메뉴 건너뛰기




Volumn 23, Issue 5, 2015, Pages 1761-1776

Implementation of an Evolving Fuzzy Model (eFuMo) in a Monitoring System for a Waste-Water Treatment Process

Author keywords

Adaptation of Fuzzy Model; eFuMo; Evolving Fuzzy Model; Evolving Mechanisms; Fault Detection; Soft sensor; Waste Water Treatment Plant; WWTP

Indexed keywords

EFFLUENT TREATMENT; EFFLUENTS; ENERGY CONSERVATION; QUALITY CONTROL; WASTE TREATMENT; WASTEWATER; WASTEWATER TREATMENT; WATER QUALITY; WATER TREATMENT; WATER TREATMENT PLANTS;

EID: 84975318439     PISSN: 10636706     EISSN: None     Source Type: Journal    
DOI: 10.1109/TFUZZ.2014.2379252     Document Type: Article
Times cited : (122)

References (65)
  • 1
    • 85000305072 scopus 로고    scopus 로고
    • Real-time fault detection and isolation in biological wastewater treatment plants
    • F. Baggiani and S. Marsili-Libelli, "Real-time fault detection and isolation in biological wastewater treatment plants," Water Sci. Technol., vol. 60, no. 11, pp. 2949-2961, 2009.
    • (2009) Water Sci. Technol. , vol.60 , Issue.11 , pp. 2949-2961
    • Baggiani, F.1    Marsili-Libelli, S.2
  • 3
    • 80052735926 scopus 로고    scopus 로고
    • The application ofmodel predictive control of ammonia nitrogen in an activated sludge process
    • D. Vrečko, N. Hvala, and M. Stražar, "The application ofmodel predictive control of ammonia nitrogen in an activated sludge process." Water Sci. Technol., vol. 64, no. 5, pp. 1115-1121, 2011.
    • (2011) Water Sci. Technol. , vol.64 , Issue.5 , pp. 1115-1121
    • Vrečko, D.1    Hvala, N.2    Stražar, M.3
  • 5
    • 0034992622 scopus 로고    scopus 로고
    • Nelinearni algoritem za estimacijo stanj in identifikacijo parametrov šaržnega biološkega procesa
    • G. Bavdazž, N. Hvala, J. Kocijan, and D. Juričič, "Nelinearni algoritem za estimacijo stanj in identifikacijo parametrov šaržnega biološkega procesa," Elektrotehniški vestnik, vol. 68, pp. 57-63, 2001.
    • (2001) Elektrotehniški Vestnik , vol.68 , pp. 57-63
    • Bavdazž, G.1    Hvala, N.2    Kocijan, J.3    Juričič, D.4
  • 6
    • 2342472166 scopus 로고    scopus 로고
    • Soft sensor and adaptive model-based dissolved oxygen control for biological wastewater treatment processes
    • C. K. Yoo and I.-B. Lee, "Soft sensor and adaptive model-based dissolved oxygen control for biological wastewater treatment processes," Environ. Eng. Sci., vol. 21, no. 3, pp. 331-340, 2004.
    • (2004) Environ. Eng. Sci. , vol.21 , Issue.3 , pp. 331-340
    • Yoo, C.K.1    Lee, I.-B.2
  • 7
    • 77958123498 scopus 로고    scopus 로고
    • Dissolved oxygen generic model control of wastewater treatment process based on immune optimization least squares support vectormachine
    • H. Ye, F. Luo, and Y. Xu, "Dissolved oxygen generic model control of wastewater treatment process based on immune optimization least squares support vectormachine," in Proc. 8th World Congr. Intell. Control Autom., 2010, pp. 5082-5086.
    • (2010) Proc. 8th World Congr. Intell. Control Autom. , pp. 5082-5086
    • Ye, H.1    Luo, F.2    Xu, Y.3
  • 8
    • 0024411523 scopus 로고
    • Simultaneous DO control and respiration estimation
    • U. Holmberg, G. Olsson, and B. Andersson, "Simultaneous DO control and respiration estimation," Water Sci. Technol., vol. 21, pp. 1185-1195, 1989.
