-
1
-
-
33646517064
-
Drug discovery: selecting the optimal approach
-
F.Sams-Dodd Drug discovery: selecting the optimal approach. Drug Disc Today. 2006;11:465–472.
-
(2006)
Drug Disc Today
, vol.11
, pp. 465-472
-
-
Sams-Dodd, F.1
-
3
-
-
77958029276
-
Quantitative correlations of physical and chemical properties with chemical structure; utility for prediction
-
A.Katritzky, M.Kuanar, S.Slavov, et al. Quantitative correlations of physical and chemical properties with chemical structure; utility for prediction. Chem Rev. 2010;110(10):5714–5789.•• Important review for extensive QSAR approach and applications.
-
(2010)
Chem Rev
, vol.110
, Issue.10
, pp. 5714-5789
-
-
Katritzky, A.1
Kuanar, M.2
Slavov, S.3
-
4
-
-
33646822473
-
Physical, chemical, and technological property correlation with chemical structure: the potential of QSPR
-
A.R.Katritzky, D.A.Dobchev, M.Karelson. Physical, chemical, and technological property correlation with chemical structure: the potential of QSPR. Zeitschrift Naturforsch B. 2006;61(4):373–384.
-
(2006)
Zeitschrift Naturforsch B
, vol.61
, Issue.4
, pp. 373-384
-
-
Katritzky, A.R.1
Dobchev, D.A.2
Karelson, M.3
-
5
-
-
84866674087
-
Evolutionary history of QSAR: a review
-
O.P.Sharma, N.K.Saini, V.Gupta, et al. Evolutionary history of QSAR: a review. J Natur Cons. 2011;1(4):266–272.
-
(2011)
J Natur Cons
, vol.1
, Issue.4
, pp. 266-272
-
-
Sharma, O.P.1
Saini, N.K.2
Gupta, V.3
-
6
-
-
77956964002
-
Best practices for QSAR model development, validation, and exploitation
-
A.Tropsha. Best practices for QSAR model development, validation, and exploitation. Mol Inf. 2010;29:476–488.
-
(2010)
Mol Inf
, vol.29
, pp. 476-488
-
-
Tropsha, A.1
-
8
-
-
84990220496
-
The history and development of quantitative structure-activity relationships
-
J.Dearden. The history and development of quantitative structure-activity relationships. Ijqspr. 2016;1(1):1–44.
-
(2016)
Ijqspr
, vol.1
, Issue.1
, pp. 1-44
-
-
Dearden, J.1
-
11
-
-
0042672725
-
Structure activity relationships and pharmacophore discovery using inductive logic programming
-
M.Sternberg, S.Muggleton. Structure activity relationships and pharmacophore discovery using inductive logic programming. QSAR Comb Sci. 2003;22:510–518.
-
(2003)
QSAR Comb Sci
, vol.22
, pp. 510-518
-
-
Sternberg, M.1
Muggleton, S.2
-
12
-
-
1042265247
-
Approaches to measure chemical similarity: a review
-
N.Nikolova, J.Jaworska. Approaches to measure chemical similarity: a review. QSAR Combi Sci. 2003;22:1006–1012.
-
(2003)
QSAR Combi Sci
, vol.22
, pp. 1006-1012
-
-
Nikolova, N.1
Jaworska, J.2
-
13
-
-
0034192819
-
High-throughput screening
-
C.Grepin, C.Pernelle. High-throughput screening. Drug Disc Today. 2000;5(5):212–214.
-
(2000)
Drug Disc Today
, vol.5
, Issue.5
, pp. 212-214
-
-
Grepin, C.1
Pernelle, C.2
-
14
-
-
70349482953
-
Novel trends in high-throughput screening
-
L.M.Mayr, D.Bojanic. Novel trends in high-throughput screening. Cur Opin Pharmacol. 2009;9(5):580–588.
