-
1
-
-
85000305072
-
Real-time fault detection and isolation in biological wastewater treatment plants
-
F. Baggiani and S. Marsili-Libelli, "Real-time fault detection and isolation in biological wastewater treatment plants," Water Sci. Technol., vol. 60, no. 11, pp. 2949-2961, 2009.
-
(2009)
Water Sci. Technol.
, vol.60
, Issue.11
, pp. 2949-2961
-
-
Baggiani, F.1
Marsili-Libelli, S.2
-
3
-
-
80052735926
-
The application ofmodel predictive control of ammonia nitrogen in an activated sludge process
-
D. Vrečko, N. Hvala, and M. Stražar, "The application ofmodel predictive control of ammonia nitrogen in an activated sludge process." Water Sci. Technol., vol. 64, no. 5, pp. 1115-1121, 2011.
-
(2011)
Water Sci. Technol.
, vol.64
, Issue.5
, pp. 1115-1121
-
-
Vrečko, D.1
Hvala, N.2
Stražar, M.3
-
4
-
-
84975253703
-
5 soft sensor design using local learning
-
Taiyuan, China, Oct. 22-24
-
5 soft sensor design using local learning," in Proc. Int. Conf. Comput. Appl. Syst. Modeling, Taiyuan, China, Oct. 22-24, 2010, vol. 3, pp. 584-589.
-
(2010)
Proc. Int. Conf. Comput. Appl. Syst. Modeling
, vol.3
, pp. 584-589
-
-
Graziani, S.1
Pitrone, N.2
Xibilia, M.3
Barbalace, N.4
-
5
-
-
0034992622
-
Nelinearni algoritem za estimacijo stanj in identifikacijo parametrov šaržnega biološkega procesa
-
G. Bavdazž, N. Hvala, J. Kocijan, and D. Juričič, "Nelinearni algoritem za estimacijo stanj in identifikacijo parametrov šaržnega biološkega procesa," Elektrotehniški vestnik, vol. 68, pp. 57-63, 2001.
-
(2001)
Elektrotehniški Vestnik
, vol.68
, pp. 57-63
-
-
Bavdazž, G.1
Hvala, N.2
Kocijan, J.3
Juričič, D.4
-
6
-
-
2342472166
-
Soft sensor and adaptive model-based dissolved oxygen control for biological wastewater treatment processes
-
C. K. Yoo and I.-B. Lee, "Soft sensor and adaptive model-based dissolved oxygen control for biological wastewater treatment processes," Environ. Eng. Sci., vol. 21, no. 3, pp. 331-340, 2004.
-
(2004)
Environ. Eng. Sci.
, vol.21
, Issue.3
, pp. 331-340
-
-
Yoo, C.K.1
Lee, I.-B.2
-
7
-
-
77958123498
-
Dissolved oxygen generic model control of wastewater treatment process based on immune optimization least squares support vectormachine
-
H. Ye, F. Luo, and Y. Xu, "Dissolved oxygen generic model control of wastewater treatment process based on immune optimization least squares support vectormachine," in Proc. 8th World Congr. Intell. Control Autom., 2010, pp. 5082-5086.
-
(2010)
Proc. 8th World Congr. Intell. Control Autom.
, pp. 5082-5086
-
-
Ye, H.1
Luo, F.2
Xu, Y.3
-
8
-
-
0024411523
-
Simultaneous DO control and respiration estimation
-
U. Holmberg, G. Olsson, and B. Andersson, "Simultaneous DO control and respiration estimation," Water Sci. Technol., vol. 21, pp. 1185-1195, 1989.
-
(1989)
Water Sci. Technol.
, vol.21
, pp. 1185-1195
-
-
Holmberg, U.1
Olsson, G.2
Andersson, B.3
-
9
-
-
0003711179
-
-
Ph.D. dissertation, Dept. Mater. Sci. Syst. Control Group, Uppsala Univ., Stockholm, Sweden
-
C. F. Lindberg, "Control and estimation strategies applied to the activated sludge process," Ph.D. dissertation, Dept. Mater. Sci. Syst. Control Group, Uppsala Univ., Stockholm, Sweden, 1997.