    • (1989) Water Sci. Technol. , vol.21 , pp. 1185-1195
    • Holmberg, U.1    Olsson, G.2    Andersson, B.3
  • 10
    • 33745925556 scopus 로고    scopus 로고
    • Soft sensor using PNN model and rule base for wastewater treatment plant
    • (Lecture Notes in Computer Science Series). Berlin, Germany: Springer
    • Y. Kim, H. Bae, K. Poo, J. Kim, T. Moon, S. Kim, and C. Kim, "Soft sensor using PNN model and rule base for wastewater treatment plant," in Advances in Neural Networks (Lecture Notes in Computer Science Series). Berlin, Germany: Springer, 2006, vol. 3973, pp. 1261-1269.
    • (2006) Advances in Neural Networks , vol.3973 , pp. 1261-1269
    • Kim, Y.1    Bae, H.2    Poo, K.3    Kim, J.4    Moon, T.5    Kim, S.6    Kim, C.7
  • 11
    • 75149148129 scopus 로고    scopus 로고
    • Software sensors are a real alternative to true sensors
    • D. Cecil and M. Kozlowska, "Software sensors are a real alternative to true sensors," Environ. Modelling Softw., vol. 25, pp. 622-625, 2010.
    • (2010) Environ. Modelling Softw. , vol.25 , pp. 622-625
    • Cecil, D.1    Kozlowska, M.2
  • 12
    • 0034847598 scopus 로고    scopus 로고
    • A hybrid artificial neural network as a software sensor for optimal control of a wastewater treatment process
    • D.-J. Choi and H. Park, "A hybrid artificial neural network as a software sensor for optimal control of a wastewater treatment process," Water Res., vol. 35, no. 16, pp. 3959-3967, 2001.
    • (2001) Water Res. , vol.35 , Issue.16 , pp. 3959-3967
    • Choi, D.-J.1    Park, H.2
  • 13
    • 50449095583 scopus 로고    scopus 로고
    • Real-time remote monitoring of small-scaled biological wastewater treatment plants by a multivariate statistical process control and neural network-based software sensors
    • M. W. Lee, S. H. Hong, H. Choi, J.-H. Kim, D. S. Lee, and J. M. Park, "Real-time remote monitoring of small-scaled biological wastewater treatment plants by a multivariate statistical process control and neural network-based software sensors," Process Biochem., vol. 43, no. 10, pp. 1107-1113, 2008.
    • (2008) Process Biochem. , vol.43 , Issue.10 , pp. 1107-1113
    • Lee, M.W.1    Hong, S.H.2    Choi, H.3    Kim, J.-H.4    Lee, D.S.5    Park, J.M.6
  • 14
    • 0035988039 scopus 로고    scopus 로고
    • Software sensors for highly uncertain WWTPs: A new approach based on interval observers
    • V. Alcaraz-Gonzales, J. Harmand, A. Rapaport, and J. P. Steyer, "Software sensors for highly uncertain WWTPs: A new approach based on interval observers," Water Res., vol. 36, pp. 2515-2524, 2002.
    • (2002) Water Res. , vol.36 , pp. 2515-2524
    • Alcaraz-Gonzales, V.1    Harmand, J.2    Rapaport, A.3    Steyer, J.P.4
  • 15
    • 84882996883 scopus 로고    scopus 로고
    • Fault diagnosis based on PCA for sensors of laboratorial wastewater treatment process
    • E. P. Tao, W. H. Shen, T. L. Liu, and X. Q. Chen, "Fault diagnosis based on PCA for sensors of laboratorial wastewater treatment process," Chemometrics Intell. Lab. Syst., vol. 128, pp. 49-55, 2013.
    • (2013) Chemometrics Intell. Lab. Syst. , vol.128 , pp. 49-55
    • Tao, E.P.1    Shen, W.H.2    Liu, T.L.3    Chen, X.Q.4
  • 17
    • 84879310945 scopus 로고    scopus 로고
    • Data-derived soft-sensors for biological wastewater treatment plants: An overview
    • H. Haimi, M. Mulas, F. Corona, and R. Vahala, "Data-derived soft-sensors for biological wastewater treatment plants: An overview," Environ. Modelling Softw., vol. 47, pp. 88-107, 2013.
    • (2013) Environ. Modelling Softw. , vol.47 , pp. 88-107
    • Haimi, H.1    Mulas, M.2    Corona, F.3    Vahala, R.4
  • 20
    • 0027601884 scopus 로고
    • ANFIS: Adaptive-network-based fuzzy inference system
    • May/Jun.