-
(2009)
Cur Opin Pharmacol
, vol.9
, Issue.5
, pp. 580-588
-
-
Mayr, L.M.1
Bojanic, D.2
-
17
-
-
84911446995
-
In silico machine learning methods in drug development
-
D.A.Dobchev, G.G.Pillai, M.Karelson. In silico machine learning methods in drug development. Curr Top Med Chem. 2014;14(16):1913–1922.
-
(2014)
Curr Top Med Chem
, vol.14
, Issue.16
, pp. 1913-1922
-
-
Dobchev, D.A.1
Pillai, G.G.2
Karelson, M.3
-
19
-
-
12344276385
-
Using artificial neural networks to drive virtual screening of combinatorial libraries
-
V.Lobanov. Using artificial neural networks to drive virtual screening of combinatorial libraries. Drug Disc Today. 2004;2(4):149–156.
-
(2004)
Drug Disc Today
, vol.2
, Issue.4
, pp. 149-156
-
-
Lobanov, V.1
-
20
-
-
51249194645
-
A logical calculus of the ideas imminent in nervous activity
-
W.S.McCutloch, W.Pttts. A logical calculus of the ideas imminent in nervous activity. Bull Math Biophys. 1943;5:115–133.
-
(1943)
Bull Math Biophys
, vol.5
, pp. 115-133
-
-
McCutloch, W.S.1
Pttts, W.2
-
24
-
-
0002483594
-
Multivariate regression outperforms several robust architectures of neural networks in QSAR modeling
-
B.Lucic, N.Trinajstic. Multivariate regression outperforms several robust architectures of neural networks in QSAR modeling. J Chem Inf Comput Sci. 1999;39:121–132.
-
(1999)
J Chem Inf Comput Sci
, vol.39
, pp. 121-132
-
-
Lucic, B.1
Trinajstic, N.2
-
26
-
-
0001447184
-
Neural network studies. 1. Comparison of overfitting and overtraining
-
I.V.Tetko, D.J.Livingstone, A.I.Luik. Neural network studies. 1. Comparison of overfitting and overtraining. J Chem Inf Comput Sci. 1995;35:826–833.
-
(1995)
J Chem Inf Comput Sci
, vol.35
, pp. 826-833
-
-
Tetko, I.V.1
Livingstone, D.J.2
Luik, A.I.3
-
27
-
-
58149381237
-
Bayesian regularization of neural networks
-
F.Burden, D.Winkler. Bayesian regularization of neural networks. Methods Mol Biol. 2008;458:25–44.
-
(2008)
Methods Mol Biol
, vol.458
, pp. 25-44
-
-
Burden, F.1
Winkler, D.2
-
28
-
-
0027212862
-
Statistics using neural networks: chance effects
-
D.J.Livingstone, D.T.Manallack. Statistics using neural networks: chance effects. J Med Chem. 1993;36:1295–1297.
-
(1993)
J Med Chem
, vol.36
, pp. 1295-1297
-
-
Livingstone, D.J.1
Manallack, D.T.2
-
29
-
-
76749109588
-
An optimal self-pruning neural network and nonlinear descriptor selection in QSAR
-
F.Burden, D.Winkler. An optimal self-pruning neural network and nonlinear descriptor selection in QSAR. QSAR Combi Sci. 2009;28(10):1092–1097.
-
(2009)
QSAR Combi Sci
, vol.28
, Issue.10
, pp. 1092-1097
-
-
Burden, F.1
Winkler, D.2
-
30
-
-
0000513993
-
Artificial neural networks: application and chance effects for QSAR data analysis
-
D.Manallack, D.J.Livingstone. Artificial neural networks: application and chance effects for QSAR data analysis. Med Chem Res. 1992;2:181–190.
-
(1992)
Med Chem Res
, vol.2
, pp. 181-190
-
-
Manallack, D.1
Livingstone, D.J.2
-
31
-
-
84959562437
-
Graph-based processing of macromolecular information
-
C.Munteanu, V.Aguiar-Pulido, A.Freire, et al. Graph-based processing of macromolecular information. Curr Bioinformatics. 2015;10(5):606–631.