-
(1997)
Control and Estimation Strategies Applied to the Activated Sludge Process
-
-
Lindberg, C.F.1
-
10
-
-
33745925556
-
Soft sensor using PNN model and rule base for wastewater treatment plant
-
(Lecture Notes in Computer Science Series). Berlin, Germany: Springer
-
Y. Kim, H. Bae, K. Poo, J. Kim, T. Moon, S. Kim, and C. Kim, "Soft sensor using PNN model and rule base for wastewater treatment plant," in Advances in Neural Networks (Lecture Notes in Computer Science Series). Berlin, Germany: Springer, 2006, vol. 3973, pp. 1261-1269.
-
(2006)
Advances in Neural Networks
, vol.3973
, pp. 1261-1269
-
-
Kim, Y.1
Bae, H.2
Poo, K.3
Kim, J.4
Moon, T.5
Kim, S.6
Kim, C.7
-
11
-
-
75149148129
-
Software sensors are a real alternative to true sensors
-
D. Cecil and M. Kozlowska, "Software sensors are a real alternative to true sensors," Environ. Modelling Softw., vol. 25, pp. 622-625, 2010.
-
(2010)
Environ. Modelling Softw.
, vol.25
, pp. 622-625
-
-
Cecil, D.1
Kozlowska, M.2
-
12
-
-
0034847598
-
A hybrid artificial neural network as a software sensor for optimal control of a wastewater treatment process
-
D.-J. Choi and H. Park, "A hybrid artificial neural network as a software sensor for optimal control of a wastewater treatment process," Water Res., vol. 35, no. 16, pp. 3959-3967, 2001.
-
(2001)
Water Res.
, vol.35
, Issue.16
, pp. 3959-3967
-
-
Choi, D.-J.1
Park, H.2
-
13
-
-
50449095583
-
Real-time remote monitoring of small-scaled biological wastewater treatment plants by a multivariate statistical process control and neural network-based software sensors
-
M. W. Lee, S. H. Hong, H. Choi, J.-H. Kim, D. S. Lee, and J. M. Park, "Real-time remote monitoring of small-scaled biological wastewater treatment plants by a multivariate statistical process control and neural network-based software sensors," Process Biochem., vol. 43, no. 10, pp. 1107-1113, 2008.
-
(2008)
Process Biochem.
, vol.43
, Issue.10
, pp. 1107-1113
-
-
Lee, M.W.1
Hong, S.H.2
Choi, H.3
Kim, J.-H.4
Lee, D.S.5
Park, J.M.6
-
14
-
-
0035988039
-
Software sensors for highly uncertain WWTPs: A new approach based on interval observers
-
V. Alcaraz-Gonzales, J. Harmand, A. Rapaport, and J. P. Steyer, "Software sensors for highly uncertain WWTPs: A new approach based on interval observers," Water Res., vol. 36, pp. 2515-2524, 2002.
-
(2002)
Water Res.
, vol.36
, pp. 2515-2524
-
-
Alcaraz-Gonzales, V.1
Harmand, J.2
Rapaport, A.3
Steyer, J.P.4
-
15
-
-
84882996883
-
Fault diagnosis based on PCA for sensors of laboratorial wastewater treatment process
-
E. P. Tao, W. H. Shen, T. L. Liu, and X. Q. Chen, "Fault diagnosis based on PCA for sensors of laboratorial wastewater treatment process," Chemometrics Intell. Lab. Syst., vol. 128, pp. 49-55, 2013.
-
(2013)
Chemometrics Intell. Lab. Syst.
, vol.128
, pp. 49-55
-
-
Tao, E.P.1
Shen, W.H.2
Liu, T.L.3
Chen, X.Q.4
-
16
-
-
84866905182
-
Fault detection in a wastewater treatment plant based on neural networks and PCA
-
Jul.
-
M. J. Fuente, D. Garcia-Alvarez, G. I. Sainz-Palmero, and P. Vega, "Fault detection in a wastewater treatment plant based on neural networks and PCA," in Proc. 20th Mediterranean Conf. Control Autom., Jul. 2012, pp. 758-763.
-
(2012)
Proc. 20th Mediterranean Conf. Control Autom.