    • J. Shing and R. Jang, "ANFIS: Adaptive-network-based fuzzy inference system," IEEE Trans. Syst. Man Cybern., vol. 23, no. 3, pp. 665-685, May/Jun. 1993.
    • (1993) IEEE Trans. Syst. Man Cybern. , vol.23 , Issue.3 , pp. 665-685
    • Shing, J.1    Jang, R.2
  • 21
    • 0142196084 scopus 로고    scopus 로고
    • Structure identification of generalized adaptive neuro-fuzzy inference systems
    • Oct.
    • M. F. Azeem, H. Hanmandlu, and N. Ahmad, "Structure identification of generalized adaptive neuro-fuzzy inference systems," IEEE Trans. Fuzzy Syst., vol. 11, no. 5, pp. 666-681, Oct. 2003.
    • (2003) IEEE Trans. Fuzzy Syst. , vol.11 , Issue.5 , pp. 666-681
    • Azeem, M.F.1    Hanmandlu, H.2    Ahmad, N.3
  • 22
    • 79952448247 scopus 로고    scopus 로고
    • Recursive fuzzy c-means clustering for recursive fuzzy identification of time-varying processes
    • D. Dovžan and I. Škrjanc, "Recursive fuzzy c-means clustering for recursive fuzzy identification of time-varying processes," ISA Trans., vol. 50, no. 2, pp. 159-169, 2011.
    • (2011) ISA Trans. , vol.50 , Issue.2 , pp. 159-169
    • Dovžan, D.1    Škrjanc, I.2
  • 23
    • 79952714043 scopus 로고    scopus 로고
    • Recursive clustering based on a Gustafson-Kessel algorithm
    • D. Dovžan and I. Škrjanc, "Recursive clustering based on a Gustafson-Kessel algorithm," Evolving Syst., vol. 2, no. 1, pp. 15-24, 2011.
    • (2011) Evolving Syst. , vol.2 , Issue.1 , pp. 15-24
    • Dovžan, D.1    Škrjanc, I.2
  • 24
    • 0001071040 scopus 로고
    • A resource allocating network for function interpolation
    • J. Platt, "A resource allocating network for function interpolation," Neural Comput., vol. 3, no. 2, pp. 213-225, 1991.
    • (1991) Neural Comput. , vol.3 , Issue.2 , pp. 213-225
    • Platt, J.1
  • 25
    • 0031999146 scopus 로고    scopus 로고
    • An on-line self-constructing neural fuzzy inference network and its applications
    • Feb.
    • C. F. Juang and C. T. Lin, "An on-line self-constructing neural fuzzy inference network and its applications," IEEE Trans. Fuzzy Syst., vol. 6, no. 1, pp. 12-32, Feb. 1998.
    • (1998) IEEE Trans. Fuzzy Syst. , vol.6 , Issue.1 , pp. 12-32
    • Juang, C.F.1    Lin, C.T.2
  • 26
    • 0035483867 scopus 로고    scopus 로고
    • Self-constructing fuzzy neural network speed controller for permanent-magnet synchronous motor drive
    • Oct.
    • F. J. Lin, C. H. Lin, and P.H. Shen, "Self-constructing fuzzy neural network speed controller for permanent-magnet synchronous motor drive," IEEE Trans. Fuzzy Syst., vol. 9, no. 5, pp. 751-759, Oct. 2001.
    • (2001) IEEE Trans. Fuzzy Syst. , vol.9 , Issue.5 , pp. 751-759
    • Lin, F.J.1    Lin, C.H.2    Shen, P.H.3
  • 27
    • 0035481231 scopus 로고    scopus 로고
    • NeuroFAST: On-line neurofuzzy ART-based structure and parameter learning TSK model
    • Oct.
    • S. G. Tzafestas and K. C. Zikidis, "NeuroFAST: On-line neurofuzzy ART-based structure and parameter learning TSK model," IEEE Trans. Syst., Man, Cybern. B, Cybern., vol. 31, no. 5, pp. 797-802, Oct. 2001.