-
(2015)
Curr Bioinformatics
, vol.10
, Issue.5
, pp. 606-631
-
-
Munteanu, C.1
Aguiar-Pulido, V.2
Freire, A.3
-
32
-
-
20444409456
-
Interpreting computational neural network QSAR models: a measure of descriptor importance
-
R.Guha, P.C.Jurs. Interpreting computational neural network QSAR models: a measure of descriptor importance. J Chem Inf Model. 2005;45(3):800–806.
-
(2005)
J Chem Inf Model
, vol.45
, Issue.3
, pp. 800-806
-
-
Guha, R.1
Jurs, P.C.2
-
33
-
-
84897486898
-
Mechanistic interpretation of artificial neural network-based QSAR model for prediction of cathepsin K inhibition potency
-
J.Borišek, V.Drgan, N.Minovski. Mechanistic interpretation of artificial neural network-based QSAR model for prediction of cathepsin K inhibition potency. J Chemometrics. 2014;28:272–281.
-
(2014)
J Chemometrics
, vol.28
, pp. 272-281
-
-
Borišek, J.1
Drgan, V.2
Minovski, N.3
-
34
-
-
80055096902
-
Comparative QSARs for antimalarial endochins: importance of descriptor-thinning and noise reduction prior to feature selection
-
P.Ojha, K.Roy. Comparative QSARs for antimalarial endochins: importance of descriptor-thinning and noise reduction prior to feature selection. Chemom Intell Lab Sys. 2011;109:146–161.
-
(2011)
Chemom Intell Lab Sys
, vol.109
, pp. 146-161
-
-
Ojha, P.1
Roy, K.2
-
35
-
-
0001728908
-
Quantum-chemical descriptors in QSAR/QSPR studies
-
M.Karelson, V.S.Lobanov, A.R.Katritzky. Quantum-chemical descriptors in QSAR/QSPR studies. Chem Rev. 1996;96:1027–1043.
-
(1996)
Chem Rev
, vol.96
, pp. 1027-1043
-
-
Karelson, M.1
Lobanov, V.S.2
Katritzky, A.R.3
-
38
-
-
1042265247
-
Approaches to measure chemical similarity – a review
-
N.Nikolova, J.Jaworska. Approaches to measure chemical similarity – a review. QSAR Comb Sci. 2003;22:1006–1026.
-
(2003)
QSAR Comb Sci
, vol.22
, pp. 1006-1026
-
-
Nikolova, N.1
Jaworska, J.2
-
39
-
-
84898775471
-
Subchronic oral and inhalation toxicities: a challenging attempt for modeling and prediction
-
D.Dobchev, I.Tulp, G.Karelson, et al. Subchronic oral and inhalation toxicities: a challenging attempt for modeling and prediction. Mol Informatics. 2013;32:793–01.
-
(2013)
Mol Informatics
, vol.32
, pp. 701-793
-
-
Dobchev, D.1
Tulp, I.2
Karelson, G.3
-
40
-
-
0034213103
-
Basic concepts of artificial neural network (ANN) modeling and its application in pharmaceutical research
-
S.Agatonovic-Kustrin, R.Beresford. Basic concepts of artificial neural network (ANN) modeling and its application in pharmaceutical research. J Pharm Biomed. 2000;22(5):717–727.
-
(2000)
J Pharm Biomed
, vol.22
, Issue.5
, pp. 717-727
-
-
Agatonovic-Kustrin, S.1
Beresford, R.2
-
41
-
-
84975277259
-
-
PubChem [Internet]. [Cited 2016 May 16]. Available from: https://pubchem.ncbi.nlm.nih.gov/.
