메뉴 건너뛰기




Volumn 106, Issue , 2015, Pages 543-556

Approximate ideal multi-objective solution Q(λ) learning for optimal carbon-energy combined-flow in multi-energy power systems

Author keywords

Approximate ideal multi objective solution Q( ); Multi objective optimization; Optimal carbon energy combined flow; Stochastic optimal weights

Indexed keywords

STOCHASTIC SYSTEMS;

EID: 84944053040     PISSN: 01968904     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.enconman.2015.09.049     Document Type: Article
Times cited : (51)

References (40)
  • 1
    • 77951666162 scopus 로고    scopus 로고
    • Power generation expansion planning model towards low-carbon economy and its application in China
    • Q. Chen, C. Kang, Q. Xia, and J. Zhong Power generation expansion planning model towards low-carbon economy and its application in China IEEE Trans Power Syst 25 2 2010 1117 1125
    • (2010) IEEE Trans Power Syst , vol.25 , Issue.2 , pp. 1117-1125
    • Chen, Q.1    Kang, C.2    Xia, Q.3    Zhong, J.4
  • 2
    • 78649320696 scopus 로고    scopus 로고
    • Multi-objective optimal power flow with FACTS devices
    • M. Basu Multi-objective optimal power flow with FACTS devices Energy Convers Manage 52 2011 903 910
    • (2011) Energy Convers Manage , vol.52 , pp. 903-910
    • Basu, M.1
  • 3
    • 84911486877 scopus 로고    scopus 로고
    • Multi-objective dynamic economic emission dispatch of electric power generation integrated with game theory based demand response programs
    • N.I. Nwulu, and X. Xia Multi-objective dynamic economic emission dispatch of electric power generation integrated with game theory based demand response programs Energy Convers Manage 89 2015 963 974
    • (2015) Energy Convers Manage , vol.89 , pp. 963-974
    • Nwulu, N.I.1    Xia, X.2
  • 4
    • 84920173362 scopus 로고    scopus 로고
    • Combined emission economic dispatch of power system including solar photo voltaic generation
    • N.A. Khan, A.B. Awan, A. Mahmood, S. Razzaq, A. Zafar, and G.A.S. Sidhu Combined emission economic dispatch of power system including solar photo voltaic generation Energy Convers Manage 92 2015 82 91
    • (2015) Energy Convers Manage , vol.92 , pp. 82-91
    • Khan, N.A.1    Awan, A.B.2    Mahmood, A.3    Razzaq, S.4    Zafar, A.5    Sidhu, G.A.S.6
  • 5
    • 84886100453 scopus 로고    scopus 로고
    • Low-carbon power system dispatch incorporating carbon capture power plants
    • Z. Ji, C. Kang, Q. Chen, Q. Xia, C. Jiang, Z. Chen, and et al. Low-carbon power system dispatch incorporating carbon capture power plants IEEE Trans Power Syst 28 4 2013 4615 4623
    • (2013) IEEE Trans Power Syst , vol.28 , Issue.4 , pp. 4615-4623
    • Ji, Z.1    Kang, C.2    Chen, Q.3    Xia, Q.4    Jiang, C.5    Chen, Z.6
  • 6
    • 78649490854 scopus 로고    scopus 로고
    • Unit commitment with energy dispatch using a computationally efficient encoding structure
    • C.C. Kuo, C.Y. Lee, and Y.C. Sheim Unit commitment with energy dispatch using a computationally efficient encoding structure Energy Convers Manage 52 2011 1575 1582
    • (2011) Energy Convers Manage , vol.52 , pp. 1575-1582
    • Kuo, C.C.1    Lee, C.Y.2    Sheim, Y.C.3
  • 7
    • 84907361350 scopus 로고    scopus 로고