, pp. 758-763
-
-
Fuente, M.J.1
Garcia-Alvarez, D.2
Sainz-Palmero, G.I.3
Vega, P.4
-
17
-
-
84879310945
-
Data-derived soft-sensors for biological wastewater treatment plants: An overview
-
H. Haimi, M. Mulas, F. Corona, and R. Vahala, "Data-derived soft-sensors for biological wastewater treatment plants: An overview," Environ. Modelling Softw., vol. 47, pp. 88-107, 2013.
-
(2013)
Environ. Modelling Softw.
, vol.47
, pp. 88-107
-
-
Haimi, H.1
Mulas, M.2
Corona, F.3
Vahala, R.4
-
18
-
-
84892789030
-
-
(Advances in Industrial Control Series), 2nd ed. Berlin, Germany: Springer
-
S. X. Ding, Model-based Fault Diagnosis Techniques: Design Schemes, Algorithms, and Tools (Advances in Industrial Control Series), 2nd ed. Berlin, Germany: Springer, 2013.
-
(2013)
Model-based Fault Diagnosis Techniques: Design Schemes, Algorithms, and Tools
-
-
Ding, S.X.1
-
19
-
-
85003107581
-
-
Berlin, Germany: Springer Verlag
-
J. Korbicz, J. M. Koscielny, Z. Kowalczuk, and W. Cholewa, Fault Diagnosis-Models, Artificial Intelligence and Applications. Berlin, Germany: Springer Verlag, 2004.
-
(2004)
Fault Diagnosis-Models, Artificial Intelligence and Applications
-
-
Korbicz, J.1
Koscielny, J.M.2
Kowalczuk, Z.3
Cholewa, W.4
-
20
-
-
0027601884
-
ANFIS: Adaptive-network-based fuzzy inference system
-
May/Jun.
-
J. Shing and R. Jang, "ANFIS: Adaptive-network-based fuzzy inference system," IEEE Trans. Syst. Man Cybern., vol. 23, no. 3, pp. 665-685, May/Jun. 1993.
-
(1993)
IEEE Trans. Syst. Man Cybern.
, vol.23
, Issue.3
, pp. 665-685
-
-
Shing, J.1
Jang, R.2
-
21
-
-
0142196084
-
Structure identification of generalized adaptive neuro-fuzzy inference systems
-
Oct.
-
M. F. Azeem, H. Hanmandlu, and N. Ahmad, "Structure identification of generalized adaptive neuro-fuzzy inference systems," IEEE Trans. Fuzzy Syst., vol. 11, no. 5, pp. 666-681, Oct. 2003.
-
(2003)
IEEE Trans. Fuzzy Syst.
, vol.11
, Issue.5
, pp. 666-681
-
-
Azeem, M.F.1
Hanmandlu, H.2
Ahmad, N.3
-
22
-
-
79952448247
-
Recursive fuzzy c-means clustering for recursive fuzzy identification of time-varying processes
-
D. Dovžan and I. Škrjanc, "Recursive fuzzy c-means clustering for recursive fuzzy identification of time-varying processes," ISA Trans., vol. 50, no. 2, pp. 159-169, 2011.
-
(2011)
ISA Trans.
, vol.50
, Issue.2
, pp. 159-169
-
-
Dovžan, D.1
Škrjanc, I.2
-
23
-
-
79952714043
-
Recursive clustering based on a Gustafson-Kessel algorithm
-
D. Dovžan and I. Škrjanc, "Recursive clustering based on a Gustafson-Kessel algorithm," Evolving Syst., vol. 2, no. 1, pp. 15-24, 2011.
-
(2011)
Evolving Syst.
, vol.2
, Issue.1
, pp. 15-24
-
-
Dovžan, D.1
Škrjanc, I.2
-
24
-
-
0001071040
-
A resource allocating network for function interpolation
-
J. Platt, "A resource allocating network for function interpolation," Neural Comput., vol. 3, no. 2, pp. 213-225, 1991.
-
(1991)
Neural Comput.
, vol.3
, Issue.2
, pp. 213-225
-
-
Platt, J.1
-
25
-
-
0031999146
-
An on-line self-constructing neural fuzzy inference network and its applications
-
Feb.