-
-
-
-
42
-
-
78649386109
-
Exploiting PubChem for virtual screening
-
X.-Q.Xie. Exploiting PubChem for virtual screening. Expert Opin Drug Discov. 2010;5(12):1205–1220.
-
(2010)
Expert Opin Drug Discov
, vol.5
, Issue.12
, pp. 1205-1220
-
-
Xie, X.-Q.1
-
43
-
-
84975277273
-
-
cited, Available from
-
CheMbl database [Internet]. [cited 2016 May 16]. Available from: https://www.ebi.ac.uk/chembldb/.
-
(2016)
-
-
-
44
-
-
84975277245
-
-
cited, Available from
-
Matlab package [Internet]. [cited 2016 May 16]. Available from: http://www.mathworks.com.
-
(2016)
-
-
-
45
-
-
84975264851
-
-
cited, Available from
-
Mathematica package. [cited 2016 May 16]. Available from: https://www.wolfram.com/mathematica/.
-
(2016)
-
-
-
46
-
-
84975277236
-
-
cited, Available from
-
Statistica software [Internet]. [cited 2016 May 16]. Available from: www.statsoft.com.
-
(2016)
-
-
-
47
-
-
84975277237
-
-
cited, Available from
-
Neuralware software [Internet]. [cited 2016 May 16]. Available from: http://neuralware.com/.
-
(2016)
-
-
-
48
-
-
84975277250
-
-
cited, Available from
-
RRegrs package [Internet]. [cited 2016 May 16]. Available from: https://github.com/enanomapper/RRegrs/.
-
(2016)
-
-
-
49
-
-
84941650396
-
RRegrs: an R package for computer-aided model selection with multiple regression models
-
G.Tsiliki, C.Munteanu, J.Seoane, et al. RRegrs: an R package for computer-aided model selection with multiple regression models. J Chemoinformatics. 2015;7(1):1–16.
-
(2015)
J Chemoinformatics
, vol.7
, Issue.1
, pp. 1-16
-
-
Tsiliki, G.1
Munteanu, C.2
Seoane, J.3
-
50
-
-
84975276526
-
-
cited, Available from
-
Virtual computational chemistry lab [Internet]. [cited 2016 May 16]. Available from: http://www.vcclab.org.
-
(2016)
-
-
-
51
-
-
27344459398
-
Virtual computational chemistry laboratory - design and description
-
I.V.Tetko, J.Gasteiger, R.Todeschini, et al. Virtual computational chemistry laboratory - design and description. J Comput Aid Mol Des. 2005;19:453–463.
-
(2005)
J Comput Aid Mol Des
, vol.19
, pp. 453-463
-
-
Tetko, I.V.1
Gasteiger, J.2
Todeschini, R.3
-
52
-
-
84975272529
-
-
cited, Available from
-
NL-MIND-BEST service [Internet]. [cited 2016 May 16]. Available from: http://bio-aims.udc.es/NL-MIND-BEST.php.
-
(2016)
-
-
-
54
-
-
40049095552
-
QSAR study of neuraminidase inhibitors based on heuristic method and radial basis function network
-
W.J.Lu, Y.L.Chen, W.P.Ma, et al. QSAR study of neuraminidase inhibitors based on heuristic method and radial basis function network. Eur J Med Chem. 2008;43:569–576.
-
(2008)
Eur J Med Chem
, vol.43
, pp. 569-576
-
-
Lu, W.J.1
Chen, Y.L.2
Ma, W.P.3
-
55
-
-
34248389661
-
QSPR analysis for intrinsic viscosity of polymer solutions by means of GA-MLR and RBFNN
-
F.Gharagheizi. QSPR analysis for intrinsic viscosity of polymer solutions by means of GA-MLR and RBFNN. Comput Mater Sci. 2007;40:159–167.
-
(2007)
Comput Mater Sci
, vol.40
, pp. 159-167
-
-
Gharagheizi, F.1
-
57
-
-
70649103872
-
Clustering: a neural network approach
-
K.-L.Du. Clustering: a neural network approach. Neural Net. 2010;23:89–107.