    • Application of quantum-inspired binary gravitational search algorithm for thermal unit commitment with wind power integration
    • B. Ji, X. Yuan, X. Li, Y. Huang, and W. Li Application of quantum-inspired binary gravitational search algorithm for thermal unit commitment with wind power integration Energy Convers Manage 87 2014 589 598
    • (2014) Energy Convers Manage , vol.87 , pp. 589-598
    • Ji, B.1    Yuan, X.2    Li, X.3    Huang, Y.4    Li, W.5
  • 9
    • 84902125669 scopus 로고    scopus 로고
    • The prospects for coal-fired power plants with carbon capture and storage: A UK perspective
    • G.P. Hanmmond, and J. Spargo The prospects for coal-fired power plants with carbon capture and storage: a UK perspective Energy Convers Manage 86 2014 476 489
    • (2014) Energy Convers Manage , vol.86 , pp. 476-489
    • Hanmmond, G.P.1    Spargo, J.2
  • 11
    • 84884596371 scopus 로고    scopus 로고
    • Carbon flow tracing method for assessment of demand side carbon emissions obligation
    • B. Li, Y. Song, and Z. Hu Carbon flow tracing method for assessment of demand side carbon emissions obligation IEEE Trans Sustain Energy 4 4 2013 1100 1107
    • (2013) IEEE Trans Sustain Energy , vol.4 , Issue.4 , pp. 1100-1107
    • Li, B.1    Song, Y.2    Hu, Z.3
  • 14
    • 0032138045 scopus 로고    scopus 로고
    • An interior point nonlinear programming for optimal flow problems with a novel data structure
    • H. Wei, H. Sasaki, J. Kubokawa, and R. Yokoyama An interior point nonlinear programming for optimal flow problems with a novel data structure IEEE Trans Power Syst 13 3 1998 870 877
    • (1998) IEEE Trans Power Syst , vol.13 , Issue.3 , pp. 870-877
    • Wei, H.1    Sasaki, H.2    Kubokawa, J.3    Yokoyama, R.4
  • 15
    • 18944397111 scopus 로고    scopus 로고
    • A multiagent-based particle swarm optimization approach for optimal reactive power dispatch
    • B. Zhao, C.X. Guo, and Y.J. Cao A multiagent-based particle swarm optimization approach for optimal reactive power dispatch IEEE Trans Power Syst 20 2 2005 1070 1078
    • (2005) IEEE Trans Power Syst , vol.20 , Issue.2 , pp. 1070-1078
    • Zhao, B.1    Guo, C.X.2    Cao, Y.J.3
  • 16
    • 77950351039 scopus 로고    scopus 로고
    • Enhanced genetic algorithm based computation technique for multi-objective optimal power flow solution
    • M.S. Kumari, and S. Maheswarapu Enhanced genetic algorithm based computation technique for multi-objective optimal power flow solution Int J Electr Power Energy Syst 32 2010 736 742
    • (2010) Int J Electr Power Energy Syst , vol.32 , pp. 736-742
    • Kumari, M.S.1    Maheswarapu, S.2
  • 17
    • 84929165803 scopus 로고    scopus 로고
    • A new quantum inspired chaotic artificial bee colony algorithm for optimal power flow problem
    • X. Yuan, P. Wang, Y. Yuan, Y. Huang, and X. Zhang A new quantum inspired chaotic artificial bee colony algorithm for optimal power flow problem Energy Convers Manage 100 2015 1 9
    • (2015) Energy Convers Manage , vol.100 , pp. 1-9
    • Yuan, X.1    Wang, P.2    Yuan, Y.3    Huang, Y.4    Zhang, X.5
  • 18
  • 19
    • 84861802339 scopus 로고    scopus 로고
    • Distributed multi-step Q(λ) learning for optimal power flow of large-scale power grids