-
C. F. Juang and C. T. Lin, "An on-line self-constructing neural fuzzy inference network and its applications," IEEE Trans. Fuzzy Syst., vol. 6, no. 1, pp. 12-32, Feb. 1998.
-
(1998)
IEEE Trans. Fuzzy Syst.
, vol.6
, Issue.1
, pp. 12-32
-
-
Juang, C.F.1
Lin, C.T.2
-
26
-
-
0035483867
-
Self-constructing fuzzy neural network speed controller for permanent-magnet synchronous motor drive
-
Oct.
-
F. J. Lin, C. H. Lin, and P.H. Shen, "Self-constructing fuzzy neural network speed controller for permanent-magnet synchronous motor drive," IEEE Trans. Fuzzy Syst., vol. 9, no. 5, pp. 751-759, Oct. 2001.
-
(2001)
IEEE Trans. Fuzzy Syst.
, vol.9
, Issue.5
, pp. 751-759
-
-
Lin, F.J.1
Lin, C.H.2
Shen, P.H.3
-
27
-
-
0035481231
-
NeuroFAST: On-line neurofuzzy ART-based structure and parameter learning TSK model
-
Oct.
-
S. G. Tzafestas and K. C. Zikidis, "NeuroFAST: On-line neurofuzzy ART-based structure and parameter learning TSK model," IEEE Trans. Syst., Man, Cybern. B, Cybern., vol. 31, no. 5, pp. 797-802, Oct. 2001.
-
(2001)
IEEE Trans. Syst., Man, Cybern. B, Cybern.
, vol.31
, Issue.5
, pp. 797-802
-
-
Tzafestas, S.G.1
Zikidis, K.C.2
-
28
-
-
0036530967
-
DENFIS: Dynamic evolving neural-fuzzy inference system and its application for time-series prediction
-
Apr.
-
N. K. Kasabov and Q. Song, "DENFIS: Dynamic evolving neural-fuzzy inference system and its application for time-series prediction," IEEE Trans. Fuzzy Syst., vol. 10, no. 2, pp. 144-154, Apr. 2002.
-
(2002)
IEEE Trans. Fuzzy Syst.
, vol.10
, Issue.2
, pp. 144-154
-
-
Kasabov, N.K.1
Song, Q.2
-
29
-
-
0742272554
-
An approach to on-line identification of Takagi-Sugeno fuzzy models
-
Feb.
-
P. P. Angelov and D. P. Filev, "An approach to on-line identification of Takagi-Sugeno fuzzy models," IEEE Trans. Syst., Man, Cybern. B, Cybern., vol. 34, no. 1, pp. 484-497, Feb. 2004.
-
(2004)
IEEE Trans. Syst., Man, Cybern. B, Cybern.
, vol.34
, Issue.1
, pp. 484-497
-
-
Angelov, P.P.1
Filev, D.P.2
-
30
-
-
23944485710
-
FLEXFIS: A variant for incremental learning of Takagi-Sugeno fuzzy systems
-
Reno, NV, USA, May 22-25
-
E. Lughofer and E. P. Klement, "FLEXFIS: A variant for incremental learning of Takagi-Sugeno fuzzy systems," in Proc. IEEE Int. Conf. Fuzzy Syst., Reno, NV, USA, May 22-25, 2005, pp. 915-920.
-
(2005)
Proc. IEEE Int. Conf. Fuzzy Syst.
, pp. 915-920
-
-
Lughofer, E.1
Klement, E.P.2
-
31
-
-
84891162354
-
PANFIS: A novel incremental learning machine
-
Jan.
-
M. Pratama, S. G. Anavatti, P. Angelov, and E. Lughofer, "PANFIS: A novel incremental learning machine," IEEE Trans. Neural Netw. Learning Syst., vol. 25, no. 1, pp. 55-68, Jan. 2014.
-
(2014)
IEEE Trans. Neural Netw. Learning Syst.
, vol.25
, Issue.1
, pp. 55-68
-
-
Pratama, M.1
Anavatti, S.G.2
Angelov, P.3
Lughofer, E.4
-
32
-
-
33645070541
-
Sequential adaptive fuzzy inference system (SAFIS) for nonlinear system identification and prediction
-
H. J. Rong, N. Sundararajan, G. B. Huang, and P. Saratchandran, "Sequential adaptive fuzzy inference system (SAFIS) for nonlinear system identification and prediction," Fuzzy Sets Syst., vol. 157, no. 9, pp. 1260-1275, 2006.
