메뉴 건너뛰기




Volumn 48, Issue 9, 2015, Pages 2847-2858

IODA: An input/output deep architecture for image labeling

Author keywords

Deep learning architectures; Deep neural network; Image labeling; Machine learning; Medical imaging; Sarcopenia

Indexed keywords

DEEP LEARNING; DEEP NEURAL NETWORKS; IMAGE CODING; LEARNING SYSTEMS; MEDICAL IMAGING; NEURAL NETWORKS; TEXTURES;

EID: 84929516076     PISSN: 00313203     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patcog.2015.03.017     Document Type: Article
Times cited : (29)

References (40)
  • 2
    • 0043237770 scopus 로고    scopus 로고
    • Image registration methods a survey
    • B. Zitova, and J. Flusser Image registration methods a survey Image Vis. Comput. 21 11 2003 977 1000
    • (2003) Image Vis. Comput. , vol.21 , Issue.11 , pp. 977-1000
    • Zitova, B.1    Flusser, J.2
  • 3
    • 0032008619 scopus 로고    scopus 로고
    • A survey of medical image registration
    • J.B.A. Maintz, and M.A. Viergever A survey of medical image registration Med. Image Anal. 2 1 1998 1 36
    • (1998) Med. Image Anal. , vol.2 , Issue.1 , pp. 1-36
    • Maintz, J.B.A.1    Viergever, M.A.2
  • 4
    • 0022927448 scopus 로고
    • Piecewise linear mapping functions for image registration
    • A. Goshtasby Piecewise linear mapping functions for image registration Pattern Recognit. 19 6 1986 459 466
    • (1986) Pattern Recognit. , vol.19 , Issue.6 , pp. 459-466
    • Goshtasby, A.1
  • 5
    • 67149108708 scopus 로고    scopus 로고
    • Automated segmentation of muscle and adipose tissue on ct images for human body composition analysis
    • H. Chung, D. Cobzas, L. Birdsell, J. Lieffers, V. Baracos, Automated segmentation of muscle and adipose tissue on ct images for human body composition analysis, Proc. SPIE 7261 (2009) 72610K-72610K-8.
    • (2009) Proc. SPIE , vol.7261 , pp. 72610K-72610K8
    • Chung, H.1    Cobzas, D.2    Birdsell, L.3    Lieffers, J.4    Baracos, V.5
  • 8
    • 80052660275 scopus 로고    scopus 로고
    • An efficient approach to semantic segmentation
    • G. Csurka, and F. Perronnin An efficient approach to semantic segmentation Int. J. Comput. Vis. 95 2 2011 198 212
    • (2011) Int. J. Comput. Vis. , vol.95 , Issue.2 , pp. 198-212
    • Csurka, G.1    Perronnin, F.2
  • 9
    • 61349174704 scopus 로고    scopus 로고
    • Robust higher order potentials for enforcing label consistency
    • P. Kohli, L. Ladický, and P.H. Torr Robust higher order potentials for enforcing label consistency Int. J. Comput. Vis. 82 3 2009 302 324
    • (2009) Int. J. Comput. Vis. , vol.82 , Issue.3 , pp. 302-324
    • Kohli, P.1    Ladický, L.2    Torr, P.H.3
  • 10
    • 0024610919 scopus 로고
    • A tutorial on hidden Markov models and selected applications in speech recognition
    • L. Rabiner A tutorial on hidden Markov models and selected applications in speech recognition Proceedings of the IEEE 77 2 1989 257 286
    • (1989) Proceedings of the IEEE , vol.77 , Issue.2 , pp. 257-286
    • Rabiner, L.1
  • 11
    • 0142192295 scopus 로고    scopus 로고
    • Conditional random fields: Probabilistic models for segmenting and labeling sequence data
    • J. Lafferty, A. McCallum, F. Pereira, Conditional random fields: probabilistic models for segmenting and labeling sequence data, in: ICML, 2001, pp. 282-289.
    • (2001) ICML , pp. 282-289
    • Lafferty, J.1    McCallum, A.2    Pereira, F.3
  • 12
    • 34147119592 scopus 로고    scopus 로고
    • A Markovian approach for handwritten document segmentation
    • S. Nicolas, T. Paquet, and L. Heutte A Markovian approach for handwritten document segmentation Int. Conf. Pattern Recognit. 3 2006 292 295