    • (2001) IEEE Trans. Syst., Man, Cybern. B, Cybern. , vol.31 , Issue.5 , pp. 797-802
    • Tzafestas, S.G.1    Zikidis, K.C.2
  • 28
    • 0036530967 scopus 로고    scopus 로고
    • DENFIS: Dynamic evolving neural-fuzzy inference system and its application for time-series prediction
    • Apr.
    • N. K. Kasabov and Q. Song, "DENFIS: Dynamic evolving neural-fuzzy inference system and its application for time-series prediction," IEEE Trans. Fuzzy Syst., vol. 10, no. 2, pp. 144-154, Apr. 2002.
    • (2002) IEEE Trans. Fuzzy Syst. , vol.10 , Issue.2 , pp. 144-154
    • Kasabov, N.K.1    Song, Q.2
  • 29
    • 0742272554 scopus 로고    scopus 로고
    • An approach to on-line identification of Takagi-Sugeno fuzzy models
    • Feb.
    • P. P. Angelov and D. P. Filev, "An approach to on-line identification of Takagi-Sugeno fuzzy models," IEEE Trans. Syst., Man, Cybern. B, Cybern., vol. 34, no. 1, pp. 484-497, Feb. 2004.
    • (2004) IEEE Trans. Syst., Man, Cybern. B, Cybern. , vol.34 , Issue.1 , pp. 484-497
    • Angelov, P.P.1    Filev, D.P.2
  • 30
    • 23944485710 scopus 로고    scopus 로고
    • FLEXFIS: A variant for incremental learning of Takagi-Sugeno fuzzy systems
    • Reno, NV, USA, May 22-25
    • E. Lughofer and E. P. Klement, "FLEXFIS: A variant for incremental learning of Takagi-Sugeno fuzzy systems," in Proc. IEEE Int. Conf. Fuzzy Syst., Reno, NV, USA, May 22-25, 2005, pp. 915-920.
    • (2005) Proc. IEEE Int. Conf. Fuzzy Syst. , pp. 915-920
    • Lughofer, E.1    Klement, E.P.2
  • 32
    • 33645070541 scopus 로고    scopus 로고
    • Sequential adaptive fuzzy inference system (SAFIS) for nonlinear system identification and prediction
    • H. J. Rong, N. Sundararajan, G. B. Huang, and P. Saratchandran, "Sequential adaptive fuzzy inference system (SAFIS) for nonlinear system identification and prediction," Fuzzy Sets Syst., vol. 157, no. 9, pp. 1260-1275, 2006.
    • (2006) Fuzzy Sets Syst. , vol.157 , Issue.9 , pp. 1260-1275
    • Rong, H.J.1    Sundararajan, N.2    Huang, G.B.3    Saratchandran, P.4
  • 33
    • 8444234276 scopus 로고    scopus 로고
    • An on-line algorithm for creating self-organizing fuzzy neural networks
    • G. Leng, G. Prasad, and T. M. McGinnity, "An on-line algorithm for creating self-organizing fuzzy neural networks," Neural Netw., vol. 17, pp. 1477-1493, 2004.
    • (2004) Neural Netw. , vol.17 , pp. 1477-1493
    • Leng, G.1    Prasad, G.2    McGinnity, T.M.3
  • 34
    • 14544285327 scopus 로고    scopus 로고
    • Arecursive growing and pruning RBF (GAP-RBF) algorithm for function approximations
    • Montreal, QC, Canada, Jun.
    • G.-B. Huang, P. Saratchandran, and N. Sundararajan, "Arecursive growing and pruning RBF (GAP-RBF) algorithm for function approximations," in Proc. 4th Int. Conf. Control Autom., Montreal, QC, Canada, Jun. 2003, pp. 10-12.
    • (2003) Proc. 4th Int. Conf. Control Autom. , pp. 10-12
    • Huang, G.-B.1    Saratchandran, P.2    Sundararajan, N.3
  • 35
    • 0035670764 scopus 로고    scopus 로고
    • Evolving fuzzy neural networks for supervised/unsupervised on-line knowledge-based learning
    • Dec.
    • N. K. Kasabov, "Evolving fuzzy neural networks for supervised/unsupervised on-line knowledge-based learning," IEEE Trans. Syst., Man, Cybern. B, Cybern., vol. 31, no. 6, pp. 902-918, Dec. 2001.
