0027788414 scopus 로고
    • Reservoir-system simulation and optimization models
    • Wurbs R (1993) Reservoir-system simulation and optimization models. Water Resour Plan Manag 119(4):455–472
    • (1993) Water Resour Plan Manag , vol.119 , Issue.4 , pp. 455-472
    • Wurbs, R.1
  • 46
    • 0022268780 scopus 로고
    • Reservoir management and operations models: a state-of-the-art review
    • Yeh W (1985) Reservoir management and operations models: a state-of-the-art review. Water Resour Res 21(12):1797–1818
    • (1985) Water Resour Res , vol.21 , Issue.12 , pp. 1797-1818
    • Yeh, W.1
  • 47
    • 34548108555 scopus 로고    scopus 로고
    • MOEA/D: a multi-objective evolutionary algorithm based on decomposition
    • Zhang Q, Li H (2007) MOEA/D: a multi-objective evolutionary algorithm based on decomposition. IEEE Trans Evol Comput 11(6):712–731
    • (2007) IEEE Trans Evol Comput , vol.11 , Issue.6 , pp. 712-731
    • Zhang, Q.1    Li, H.2
  • 48
    • 77954596291 scopus 로고    scopus 로고
    • The performance of a new version of MOEA/D on CEC09 unconstrained MOP test instances. Tech. rep., School of Computer Science and Electrical Engineering
    • Zhang Q, Liu W, Li H (2009) The performance of a new version of MOEA/D on CEC09 unconstrained MOP test instances. Tech. rep., School of Computer Science and Electrical Engineering, University of Essex
    • (2009) University of Essex
    • Zhang, Q.1    Liu, W.2    Li, H.3
  • 49
    • 70449915988 scopus 로고    scopus 로고
    • Multiobjective optimization test instances for the CEC 2009 special session and competition. Tech. Rep
    • Zhang Q, Zhou A, Zhao S, Suganthan P, Liu W, Tiwari S (2008) Multiobjective optimization test instances for the CEC 2009 special session and competition. Tech. Rep. CES-887
    • (2008) CES-887
    • Zhang, Q.1    Zhou, A.2    Zhao, S.3    Suganthan, P.4    Liu, W.5    Tiwari, S.6
  • 50
  • 51
    • 0034199979 scopus 로고    scopus 로고
    • Comparison of multiobjective evolutionary algorithms: empirical results
    • Zitzler E, Deb K, Thiele L (2000) Comparison of multiobjective evolutionary algorithms: empirical results. Evol Comput 8(2):173–195
    • (2000) Evol Comput , vol.8 , Issue.2 , pp. 173-195
    • Zitzler, E.1    Deb, K.2    Thiele, L.3
  • 52
    • 35048846146 scopus 로고    scopus 로고
    • Indicator-based selection in multiobjective search. In: Parallel problem solving in nature, lecture notes on computer science
    • Zitzler E, Kunzli S (2004) Indicator-based selection in multiobjective search. In: Parallel problem solving in nature, lecture notes on computer science, pp 832–842
    • (2004) pp 832–842
    • Zitzler, E.1    Kunzli, S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.