-
(2010)
Neural Net
, vol.23
, pp. 89-107
-
-
Du, K.-L.1
-
59
-
-
84975252720
-
Application of neural networks to large dataset QSAR, virtual screening, and library design
-
English L.B., (ed), Clifton (NY):: Springer Protocols
-
D.A.Winkler, F.R.Burden. Application of neural networks to large dataset QSAR, virtual screening, and library design. In: L.B.English, editor. Combinatorial library. Methods in molecular biology. Clifton (NY): Springer Protocols; 2002.
-
(2002)
Combinatorial library. Methods in molecular biology
-
-
Winkler, D.A.1
Burden, F.R.2
-
61
-
-
0037424611
-
Artificial neural networks and genetic algorithms in QSAR
-
S.P.Niculescu. Artificial neural networks and genetic algorithms in QSAR. J Mol Struc. 2003;622(1–2):71–83.
-
(2003)
J Mol Struc
, vol.622
, Issue.1-2
, pp. 71-83
-
-
Niculescu, S.P.1
-
63
-
-
84876671465
-
Chemoinformatics for rational discovery of safe antibacterial drugs: simultaneous predictions of biological activity against streptococci and toxicological profiles in laboratory animals
-
A.Speck-Planche, V.Kleandrova, M.Cordeiro. Chemoinformatics for rational discovery of safe antibacterial drugs: simultaneous predictions of biological activity against streptococci and toxicological profiles in laboratory animals. Bioorg Med Chem. 2013;21(10):2727–2732.
-
(2013)
Bioorg Med Chem
, vol.21
, Issue.10
, pp. 2727-2732
-
-
Speck-Planche, A.1
Kleandrova, V.2
Cordeiro, M.3
-
64
-
-
84870225630
-
Molecular fingerprint-based artificial neural networks QSAR (FANN-QSAR) for ligand biological activity predictions
-
K.Myint, L.R.Wang, Q.Tong, et al. Molecular fingerprint-based artificial neural networks QSAR (FANN-QSAR) for ligand biological activity predictions. Mol Pharmaceutics. 2012;9:2912–2923.
-
(2012)
Mol Pharmaceutics
, vol.9
, pp. 2912-2923
-
-
Myint, K.1
Wang, L.R.2
Tong, Q.3
-
65
-
-
84975227941
-
-
cited, May 16, Available from
-
NCI database [Internet]. [cited 2016 May 16]. Available from: http://dctd.cancer.gov/ResearchResources/default.htm.
-
(2016)
-
-
-
66
-
-
84888081169
-
Artificial neural network modeling of antimycobacterial chemical space to introduce efficient descriptors employed for drug design
-
S.Sardari, H.Kohanzad, G.Ghavami. Artificial neural network modeling of antimycobacterial chemical space to introduce efficient descriptors employed for drug design. Chemom Intel Lab Sys. 2014;130:151–158.
-
(2014)
Chemom Intel Lab Sys
, vol.130
, pp. 151-158
-
-
Sardari, S.1
Kohanzad, H.2
Ghavami, G.3
-
67
-
-
84866731321
-
Prediction of aqueous solubility of drug-like molecules using a novel algorithm for automatic adjustment of relative importance of descriptors implemented in counter-propagation artificial neural networks
-
S.Eric, M.Kalinic, A.Popovic, et al. Prediction of aqueous solubility of drug-like molecules using a novel algorithm for automatic adjustment of relative importance of descriptors implemented in counter-propagation artificial neural networks. Int J Pharm. 2012;437(1–2):232–241.