    • (2001) IEEE Trans. Syst., Man, Cybern. B, Cybern. , vol.31 , Issue.6 , pp. 902-918
    • Kasabov, N.K.1
  • 36
    • 0001961635 scopus 로고    scopus 로고
    • Evolving fuzzy neural networks - Algorithms, applications and biological motivation
    • N. Kasabov, "Evolving fuzzy neural networks - Algorithms, applications and biological motivation," in Proc. Methodologies Conceptation, Des. Appl. Soft Comput., 1998, pp. 271-274.
    • (1998) Proc. Methodologies Conceptation, Des. Appl. Soft Comput. , pp. 271-274
    • Kasabov, N.1
  • 37
    • 0033692531 scopus 로고    scopus 로고
    • Dynamic fuzzy neural networks: A novel approach to function approximation
    • Apr.
    • S. Wu and M. J. Er, "Dynamic fuzzy neural networks: A novel approach to function approximation," IEEE Trans. Syst., Man, Cybern. B, Cybern., vol. 30, no. 2, pp. 358-364, Apr. 2000.
    • (2000) IEEE Trans. Syst., Man, Cybern. B, Cybern. , vol.30 , Issue.2 , pp. 358-364
    • Wu, S.1    Er, M.J.2
  • 38
    • 0035415951 scopus 로고    scopus 로고
    • A fast approach for automatic generation of fuzzy rules by generalized dynamic fuzzy neural networks
    • Aug.
    • S. Wu, M. J. Er, and Y. Gao, "A fast approach for automatic generation of fuzzy rules by generalized dynamic fuzzy neural networks," IEEE Trans. Fuzzy Syst., vol. 9, no. 4, pp. 578-594, Aug. 2001.
    • (2001) IEEE Trans. Fuzzy Syst. , vol.9 , Issue.4 , pp. 578-594
    • Wu, S.1    Er, M.J.2    Gao, Y.3
  • 39
    • 79952317714 scopus 로고    scopus 로고
    • Recursive Gath-Geva clustering as a basis for evolving neuro-fuzzy modeling
    • H. Soleimani-B, C. Lucas, and B. N. Araabi, "Recursive Gath-Geva clustering as a basis for evolving neuro-fuzzy modeling," Evolving Syst., vol. 1, no. 1, pp. 59-71, 2010.
    • (2010) Evolving Syst. , vol.1 , Issue.1 , pp. 59-71
    • Soleimani-B, H.1    Lucas, C.2    Araabi, B.N.3
  • 40
    • 84886838236 scopus 로고    scopus 로고
    • Evolving Takagi-Sugeno fuzzy systems from streaming data (eTS+)
    • Hoboken, NJ, USA: Wiley
    • P. Angelov, "Evolving Takagi-Sugeno fuzzy systems from streaming data (eTS+)," in Evolving Intelligent Systems: Methodology and Applications. Hoboken, NJ, USA: Wiley, 2010, pp. 21-50.
    • (2010) Evolving Intelligent Systems: Methodology and Applications , pp. 21-50
    • Angelov, P.1
  • 41
    • 84876116243 scopus 로고    scopus 로고
    • Flexible evolving fuzzy inference systems from data streams (FLEXFIS++)
    • New York, NY, USA: Springer
    • E. Lughofer, "Flexible evolving fuzzy inference systems from data streams (FLEXFIS++)," in Learning in Non-Stationary Environments: Methods and Applications. New York, NY, USA: Springer, pp. 205-245.
    • Learning in Non-Stationary Environments: Methods and Applications , pp. 205-245
    • Lughofer, E.1
  • 42
    • 79952309310 scopus 로고    scopus 로고
    • An online predictormodel as adaptive habitually linear and transiently nonlinear model
    • A. Kalhor, B. Araabi, and C. Lucas, "An online predictormodel as adaptive habitually linear and transiently nonlinear model," Evolving Syst., vol. 1, no. 1, pp. 29-41, 2010.
    • (2010) Evolving Syst. , vol.1 , Issue.1 , pp. 29-41
    • Kalhor, A.1    Araabi, B.2    Lucas, C.3
  • 43
    • 72649095852 scopus 로고    scopus 로고
    • SOFMLS: Online self-organizing fuzzy modified least-squares network
    • Dec.