    • (2006) Int. Conf. Pattern Recognit. , vol.3 , pp. 292-295
    • Nicolas, S.1    Paquet, T.2    Heutte, L.3
  • 13
    • 0003925908 scopus 로고    scopus 로고
    • 3rd edition, Springer Publishing Company, Incorporated
    • S.Z. Li, Markov Random Field Modeling in Image Analysis, 3rd edition, Springer Publishing Company, Incorporated, 2009, http://dx.doi.org/10.1007/978-1-84800-279-1.
    • (2009) Markov Random Field Modeling in Image Analysis
    • Li, S.Z.1
  • 14
    • 84894475814 scopus 로고    scopus 로고
    • Probabilistic joint image segmentation and labeling by figure-ground composition
    • A. Ion, J. Carreira, and C. Sminchisescu Probabilistic joint image segmentation and labeling by figure-ground composition Int. J. Comput. Vis. 107 1 2014 40 57
    • (2014) Int. J. Comput. Vis. , vol.107 , Issue.1 , pp. 40-57
    • Ion, A.1    Carreira, J.2    Sminchisescu, C.3
  • 15
    • 85162351107 scopus 로고    scopus 로고
    • Efficient inference in fully connected CRFs with Gaussian edge potentials
    • P. Krähenbühl, V. Koltun, Efficient inference in fully connected CRFs with Gaussian edge potentials, in: Neural Information Processing Systems, 2011, pp. 109-117.
    • (2011) Neural Information Processing Systems , pp. 109-117
    • Krähenbühl, P.1
  • 16
    • 0000013152 scopus 로고
    • On the statistical analysis of dirty pictures
    • J. Besag On the statistical analysis of dirty pictures J. R. Soc. Ser. B 48 1986 259 302
    • (1986) J. R. Soc. Ser. B , vol.48 , pp. 259-302
    • Besag, J.1
  • 17
    • 20444504050 scopus 로고
    • The theory and practice of Bayesian image labeling
    • P.B. Chou, C.M. Brown, The theory and practice of Bayesian image labeling, Int. J. Comput. Vis. 4 (1990) 185-210.
    • (1990) Int. J. Comput. Vis. , vol.4 , pp. 185-210
    • Chou, P.B.1    Brown, C.M.2
  • 18
    • 56749161572 scopus 로고    scopus 로고
    • Learning to localize objects with structured output regression
    • M.B. Blaschko, C.H. Lampert, Learning to localize objects with structured output regression, in: ECCV, 2008, pp. 2-15.
    • (2008) ECCV , pp. 2-15
    • Blaschko, M.B.1    Lampert, C.H.2
  • 20
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets
    • G.E. Hinton, S. Osindero, and Y.-W. Teh A fast learning algorithm for deep belief nets Neural Comput. 18 7 2006 1527 1554
    • (2006) Neural Comput. , vol.18 , Issue.7 , pp. 1527-1554
    • Hinton, G.E.1    Osindero, S.2    Teh, Y.-W.3
  • 22
    • 56449119888 scopus 로고    scopus 로고
    • Deep learning via semi-supervised embedding
    • J. Weston, F. Ratle, R. Collobert, Deep learning via semi-supervised embedding, in: ICML, 2008, pp. 1168-1175.
    • (2008) ICML , pp. 1168-1175
    • Weston, J.1    Ratle, F.2    Collobert, R.3
  • 23
  • 25
    • 84890526837 scopus 로고    scopus 로고
    • New types of deep neural network learning for speech recognition and related applications: An overview
    • L. Deng, G.E. Hinton, B. Kingsbury, New types of deep neural network learning for speech recognition and related applications: an overview, in: ICASSP, 2013, pp. 8599-8603.
    • (2013) ICASSP , pp. 8599-8603
    • Deng, L.1    Hinton, G.E.2    Kingsbury, B.3
  • 27
    • 0000646059 scopus 로고
    • Parallel distributed processing: Explorations in the microstructure of cognition
    • MIT Press, Cambridge, MA, USA
    • D.E. Rumelhart, G.E. Hinton, R.J. Williams, Parallel distributed processing: explorations in the microstructure of cognition, in: Learning Internal Representations by Error Propagation, vol. 1, MIT Press, Cambridge, MA, USA, 1986, pp. 318-362.