    • T. Yu, J. Liu, K.W. Chan, and J.J. Wang Distributed multi-step Q(λ) learning for optimal power flow of large-scale power grids Int J Electr Power Energy Syst 42 1 2012 614 620
    • (2012) Int J Electr Power Energy Syst , vol.42 , Issue.1 , pp. 614-620
    • Yu, T.1    Liu, J.2    Chan, K.W.3    Wang, J.J.4
  • 20
    • 79960776326 scopus 로고    scopus 로고
    • Stochastic optimal generation command dispatch based on improved hierarchical reinforcement learning approach
    • T. Yu, Y.M. Wang, W.J. Ye, B. Zhou, and K.W. Chan Stochastic optimal generation command dispatch based on improved hierarchical reinforcement learning approach IET Gener Transm Distrib 5 8 2011 789 797
    • (2011) IET Gener Transm Distrib , vol.5 , Issue.8 , pp. 789-797
    • Yu, T.1    Wang, Y.M.2    Ye, W.J.3    Zhou, B.4    Chan, K.W.5
  • 21
    • 0000955979 scopus 로고    scopus 로고
    • Incremental multi-step Q-learning
    • P. Jing, and R.J. Williams Incremental multi-step Q-learning Mach Learn 22 1996 283 290
    • (1996) Mach Learn , vol.22 , pp. 283-290
    • Jing, P.1    Williams, R.J.2
  • 22
    • 80051943020 scopus 로고    scopus 로고
    • Ranking approach of cross-efficiency based on improved TOPSIS technique
    • J. Wu, J. Sun, Y. Zha, and L. Liang Ranking approach of cross-efficiency based on improved TOPSIS technique J Syst Eng Electron 22 4 2011 604 608
    • (2011) J Syst Eng Electron , vol.22 , Issue.4 , pp. 604-608
    • Wu, J.1    Sun, J.2    Zha, Y.3    Liang, L.4
  • 23
    • 84923224305 scopus 로고    scopus 로고
    • Multiobjective reinforcement learning: A comprehensive overview
    • C. Liu, X. Xu, and D. Hu Multiobjective reinforcement learning: a comprehensive overview IEEE Trans Syst Man Cybern Syst 45 3 2015 385 398
    • (2015) IEEE Trans Syst Man Cybern Syst , vol.45 , Issue.3 , pp. 385-398
    • Liu, C.1    Xu, X.2    Hu, D.3
  • 24
    • 17444429941 scopus 로고    scopus 로고
    • On min-norm and min-max methods of multi-objective optimization
    • J.G. Lin On min-norm and min-max methods of multi-objective optimization Math Program 103 1 2005 1 33
    • (2005) Math Program , vol.103 , Issue.1 , pp. 1-33
    • Lin, J.G.1
  • 25
    • 33744773216 scopus 로고    scopus 로고
    • Multiobjective evolutionary algorithms for electric power dispatch problem
    • M.A. Abido Multiobjective evolutionary algorithms for electric power dispatch problem IEEE Trans Evol Comput 10 3 2006 315 329
    • (2006) IEEE Trans Evol Comput , vol.10 , Issue.3 , pp. 315-329
    • Abido, M.A.1
  • 26
    • 0030189160 scopus 로고    scopus 로고
    • Tracing the flow of electricity
    • J. Bialek Tracing the flow of electricity IEE Proc - Gener Transm Distrib 143 4 1996 313 320
    • (1996) IEE Proc - Gener Transm Distrib , vol.143 , Issue.4 , pp. 313-320
    • Bialek, J.1
  • 28
    • 33847202724 scopus 로고
    • Learning to predict by the methods of temporal differences
    • R.S. Sutton Learning to predict by the methods of temporal differences Mach Learn 3 1 1988 9 44
    • (1988) Mach Learn , vol.3 , Issue.1 , pp. 9-44
    • Sutton, R.S.1
  • 29
    • 79960889687 scopus 로고    scopus 로고
    • Stochastic optimal relaxed automatic generation control in Non-Markov environment based on multi-step Q(λ) learning