-
(2012)
Int J Pharm
, vol.437
, Issue.1-2
, pp. 232-241
-
-
Eric, S.1
Kalinic, M.2
Popovic, A.3
-
68
-
-
84857732011
-
Discovery of 2-(2-benzoxazoyl amino)-4-aryl-5-cyanopyrimidine as negative allosteric modulators (NAMs) of metabotropic glutamate receptor 5 (mGlu5): from an artificial neural network virtual screen to an in vivo tool compound
-
R.Mueller, E.S.Dawson, J.Meiler, et al. Discovery of 2-(2-benzoxazoyl amino)-4-aryl-5-cyanopyrimidine as negative allosteric modulators (NAMs) of metabotropic glutamate receptor 5 (mGlu5): from an artificial neural network virtual screen to an in vivo tool compound. Chemom Med Chem. 2012;7:406–414.
-
(2012)
Chemom Med Chem
, vol.7
, pp. 406-414
-
-
Mueller, R.1
Dawson, E.S.2
Meiler, J.3
-
69
-
-
79251513628
-
Artificial neural network-based drug design for diabetes mellitus using flavonoids
-
J.C.Patra, B.H.Chua. Artificial neural network-based drug design for diabetes mellitus using flavonoids. J Comput Chem. 2011;32(4):555–567.
-
(2011)
J Comput Chem
, vol.32
, Issue.4
, pp. 555-567
-
-
Patra, J.C.1
Chua, B.H.2
-
70
-
-
70350022343
-
Artificial neural networks-based approach to design ARIs using QSAR for diabetes mellitus
-
J.C.Patra, O.Singh. Artificial neural networks-based approach to design ARIs using QSAR for diabetes mellitus. J Comput Chem. 2009;30:2494–2508.
-
(2009)
J Comput Chem
, vol.30
, pp. 2494-2508
-
-
Patra, J.C.1
Singh, O.2
-
71
-
-
77953662145
-
Prediction of cell-penetrating peptides using artificial neural networks
-
D.A.Dobchev, I.Mager, I.Tulp, et al. Prediction of cell-penetrating peptides using artificial neural networks. Cur Comp-Aided Drug Des. 2010;6:79–89.
-
(2010)
Cur Comp-Aided Drug Des
, vol.6
, pp. 79-89
-
-
Dobchev, D.A.1
Mager, I.2
Tulp, I.3
-
72
-
-
78651280055
-
Prediction of the hERG potassium channel inhibition potential with use of the artificial neural networks
-
S.Polak, B.Wisniowska, M.Ahamadi, et al. Prediction of the hERG potassium channel inhibition potential with use of the artificial neural networks. Adv Intel Soft Comput. 2010;75:91–99.
-
(2010)
Adv Intel Soft Comput
, vol.75
, pp. 91-99
-
-
Polak, S.1
Wisniowska, B.2
Ahamadi, M.3
-
73
-
-
54949121773
-
Artificial neural networks in ADMET modeling: prediction of blood-brain barrier permeation
-
A.Guerra, J.A.Paez, N.E.Campillo. Artificial neural networks in ADMET modeling: prediction of blood-brain barrier permeation. QSAR Combi Sci. 2007;27(5):586–594.
-
(2007)
QSAR Combi Sci
, vol.27
, Issue.5
, pp. 586-594
-
-
Guerra, A.1
Paez, J.A.2
Campillo, N.E.3
-
74
-
-
84910010871
-
Diverse classification models for anti-hepatitis C virus activity of thiourea derivatives
-
N.Khatri, V.Lather, A.Madan. Diverse classification models for anti-hepatitis C virus activity of thiourea derivatives. Chemom Intel Lab Sys. 2015;140:13–21.
-
(2015)
Chemom Intel Lab Sys
, vol.140
, pp. 13-21
-
-
Khatri, N.1
Lather, V.2
Madan, A.3
-
75
-
-
44349110097
-
Identification of gene transcript signatures predictive for estrogen receptor and lymph node status using a stepwise forward selection artificial neural network modeling approach
-
L.Lancashire, R.C.Rees, G.Ball. Identification of gene transcript signatures predictive for estrogen receptor and lymph node status using a stepwise forward selection artificial neural network modeling approach. Art Intel Med. 2008;43:99–111.