-
(2006)
Fuzzy Sets Syst.
, vol.157
, Issue.9
, pp. 1260-1275
-
-
Rong, H.J.1
Sundararajan, N.2
Huang, G.B.3
Saratchandran, P.4
-
33
-
-
8444234276
-
An on-line algorithm for creating self-organizing fuzzy neural networks
-
G. Leng, G. Prasad, and T. M. McGinnity, "An on-line algorithm for creating self-organizing fuzzy neural networks," Neural Netw., vol. 17, pp. 1477-1493, 2004.
-
(2004)
Neural Netw.
, vol.17
, pp. 1477-1493
-
-
Leng, G.1
Prasad, G.2
McGinnity, T.M.3
-
34
-
-
14544285327
-
Arecursive growing and pruning RBF (GAP-RBF) algorithm for function approximations
-
Montreal, QC, Canada, Jun.
-
G.-B. Huang, P. Saratchandran, and N. Sundararajan, "Arecursive growing and pruning RBF (GAP-RBF) algorithm for function approximations," in Proc. 4th Int. Conf. Control Autom., Montreal, QC, Canada, Jun. 2003, pp. 10-12.
-
(2003)
Proc. 4th Int. Conf. Control Autom.
, pp. 10-12
-
-
Huang, G.-B.1
Saratchandran, P.2
Sundararajan, N.3
-
35
-
-
0035670764
-
Evolving fuzzy neural networks for supervised/unsupervised on-line knowledge-based learning
-
Dec.
-
N. K. Kasabov, "Evolving fuzzy neural networks for supervised/unsupervised on-line knowledge-based learning," IEEE Trans. Syst., Man, Cybern. B, Cybern., vol. 31, no. 6, pp. 902-918, Dec. 2001.
-
(2001)
IEEE Trans. Syst., Man, Cybern. B, Cybern.
, vol.31
, Issue.6
, pp. 902-918
-
-
Kasabov, N.K.1
-
36
-
-
0001961635
-
Evolving fuzzy neural networks - Algorithms, applications and biological motivation
-
N. Kasabov, "Evolving fuzzy neural networks - Algorithms, applications and biological motivation," in Proc. Methodologies Conceptation, Des. Appl. Soft Comput., 1998, pp. 271-274.
-
(1998)
Proc. Methodologies Conceptation, Des. Appl. Soft Comput.
, pp. 271-274
-
-
Kasabov, N.1
-
37
-
-
0033692531
-
Dynamic fuzzy neural networks: A novel approach to function approximation
-
Apr.
-
S. Wu and M. J. Er, "Dynamic fuzzy neural networks: A novel approach to function approximation," IEEE Trans. Syst., Man, Cybern. B, Cybern., vol. 30, no. 2, pp. 358-364, Apr. 2000.
-
(2000)
IEEE Trans. Syst., Man, Cybern. B, Cybern.
, vol.30
, Issue.2
, pp. 358-364
-
-
Wu, S.1
Er, M.J.2
-
38
-
-
0035415951
-
A fast approach for automatic generation of fuzzy rules by generalized dynamic fuzzy neural networks
-
Aug.
-
S. Wu, M. J. Er, and Y. Gao, "A fast approach for automatic generation of fuzzy rules by generalized dynamic fuzzy neural networks," IEEE Trans. Fuzzy Syst., vol. 9, no. 4, pp. 578-594, Aug. 2001.
-
(2001)
IEEE Trans. Fuzzy Syst.
, vol.9
, Issue.4
, pp. 578-594
-
-
Wu, S.1
Er, M.J.2
Gao, Y.3
-
39
-
-
79952317714
-
Recursive Gath-Geva clustering as a basis for evolving neuro-fuzzy modeling
-
H. Soleimani-B, C. Lucas, and B. N. Araabi, "Recursive Gath-Geva clustering as a basis for evolving neuro-fuzzy modeling," Evolving Syst., vol. 1, no. 1, pp. 59-71, 2010.
-
(2010)
Evolving Syst.