    • J. Rubio, "SOFMLS: Online self-organizing fuzzy modified least-squares network," IEEE Trans. Fuzzy Syst., vol. 17, no. 6, pp. 1296-1309, Dec. 2009.
    • (2009) IEEE Trans. Fuzzy Syst. , vol.17 , Issue.6 , pp. 1296-1309
    • Rubio, J.1
  • 44
    • 84883213469 scopus 로고    scopus 로고
    • On-line assurance of interpretability criteria in evolving fuzzy systems - Achievements, new concepts and open issues
    • E. Lughofer, "On-line assurance of interpretability criteria in evolving fuzzy systems - achievements, new concepts and open issues," Inf. Sci., vol. 251, pp. 22-46, 2013.
    • (2013) Inf. Sci. , vol.251 , pp. 22-46
    • Lughofer, E.1
  • 47
    • 36749028187 scopus 로고    scopus 로고
    • Fuzzy neural-based control for nonlinear time-varying delay systems
    • Dec.
    • C. L. Hwang and L. J. Chang, "Fuzzy neural-based control for nonlinear time-varying delay systems," IEEE Trans. Syst. Man Cybern. B, Cybern., vol. 37, no. 6, pp. 1471-1485, Dec. 2007.
    • (2007) IEEE Trans. Syst. Man Cybern. B, Cybern. , vol.37 , Issue.6 , pp. 1471-1485
    • Hwang, C.L.1    Chang, L.J.2
  • 48
    • 84866847474 scopus 로고    scopus 로고
    • Solving the sales prediction problem with fuzzy evolving methods
    • Brisbane, Australia, Jun.
    • D. Dovžan, V. Logar, and I. Škrjanc, "Solving the sales prediction problem with fuzzy evolving methods," in Proc. IEEE Congr. Evolutionary Comput., Brisbane, Australia, Jun. 2012, pp. 1-8.
    • (2012) Proc. IEEE Congr. Evolutionary Comput. , pp. 1-8
    • Dovžan, D.1    Logar, V.2    Škrjanc, I.3
  • 49
    • 84902179039 scopus 로고    scopus 로고
    • Local linear model tree for on-line identification of time invariant nonlinear dynamic systems
    • Bochum, Germany
    • O. Nelles, "Local linear model tree for on-line identification of time invariant nonlinear dynamic systems," in Proc. Int. Conf. Artif. Neural Netw., Bochum, Germany, 1996, pp. 115-120.
    • (1996) Proc. Int. Conf. Artif. Neural Netw. , pp. 115-120
    • Nelles, O.1
  • 50
    • 79951897393 scopus 로고    scopus 로고
    • Stability analysis for an online evolving neuro-fuzzy recurrent network
    • Hoboken, NJ, USA: Wiley
    • J. de Jesús Rubio, "Stability analysis for an online evolving neuro-fuzzy recurrent network," in Evolving Intelligent Systems Methodology and Applications. Hoboken, NJ, USA: Wiley, 2010, pp. 173-199.
    • (2010) Evolving Intelligent Systems Methodology and Applications , pp. 173-199
    • De-Jesús-Rubio, J.1
  • 51
    • 79952317715 scopus 로고    scopus 로고
    • A semi-supervised dynamic version of fuzzy k-nearest neighbours tomonitor evolving systems
    • L. Hartert, M. S. Mouchaweh, and P. Billaudel, "A semi-supervised dynamic version of fuzzy k-nearest neighbours tomonitor evolving systems," Evolving Syst., vol. 1, pp. 3-15, 2010.
    • (2010) Evolving Syst. , vol.1 , pp. 3-15
    • Hartert, L.1    Mouchaweh, M.S.2    Billaudel, P.3
  • 54
    • 84858831300 scopus 로고    scopus 로고
    • Recursive fuzzy model identification
    • Sharm El Sheikh, Egypt, Mar. 15-17
    • D. Dovžan and I. Škrjanc, "Recursive fuzzy model identification," in Proc. Advances Comput. Sci. Eng., Sharm El Sheikh, Egypt, Mar. 15-17, 2010, pp. 1-6.
