메뉴 건너뛰기




Volumn 64, Issue , 2015, Pages 1237-1250

Solution of optimal power flow using non dominated sorting multi objective opposition based gravitational search algorithm

Author keywords

Multi objective optimization; Non dominated sorting; NSMOOGSA; Opposition based learning; Optimal power flow

Indexed keywords

GRAVITATIONAL SEARCH ALGORITHMS; MULTI OBJECTIVE; NON-DOMINATED SORTING; NSMOOGSA; OPPOSITION-BASED LEARNING; OPTIMAL POWER FLOWS;

EID: 84908429224     PISSN: 01420615     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.ijepes.2014.09.015     Document Type: Article
Times cited : (87)

References (30)
  • 1
    • 0022768589 scopus 로고
    • Sparse reactive power scheduling by a penalty-function linear programming technique
    • Mota-Palomino R, Quintana VH. Sparse reactive power scheduling by a penalty-function linear programming technique. IEEE Trans Power Syst 1986;1(3):31-9.
    • (1986) IEEE Trans Power Syst , vol.1 , Issue.3 , pp. 31-39
    • Mota-Palomino, R.1    Quintana, V.H.2
  • 4
    • 0032668281 scopus 로고    scopus 로고
    • Improving an interior point based OPF by dynamic adjustments of step sizes and tolerances
    • Yan X, Quintana VH. Improving an interior point based OPF by dynamic adjustments of step sizes and tolerances. IEEE Trans Power Syst 1999;14(2):709-17.
    • (1999) IEEE Trans Power Syst , vol.14 , Issue.2 , pp. 709-717
    • Yan, X.1    Quintana, V.H.2
  • 5
    • 84877948107 scopus 로고    scopus 로고
    • Artificial bee colony algorithm for solving multi-objective optimal power flow problem
    • Adaryani MR, Karami A. Artificial bee colony algorithm for solving multi-objective optimal power flow problem. Int J Electr Power Energy Syst 2013;53:219-30.
    • (2013) Int J Electr Power Energy Syst , vol.53 , pp. 219-230
    • Adaryani, M.R.1    Karami, A.2
  • 6
    • 84868262339 scopus 로고    scopus 로고
    • Modified artificial bee colony algorithm based on fuzzy multi-objective technique for optimal power flow problem
    • Khorsandi A, Hosseinian SH, Ghazanfari A. Modified artificial bee colony algorithm based on fuzzy multi-objective technique for optimal power flow problem. Electric Power Syst Res 2013;95:206-13.
    • (2013) Electric Power Syst Res , vol.95 , pp. 206-213
    • Khorsandi, A.1    Hosseinian, S.H.2    Ghazanfari, A.3
  • 7
    • 79952002456 scopus 로고    scopus 로고
    • Multi-objective harmony search algorithm for optimal power flow problem
    • Sivasubramani S, Swarup KS. Multi-objective harmony search algorithm for optimal power flow problem. Int J Electr Power Energy Syst 2011;33(3):745-52.
    • (2011) Int J Electr Power Energy Syst , vol.33 , Issue.3 , pp. 745-752
    • Sivasubramani, S.1    Swarup, K.S.2
  • 8
    • 78650237778 scopus 로고    scopus 로고
    • Application of biogeography-based optimisation to solve different optimal power flow problems
    • Bhattacharya A, Chattopadhyay PK. Application of biogeography-based optimisation to solve different optimal power flow problems. IET Gener Transm Distrib 2011;5(1):70-80.
    • (2011) IET Gener Transm Distrib , vol.5 , Issue.1 , pp. 70-80
    • Bhattacharya, A.1    Chattopadhyay, P.K.2
  • 10
    • 80655124471 scopus 로고    scopus 로고
    • A modified shuffle frog leaping algorithm for multi-objective optimal power flow
    • Niknam T, Narimani RM, Jabbari M, Malekpour RA. A modified shuffle frog leaping algorithm for multi-objective optimal power flow. Energy 2011;36(11):6420-32.
    • (2011) Energy , vol.36 , Issue.11 , pp. 6420-6432
    • Niknam, T.1    Narimani, R.M.2    Jabbari, M.3    Malekpour, R.A.4
  • 11
    • 52949104741 scopus 로고    scopus 로고
    • Modified differential evolution algorithm for optimal power flow with non-smooth cost functions
    • Sayah S, Zehar K. Modified differential evolution algorithm for optimal power flow with non-smooth cost functions. Energy Convers Manage 2008;49(11):3036-42.
    • (2008) Energy Convers Manage , vol.49 , Issue.11 , pp. 3036-3042
    • Sayah, S.1    Zehar, K.2
  • 12
    • 47149094048 scopus 로고    scopus 로고
    • Solving multi-objective optimal power flow using differential evolution
    • Varadarajan M, Swarup KS. Solving multi-objective optimal power flow using differential evolution. IET Generation Trans Distribution 2008;2(5):720-30.
    • (2008) IET Generation Trans Distribution , vol.2 , Issue.5 , pp. 720-730
    • Varadarajan, M.1    Swarup, K.S.2
  • 13
    • 77950858346 scopus 로고    scopus 로고
    • Optimal power flow using differential evolution algorithm
    • Abou El Ela AA, Abido MA, Spea SR. Optimal power flow using differential evolution algorithm. Electric Power Syst Res 2010;80(7):878-85.
    • (2010) Electric Power Syst Res , vol.80 , Issue.7 , pp. 878-885
    • Abou El Ela, A.A.1    Abido, M.A.2    Spea, S.R.3
  • 14
    • 0036778849 scopus 로고    scopus 로고
    • Optimal power flow using particle swarm optimization