, vol.1
, Issue.1
, pp. 59-71
-
-
Soleimani-B, H.1
Lucas, C.2
Araabi, B.N.3
-
40
-
-
84886838236
-
Evolving Takagi-Sugeno fuzzy systems from streaming data (eTS+)
-
Hoboken, NJ, USA: Wiley
-
P. Angelov, "Evolving Takagi-Sugeno fuzzy systems from streaming data (eTS+)," in Evolving Intelligent Systems: Methodology and Applications. Hoboken, NJ, USA: Wiley, 2010, pp. 21-50.
-
(2010)
Evolving Intelligent Systems: Methodology and Applications
, pp. 21-50
-
-
Angelov, P.1
-
41
-
-
84876116243
-
Flexible evolving fuzzy inference systems from data streams (FLEXFIS++)
-
New York, NY, USA: Springer
-
E. Lughofer, "Flexible evolving fuzzy inference systems from data streams (FLEXFIS++)," in Learning in Non-Stationary Environments: Methods and Applications. New York, NY, USA: Springer, pp. 205-245.
-
Learning in Non-Stationary Environments: Methods and Applications
, pp. 205-245
-
-
Lughofer, E.1
-
42
-
-
79952309310
-
An online predictormodel as adaptive habitually linear and transiently nonlinear model
-
A. Kalhor, B. Araabi, and C. Lucas, "An online predictormodel as adaptive habitually linear and transiently nonlinear model," Evolving Syst., vol. 1, no. 1, pp. 29-41, 2010.
-
(2010)
Evolving Syst.
, vol.1
, Issue.1
, pp. 29-41
-
-
Kalhor, A.1
Araabi, B.2
Lucas, C.3
-
43
-
-
72649095852
-
SOFMLS: Online self-organizing fuzzy modified least-squares network
-
Dec.
-
J. Rubio, "SOFMLS: Online self-organizing fuzzy modified least-squares network," IEEE Trans. Fuzzy Syst., vol. 17, no. 6, pp. 1296-1309, Dec. 2009.
-
(2009)
IEEE Trans. Fuzzy Syst.
, vol.17
, Issue.6
, pp. 1296-1309
-
-
Rubio, J.1
-
44
-
-
84883213469
-
On-line assurance of interpretability criteria in evolving fuzzy systems - Achievements, new concepts and open issues
-
E. Lughofer, "On-line assurance of interpretability criteria in evolving fuzzy systems - achievements, new concepts and open issues," Inf. Sci., vol. 251, pp. 22-46, 2013.
-
(2013)
Inf. Sci.
, vol.251
, pp. 22-46
-
-
Lughofer, E.1
-
45
-
-
79951876693
-
-
(Studies in Fuzziness and Soft Computing series), New York, NY, USA: Springer
-
E. Lughofer, Evolving Fuzzy Systems-Methodologies, Advanced Concepts and Applications (Studies in Fuzziness and Soft Computing series), vol. 266. New York, NY, USA: Springer, 2011.
-
(2011)
Evolving Fuzzy Systems-Methodologies, Advanced Concepts and Applications
, vol.266
-
-
Lughofer, E.1
-
46
-
-
0036204222
-
A hybrid supervisory system to support WWTP operation: Implementation and validation
-
I. Rodrigez-Roda, M. Sanchez-Marre, J. Comas, J. Baeza, J. Colprim, J. Lafuente, U. Cortes, and M. Poch, "A hybrid supervisory system to support WWTP operation: Implementation and validation," Water Sci. Technol., vol. 45, nos. 4/5, pp. 289-297, 2002.
-
(2002)
Water Sci. Technol.
, vol.45
, Issue.4-5
, pp. 289-297
-
-
Rodrigez-Roda, I.1
Sanchez-Marre, M.2
Comas, J.3
Baeza, J.4
Colprim, J.5
Lafuente, J.6
Cortes, U.7
Poch, M.8
-
47
-
-
36749028187
-
Fuzzy neural-based control for nonlinear time-varying delay systems
-
Dec.
-
C. L. Hwang and L. J. Chang, "Fuzzy neural-based control for nonlinear time-varying delay systems," IEEE Trans. Syst. Man Cybern. B, Cybern., vol. 37, no. 6, pp. 1471-1485, Dec. 2007.