    • (2010) Proc. Advances Comput. Sci. Eng. , pp. 1-6
    • Dovžan, D.1    Škrjanc, I.2
  • 55
    • 78751630981 scopus 로고    scopus 로고
    • Handling drifts and shifts in on-line data streams with evolving fuzzy systems
    • E. Lughofer and P. Angelov, "Handling drifts and shifts in on-line data streams with evolving fuzzy systems," Appl. Soft Comput., vol. 11, no. 2, pp. 2057-2068, 2011.
    • (2011) Appl. Soft Comput. , vol.11 , Issue.2 , pp. 2057-2068
    • Lughofer, E.1    Angelov, P.2
  • 57
    • 83855161643 scopus 로고    scopus 로고
    • SaFIN: A self-adaptive fuzzy inference network
    • Dec.
    • S. W. Tung, C. Quek, and C. Guan, "SaFIN: A self-adaptive fuzzy inference network," IEEE Trans. Neural Netw., vol. 22, no. 12, pp. 1928-1940, Dec. 2011.
    • (2011) IEEE Trans. Neural Netw. , vol.22 , Issue.12 , pp. 1928-1940
    • Tung, S.W.1    Quek, C.2    Guan, C.3
  • 59
    • 0001553560 scopus 로고
    • A function estimation approach to sequential learning with neural networks
    • V. Kadirkamanathan and M. Niranjan, "A function estimation approach to sequential learning with neural networks," Neural Comput., vol. 5, no. 6, pp. 954-975, 1993.
    • (1993) Neural Comput. , vol.5 , Issue.6 , pp. 954-975
    • Kadirkamanathan, V.1    Niranjan, M.2
  • 60
    • 0031568361 scopus 로고    scopus 로고
    • A sequential learning scheme for function approximation using minimal radial basis function (RBF) neural networks
    • L. Yingwei, N. Sundararajan, and P. Saratchandran, "A sequential learning scheme for function approximation using minimal radial basis function (RBF) neural networks," Neural Comput., vol. 9, pp. 461-478, 1997.
    • (1997) Neural Comput. , vol.9 , pp. 461-478
    • Yingwei, L.1    Sundararajan, N.2    Saratchandran, P.3
  • 61
    • 23944495345 scopus 로고    scopus 로고
    • Simpl-eTS: A simplified method for learning evolving Takagi-Sugeno fuzzy models
    • Reno, NV, USA, May 22-25
    • P. Angelov and D. Filev, "Simpl-eTS: A simplified method for learning evolving Takagi-Sugeno fuzzy models," in Proc. IEEE Int. Conf. Fuzzy Syst., Reno, NV, USA, May 22-25, 2005, pp. 1068-1073.
    • (2005) Proc. IEEE Int. Conf. Fuzzy Syst. , pp. 1068-1073
    • Angelov, P.1    Filev, D.2
  • 62
    • 84856325149 scopus 로고    scopus 로고
    • A new type of simplified fuzzy rule-based system
    • P. Angelov and R. Yager, "A new type of simplified fuzzy rule-based system," Int. J. General Syst., vol. 41, no. 2, pp. 163-185, 2011.
    • (2011) Int. J. General Syst. , vol.41 , Issue.2 , pp. 163-185
    • Angelov, P.1    Yager, R.2
  • 63
    • 10944272650 scopus 로고    scopus 로고
    • Extreme learning machine: A new learning scheme of feedforward neural networks
    • G. Huang, Q. Zhu, and C. Siew, "Extreme learning machine: A new learning scheme of feedforward neural networks," in Proc. IEEE Int. Joint Conf. Neural Netw., 2004, pp. 985-990.
    • (2004) Proc. IEEE Int. Joint Conf. Neural Netw. , pp. 985-990
    • Huang, G.1    Zhu, Q.2    Siew, C.3
  • 64
    • 84899435813 scopus 로고    scopus 로고
    • Evolving hybrid neural fuzzy network for system modeling and time series forecasting
    • Miami, FL, USA, Dec. 4-7
    • R. Rosa, R. Ballini, and F. Gomide, "Evolving hybrid neural fuzzy network for system modeling and time series forecasting," in Proc. IEEE Int. Conf. Mach. Learning Appl., Miami, FL, USA, Dec. 4-7, 2013, pp. 378-383.
    • (2013) Proc. IEEE Int. Conf. Mach. Learning Appl. , pp. 378-383
    • Rosa, R.1    Ballini, R.2    Gomide, F.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.