-
(2008)
Art Intel Med
, vol.43
, pp. 99-111
-
-
Lancashire, L.1
Rees, R.C.2
Ball, G.3
-
76
-
-
33744824393
-
Skin permeation rate as a function of chemical structure
-
A.R.Katritzky, D.A.Dobchev, D.Fara, et al. Skin permeation rate as a function of chemical structure. J Med Chem. 2006;49(11):3305–3314.
-
(2006)
J Med Chem
, vol.49
, Issue.11
, pp. 3305-3314
-
-
Katritzky, A.R.1
Dobchev, D.A.2
Fara, D.3
-
77
-
-
44949189671
-
Synthesis and bioassay of novel mosquito repellents predicted from chemical structure
-
A.R.Katritzky, Z.Q.Wang, S.Slavov, et al. Synthesis and bioassay of novel mosquito repellents predicted from chemical structure. Proc Natl Acad Sci. 2008;105:7359–7364.
-
(2008)
Proc Natl Acad Sci
, vol.105
, pp. 7359-7364
-
-
Katritzky, A.R.1
Wang, Z.Q.2
Slavov, S.3
-
78
-
-
84896938175
-
ANN multiscale model of anti-HIV drugs activity vs AIDS prevalence in the US at county level based on information indices of molecular graphs and social networks
-
H.González-Díaz, D.M.Herrera-Ibatá, A.Duardo-Sánchez, et al. ANN multiscale model of anti-HIV drugs activity vs AIDS prevalence in the US at county level based on information indices of molecular graphs and social networks. J Chem Inf Model. 2014;54(3):744–755.
-
(2014)
J Chem Inf Model
, vol.54
, Issue.3
, pp. 744-755
-
-
González-Díaz, H.1
Herrera-Ibatá, D.M.2
Duardo-Sánchez, A.3
-
79
-
-
0141882047
-
History and evolution of the pharmacophore concept in computer-aided drug design
-
O.Guner. History and evolution of the pharmacophore concept in computer-aided drug design. Curr Top Med Chem. 2002;2(12):1321–1332.
-
(2002)
Curr Top Med Chem
, vol.2
, Issue.12
, pp. 1321-1332
-
-
Guner, O.1
-
80
-
-
0347755449
-
Predicting molecular interactions in silico: I. A guide to pharmacophore identification and its applications to drug design
-
O.Dror, A.Shulman-Peleg, R.Nussinov, et al. Predicting molecular interactions in silico: I. A guide to pharmacophore identification and its applications to drug design. Curr Med Chem. 2004;11(1):71–90.
-
(2004)
Curr Med Chem
, vol.11
, Issue.1
, pp. 71-90
-
-
Dror, O.1
Shulman-Peleg, A.2
Nussinov, R.3
-
81
-
-
0003146832
-
-
Netherlands: ESCOM
-
R.D.Cramer, S.A.DePriest, D.E.Patterson, et al. In: H.Kubinyi, editor. The developing practice of comparative molecular field analysis, in 3D QSAR in drug design: theory, methods and applications. Netherlands: ESCOM; 1993. p. 443–485.
-
(1993)
The developing practice of comparative molecular field analysis, in 3D QSAR in drug design: theory, methods and applications
-
-
Cramer, R.D.1
DePriest, S.A.2
Patterson, D.E.3
Kubinyi, H.4
-
82
-
-
0027944195
-
Molecular similarity indices in a comparative analysis (CoMSIA) of drug molecules to correlate and predict their biological activity
-
G.Klebe, U.Abraham, T.Mietzner. Molecular similarity indices in a comparative analysis (CoMSIA) of drug molecules to correlate and predict their biological activity. J Med Chem. 1994;37:4130–4146.