-
(2007)
IEEE Trans. Syst. Man Cybern. B, Cybern.
, vol.37
, Issue.6
, pp. 1471-1485
-
-
Hwang, C.L.1
Chang, L.J.2
-
48
-
-
84866847474
-
Solving the sales prediction problem with fuzzy evolving methods
-
Brisbane, Australia, Jun.
-
D. Dovžan, V. Logar, and I. Škrjanc, "Solving the sales prediction problem with fuzzy evolving methods," in Proc. IEEE Congr. Evolutionary Comput., Brisbane, Australia, Jun. 2012, pp. 1-8.
-
(2012)
Proc. IEEE Congr. Evolutionary Comput.
, pp. 1-8
-
-
Dovžan, D.1
Logar, V.2
Škrjanc, I.3
-
49
-
-
84902179039
-
Local linear model tree for on-line identification of time invariant nonlinear dynamic systems
-
Bochum, Germany
-
O. Nelles, "Local linear model tree for on-line identification of time invariant nonlinear dynamic systems," in Proc. Int. Conf. Artif. Neural Netw., Bochum, Germany, 1996, pp. 115-120.
-
(1996)
Proc. Int. Conf. Artif. Neural Netw.
, pp. 115-120
-
-
Nelles, O.1
-
50
-
-
79951897393
-
Stability analysis for an online evolving neuro-fuzzy recurrent network
-
Hoboken, NJ, USA: Wiley
-
J. de Jesús Rubio, "Stability analysis for an online evolving neuro-fuzzy recurrent network," in Evolving Intelligent Systems Methodology and Applications. Hoboken, NJ, USA: Wiley, 2010, pp. 173-199.
-
(2010)
Evolving Intelligent Systems Methodology and Applications
, pp. 173-199
-
-
De-Jesús-Rubio, J.1
-
51
-
-
79952317715
-
A semi-supervised dynamic version of fuzzy k-nearest neighbours tomonitor evolving systems
-
L. Hartert, M. S. Mouchaweh, and P. Billaudel, "A semi-supervised dynamic version of fuzzy k-nearest neighbours tomonitor evolving systems," Evolving Syst., vol. 1, pp. 3-15, 2010.
-
(2010)
Evolving Syst.
, vol.1
, pp. 3-15
-
-
Hartert, L.1
Mouchaweh, M.S.2
Billaudel, P.3
-
52
-
-
82455221063
-
Supervised hierarchical clustering in fuzzy model identification
-
Dec.
-
I. Škrjanc, B. Hartmann, O. Banfer, O. Nelles, A. Sodja, and L. Teslič, "Supervised hierarchical clustering in fuzzy model identification," IEEE Trans. Fuzzy Syst., vol. 19, no. 6, pp. 1163-1176, Dec. 2011.
-
(2011)
IEEE Trans. Fuzzy Syst.
, vol.19
, Issue.6
, pp. 1163-1176
-
-
Škrjanc, I.1
Hartmann, B.2
Banfer, O.3
Nelles, O.4
Sodja, A.5
Teslič, L.6
-
54
-
-
84858831300
-
Recursive fuzzy model identification
-
Sharm El Sheikh, Egypt, Mar. 15-17
-
D. Dovžan and I. Škrjanc, "Recursive fuzzy model identification," in Proc. Advances Comput. Sci. Eng., Sharm El Sheikh, Egypt, Mar. 15-17, 2010, pp. 1-6.
-
(2010)
Proc. Advances Comput. Sci. Eng.
, pp. 1-6
-
-
Dovžan, D.1
Škrjanc, I.2
-
55
-
-
78751630981
-
Handling drifts and shifts in on-line data streams with evolving fuzzy systems
-
E. Lughofer and P. Angelov, "Handling drifts and shifts in on-line data streams with evolving fuzzy systems," Appl. Soft Comput., vol. 11, no. 2, pp. 2057-2068, 2011.
-
(2011)
Appl. Soft Comput.
, vol.11
, Issue.2
, pp. 2057-2068
-
-
Lughofer, E.1
Angelov, P.2
-
57
-
-
83855161643
-
SaFIN: A self-adaptive fuzzy inference network
-
Dec.