    • Abido MA. Optimal power flow using particle swarm optimization. Int J Electr Power Energy Syst 2002;24(7):563-71.
    • (2002) Int J Electr Power Energy Syst , vol.24 , Issue.7 , pp. 563-571
    • Abido, M.A.1
  • 18
    • 84897398557 scopus 로고    scopus 로고
    • Multi-hive bee foraging algorithm for multi-objective optimal power flow considering the cost, loss, and emission
    • Chen H, Bo ML, Zhu Y. Multi-hive bee foraging algorithm for multi-objective optimal power flow considering the cost, loss, and emission. Int J Electr Power Energy Syst 2014;60:203-20.
    • (2014) Int J Electr Power Energy Syst , vol.60 , pp. 203-220
    • Chen, H.1    Bo, M.L.2    Zhu, Y.3
  • 19
    • 62949218410 scopus 로고    scopus 로고
    • Environmental constrained economic dispatch using bacterial foraging optimization
    • Hazra J, Sinha AK. Environmental constrained economic dispatch using bacterial foraging optimization. IEEE Power India Conf 2008:1-6.
    • IEEE Power India Conf 2008 , pp. 1-6
    • Hazra, J.1    Sinha, A.K.2
  • 20
    • 84901605428 scopus 로고    scopus 로고
    • Solution of optimal power flow using nondominated sorting multi objective gravitational search algorithm
    • Bhowmik AR, Chakraborty AK. Solution of optimal power flow using nondominated sorting multi objective gravitational search algorithm. Int J Electr Power Energy Syst 2014;62:323-34.
    • (2014) Int J Electr Power Energy Syst , vol.62 , pp. 323-334
    • Bhowmik, A.R.1    Chakraborty, A.K.2
  • 21
    • 84901618523 scopus 로고    scopus 로고
    • A Multi objective gravitational search algorithm based on non-dominated sorting
    • Nobahari H, Nikusokhan M, Siarry P. A Multi objective gravitational search algorithm based on non-dominated sorting. Int J Swarm Intell Res 2012;3(3):32-49.
    • (2012) Int J Swarm Intell Res , vol.3 , Issue.3 , pp. 32-49
    • Nobahari, H.1    Nikusokhan, M.2    Siarry, P.3
  • 22
    • 64549119687 scopus 로고    scopus 로고
    • GSA: A gravitational search algorithm
    • Rashedi E, Nezamabadi-pour H, Saryazdi S. GSA: a gravitational search algorithm. Inf Sci 2009;179(3):2232-48.
    • (2009) Inf Sci , vol.179 , Issue.3 , pp. 2232-2248
    • Rashedi, E.1    Nezamabadi-pour, H.2    Saryazdi, S.3
  • 23
    • 84901830766 scopus 로고    scopus 로고
    • Evaluating center-seeking and initialization bias: The case of particle swarm and gravitational search algorithms
    • Davarynejad M, Berg JVD, Rezaei J. Evaluating center-seeking and initialization bias: the case of particle swarm and gravitational search algorithms. Inf Sci 2014;278:802-21.
    • (2014) Inf Sci , vol.278 , pp. 802-821
    • Davarynejad, M.1    Berg, J.V.D.2    Rezaei, J.3
  • 24
    • 84905644646 scopus 로고    scopus 로고
    • An improved gravitational search algorithm for dynamic neural network identification
    • Xu BC, Zhang YY. An improved gravitational search algorithm for dynamic neural network identification. Int J Autom Comput 2014.
    • (2014) Int J Autom Comput
    • Xu, B.C.1    Zhang, Y.Y.2
  • 25
    • 0036530772 scopus 로고    scopus 로고
    • A fast and elitist multiobjective genetic algorithm: NSGA-II
    • Deb K, Pratap A, Agarwal S, Meyarivan T. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Comput 2002;6(2):182-97.
    • (2002) IEEE Trans Evol Comput , vol.6 , Issue.2 , pp. 182-197
    • Deb, K.1    Pratap, A.2    Agarwal, S.3    Meyarivan, T.4
  • 27
    • 4344657727 scopus 로고    scopus 로고
    • Power System Test Case Archieve. 〈http://www.ee.washington.edu/research/pstca/pf30/pg-tca30bus.html〉; 2006.
    • (2006) Power System Test Case Archieve
  • 28
    • 0037378939 scopus 로고    scopus 로고
    • A novel multiobjective evolutionary algorithm for environmental/economic power dispatch
    • Abido MA. A novel multiobjective evolutionary algorithm for environmental/economic power dispatch. Electric Power Syst Res 2003;65(1):71-81.
    • (2003) Electric Power Syst Res , vol.65 , Issue.1 , pp. 71-81
    • Abido, M.A.1
  • 29
    • 84875443586 scopus 로고    scopus 로고
    • Application of multi-objective teaching learning based optimization algorithm to optimal power flow problem
    • Nayak MR, Nayak CK, Rout PK. Application of multi-objective teaching learning based optimization algorithm to optimal power flow problem. Proc Technol 2012;6:255-64.
    • (2012) Proc Technol , vol.6 , pp. 255-264
    • Nayak, M.R.1    Nayak, C.K.2    Rout, P.K.3
  • 30
    • 77950351039 scopus 로고    scopus 로고
    • Enhanced genetic algorithm based computation technique for multi-objective optimal power flow solution
    • Kumari MS, Maheswarapu S. Enhanced genetic algorithm based computation technique for multi-objective optimal power flow solution. Int J Electr Power Energy Syst 2010;32(6):736-42.
    • (2010) Int J Electr Power Energy Syst , vol.32 , Issue.6 , pp. 736-742
    • Kumari, M.S.1    Maheswarapu, S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.