    • T. Yu, B. Zhou, K.W. Chan, L. Chen, and B. Yang Stochastic optimal relaxed automatic generation control in Non-Markov environment based on multi-step Q(λ) learning IEEE Trans Power Syst 26 3 2011 1272 1282
    • (2011) IEEE Trans Power Syst , vol.26 , Issue.3 , pp. 1272-1282
    • Yu, T.1    Zhou, B.2    Chan, K.W.3    Chen, L.4    Yang, B.5
  • 30
    • 0028497630 scopus 로고
    • Asynchronous stochastic approximation and Q-learning
    • J.N. Tsitsiklis Asynchronous stochastic approximation and Q-learning Mach Learn 16 3 1994 185 202
    • (1994) Mach Learn , vol.16 , Issue.3 , pp. 185-202
    • Tsitsiklis, J.N.1
  • 33
    • 0028429332 scopus 로고
    • Reactive power optimization by genetic algorithm
    • K. Iba Reactive power optimization by genetic algorithm IEEE Trans Power Syst 9 2 1994 685 692
    • (1994) IEEE Trans Power Syst , vol.9 , Issue.2 , pp. 685-692
    • Iba, K.1
  • 34
    • 0036778849 scopus 로고    scopus 로고
    • Optimal power flow using particle swarm optimization
    • M.A. Abido Optimal power flow using particle swarm optimization Electr Power Energy Syst 24 2002 563 571
    • (2002) Electr Power Energy Syst , vol.24 , pp. 563-571
    • Abido, M.A.1
  • 36
    • 70349873857 scopus 로고    scopus 로고
    • Group search optimizer: An optimization algorithm inspired by animal searching behavior
    • S. He, Q.H. Wu, and J.R. Saunders Group search optimizer: an optimization algorithm inspired by animal searching behavior IEEE Trans Evol Comput 13 5 2009 973 990
    • (2009) IEEE Trans Evol Comput , vol.13 , Issue.5 , pp. 973-990
    • He, S.1    Wu, Q.H.2    Saunders, J.R.3
  • 37
    • 80054052912 scopus 로고    scopus 로고
    • Optimal distributed generation allocation and sizing in distribution systems via artificial bee colony algorithm
    • F.S. Abu-Mouti, and M.E. El-Hawary Optimal distributed generation allocation and sizing in distribution systems via artificial bee colony algorithm IEEE Trans Power Del 26 4 2011 2090 2101
    • (2011) IEEE Trans Power Del , vol.26 , Issue.4 , pp. 2090-2101
    • Abu-Mouti, F.S.1    El-Hawary, M.E.2
  • 38
    • 84944135652 scopus 로고    scopus 로고
    • [accessed April].
    • IPCC Guidelines for National Greenhouse Gas Inventories. < http://www.ipcc-nggip.iges.or.jp/public/2006gl/ index.html > [accessed April 2007].
    • (2007)
  • 39
    • 84886085252 scopus 로고    scopus 로고
    • Equilibrium-inspired multiple group search optimization with synergistic learning for multi-objective electric power dispatch
    • B. Zhou, K.W. Chan, T. Yu, and C.Y. Chung Equilibrium-inspired multiple group search optimization with synergistic learning for multi-objective electric power dispatch IEEE Trans Power Syst 28 4 2013 3534 3545
    • (2013) IEEE Trans Power Syst , vol.28 , Issue.4 , pp. 3534-3545
    • Zhou, B.1    Chan, K.W.2    Yu, T.3    Chung, C.Y.4
  • 40
    • 1442265466 scopus 로고    scopus 로고
    • Power systems stability control: Reinforcement learning framework
    • D. Ernst, M. Glavic, and L. Wenenkel Power systems stability control: reinforcement learning framework IEEE Trans Power Syst 19 1 2004 427 435
    • (2004) IEEE Trans Power Syst , vol.19 , Issue.1 , pp. 427-435
    • Ernst, D.1    Glavic, M.2    Wenenkel, L.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.