-
S. W. Tung, C. Quek, and C. Guan, "SaFIN: A self-adaptive fuzzy inference network," IEEE Trans. Neural Netw., vol. 22, no. 12, pp. 1928-1940, Dec. 2011.
-
(2011)
IEEE Trans. Neural Netw.
, vol.22
, Issue.12
, pp. 1928-1940
-
-
Tung, S.W.1
Quek, C.2
Guan, C.3
-
58
-
-
84920545995
-
Evolving neural network with extreme learning for system modeling
-
Linz, Austria, Jun. 2-4w
-
R. Rosa, F. Gomide, D. Dovžan, and I. Škrjanc, "Evolving neural network with extreme learning for system modeling," in Proc. IEEE Conf. Evolving Adaptive Intell. Syst., Linz, Austria, Jun. 2-4w, 2014, pp. 11-34.
-
(2014)
Proc. IEEE Conf. Evolving Adaptive Intell. Syst.
, pp. 11-34
-
-
Rosa, R.1
Gomide, F.2
Dovžan, D.3
Škrjanc, I.4
-
59
-
-
0001553560
-
A function estimation approach to sequential learning with neural networks
-
V. Kadirkamanathan and M. Niranjan, "A function estimation approach to sequential learning with neural networks," Neural Comput., vol. 5, no. 6, pp. 954-975, 1993.
-
(1993)
Neural Comput.
, vol.5
, Issue.6
, pp. 954-975
-
-
Kadirkamanathan, V.1
Niranjan, M.2
-
60
-
-
0031568361
-
A sequential learning scheme for function approximation using minimal radial basis function (RBF) neural networks
-
L. Yingwei, N. Sundararajan, and P. Saratchandran, "A sequential learning scheme for function approximation using minimal radial basis function (RBF) neural networks," Neural Comput., vol. 9, pp. 461-478, 1997.
-
(1997)
Neural Comput.
, vol.9
, pp. 461-478
-
-
Yingwei, L.1
Sundararajan, N.2
Saratchandran, P.3
-
61
-
-
23944495345
-
Simpl-eTS: A simplified method for learning evolving Takagi-Sugeno fuzzy models
-
Reno, NV, USA, May 22-25
-
P. Angelov and D. Filev, "Simpl-eTS: A simplified method for learning evolving Takagi-Sugeno fuzzy models," in Proc. IEEE Int. Conf. Fuzzy Syst., Reno, NV, USA, May 22-25, 2005, pp. 1068-1073.
-
(2005)
Proc. IEEE Int. Conf. Fuzzy Syst.
, pp. 1068-1073
-
-
Angelov, P.1
Filev, D.2
-
62
-
-
84856325149
-
A new type of simplified fuzzy rule-based system
-
P. Angelov and R. Yager, "A new type of simplified fuzzy rule-based system," Int. J. General Syst., vol. 41, no. 2, pp. 163-185, 2011.
-
(2011)
Int. J. General Syst.
, vol.41
, Issue.2
, pp. 163-185
-
-
Angelov, P.1
Yager, R.2
-
63
-
-
10944272650
-
Extreme learning machine: A new learning scheme of feedforward neural networks
-
G. Huang, Q. Zhu, and C. Siew, "Extreme learning machine: A new learning scheme of feedforward neural networks," in Proc. IEEE Int. Joint Conf. Neural Netw., 2004, pp. 985-990.
-
(2004)
Proc. IEEE Int. Joint Conf. Neural Netw.
, pp. 985-990
-
-
Huang, G.1
Zhu, Q.2
Siew, C.3
-
64
-
-
84899435813
-
Evolving hybrid neural fuzzy network for system modeling and time series forecasting
-
Miami, FL, USA, Dec. 4-7
-
R. Rosa, R. Ballini, and F. Gomide, "Evolving hybrid neural fuzzy network for system modeling and time series forecasting," in Proc. IEEE Int. Conf. Mach. Learning Appl., Miami, FL, USA, Dec. 4-7, 2013, pp. 378-383.
-
(2013)
Proc. IEEE Int. Conf. Mach. Learning Appl.
, pp. 378-383
-
-
Rosa, R.1
Ballini, R.2
Gomide, F.3
|