    • (1986) Learning Internal Representations by Error Propagation , vol.1 , pp. 318-362
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 28
    • 78649669320 scopus 로고    scopus 로고
    • Deep big simple neural nets excel on handwritten digit recognition
    • D.C. Ciresan, U. Meier, L.M. Gambardella, and J. Schmidhuber Deep big simple neural nets excel on handwritten digit recognition Neural Comput. 22 12 2010 3207 3220
    • (2010) Neural Comput. , vol.22 , Issue.12 , pp. 3207-3220
    • Ciresan, D.C.1    Meier, U.2    Gambardella, L.M.3    Schmidhuber, J.4
  • 29
    • 77950794351 scopus 로고    scopus 로고
    • Learning deep neural networks for high dimensional output problems
    • Miami, USA
    • B. Labbe, R. Herault, C. Chatelain, Learning deep neural networks for high dimensional output problems, in: ICMLA, Miami, USA, 2009, p. 6.
    • (2009) ICMLA , pp. 6
    • Labbe, B.1    Herault, R.2    Chatelain, C.3
  • 30
    • 79551480483 scopus 로고    scopus 로고
    • Stacked denoising autoencoders learning useful representations in a deep network with a local denoising criterion
    • P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P.-A. Manzagol Stacked denoising autoencoders learning useful representations in a deep network with a local denoising criterion J. Mach. Learn. Res. 11 2010 3371 3408
    • (2010) J. Mach. Learn. Res. , vol.11 , pp. 3371-3408
    • Vincent, P.1    Larochelle, H.2    Lajoie, I.3    Bengio, Y.4    Manzagol, P.-A.5
  • 32
    • 0024220237 scopus 로고
    • Auto-association by multilayer perceptrons and singular value decomposition
    • H. Bourlard, and Y. Kamp Auto-association by multilayer perceptrons and singular value decomposition Biol. Cybern. 59 4-5 1988 291 294
    • (1988) Biol. Cybern. , vol.59 , Issue.4-5 , pp. 291-294
    • Bourlard, H.1    Kamp, Y.2
  • 36
    • 84904295562 scopus 로고    scopus 로고
    • Sarcopenia is an independent prognostic factor in elderly patients with diffuse large B-cell lymphoma treated with immunochemotherapy
    • Epub 2013 Jul 29
    • H. Lanic, J. Kraut-Tauzia, R. Modzelewski, F. Clatot, S. Mareschal, J.-M. Picquenot, A. Stamatoullas, S. Leprêtre, H. Tilly, and F. Jardin Sarcopenia is an independent prognostic factor in elderly patients with diffuse large B-cell lymphoma treated with immunochemotherapy Leuk. Lymphoma 55 4 2014 817 823 10.3109/10428194.2013.816421. Epub 2013 Jul 29
    • (2014) Leuk. Lymphoma , vol.55 , Issue.4 , pp. 817-823
    • Lanic, H.1    Kraut-Tauzia, J.2    Modzelewski, R.3    Clatot, F.4    Mareschal, S.5    Picquenot, J.-M.6    Stamatoullas, A.7    Leprêtre, S.8    Tilly, H.9    Jardin, F.10
  • 38
    • 84903737407 scopus 로고    scopus 로고
    • A typed and handwritten text block segmentation system for heterogeneous and complex documents
    • P. Barlas, S. Adam, C. Chatelain, T. Paquet, A typed and handwritten text block segmentation system for heterogeneous and complex documents, in: Document Analysis Systems, 2014, pp. 46-50.
    • (2014) Document Analysis Systems , pp. 46-50
    • Barlas, P.1    Adam, S.2    Chatelain, C.3    Paquet, T.4
  • 40
    • 68949097526 scopus 로고    scopus 로고
    • Real-time traffic sign recognition from video by class-specific discriminative features
    • A. Ruta, Y. Li, and X. Liu Real-time traffic sign recognition from video by class-specific discriminative features Pattern Recognit. 43 1 2010 416 430
    • (2010) Pattern Recognit. , vol.43 , Issue.1 , pp. 416-430
    • Ruta, A.1    Li, Y.2    Liu, X.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.