-
(1994)
J Med Chem
, vol.37
, pp. 4130-4146
-
-
Klebe, G.1
Abraham, U.2
Mietzner, T.3
-
83
-
-
1442293369
-
Current state and perspectives of 3D-QSAR
-
M.Akamatsu. Current state and perspectives of 3D-QSAR. Curr Top Med Chem. 2002;2(12):1381–1394.
-
(2002)
Curr Top Med Chem
, vol.2
, Issue.12
, pp. 1381-1394
-
-
Akamatsu, M.1
-
84
-
-
23844477186
-
Application of 3D-QSAR techniques in anti-HIV-1 drug design-an overview
-
A.K.Debnath. Application of 3D-QSAR techniques in anti-HIV-1 drug design-an overview. Curr Pharm Des. 2005;11(24):3091–3110.
-
(2005)
Curr Pharm Des
, vol.11
, Issue.24
, pp. 3091-3110
-
-
Debnath, A.K.1
-
85
-
-
14544300624
-
Matrix metalloproteinase inhibitors: a review on pharmacophore mapping and (Q)SARs results
-
C.A.Kontogiorgis, P.Papaioannou, D.J.Hadjipavlou-Litina. Matrix metalloproteinase inhibitors: a review on pharmacophore mapping and (Q)SARs results. Curr Med Chem. 2005;12(3):339–355.
-
(2005)
Curr Med Chem
, vol.12
, Issue.3
, pp. 339-355
-
-
Kontogiorgis, C.A.1
Papaioannou, P.2
Hadjipavlou-Litina, D.J.3
-
86
-
-
1642350377
-
Neuronal nicotinic acetylcholine receptor agonists: pharmacophores, evolutionary QSAR and 3D-QSAR models
-
O.Nicolotti, C.Altomare, M.Pellegrini-Calace, et al. Neuronal nicotinic acetylcholine receptor agonists: pharmacophores, evolutionary QSAR and 3D-QSAR models. Curr Top Med Chem. 2004;4(3):335–360.
-
(2004)
Curr Top Med Chem
, vol.4
, Issue.3
, pp. 335-360
-
-
Nicolotti, O.1
Altomare, C.2
Pellegrini-Calace, M.3
-
87
-
-
28844455041
-
3D-QSAR study of ring substituted quinoline class of anti-tuberculosis agents
-
A.Nayyar, A.Malde, R.Jain, et al. 3D-QSAR study of ring substituted quinoline class of anti-tuberculosis agents. Bioorg Med Chem. 2006;14(3):847–856.
-
(2006)
Bioorg Med Chem
, vol.14
, Issue.3
, pp. 847-856
-
-
Nayyar, A.1
Malde, A.2
Jain, R.3
-
88
-
-
3843057862
-
Biology and chemistry of the inhibition of nitric oxide synthases by pteridine-derivatives as therapeutic agents
-
H.Matter, P.Kotsonis. Biology and chemistry of the inhibition of nitric oxide synthases by pteridine-derivatives as therapeutic agents. Med Res Rev. 2004;24(5):662–684.
-
(2004)
Med Res Rev
, vol.24
, Issue.5
, pp. 662-684
-
-
Matter, H.1
Kotsonis, P.2
-
89
-
-
28844482974
-
Molecular modeling and 3D-QSAR studies of indolomorphinan derivatives as kappa opioid antagonists
-
W.Li, Y.Tang, Y.L.Zheng, et al. Molecular modeling and 3D-QSAR studies of indolomorphinan derivatives as kappa opioid antagonists. Bioorg Med Chem. 2006;14(3):601–610.
-
(2006)
Bioorg Med Chem
, vol.14
, Issue.3
, pp. 601-610
-
-
Li, W.1
Tang, Y.2
Zheng, Y.L.3
-
91
-
-
0242584957
-
Ligand-based computer-aided pesticide design. A review of applications of the CoMFA and CoMSIA methodologies
-
B.Bordas, T.Komives, A.Lopata. Ligand-based computer-aided pesticide design. A review of applications of the CoMFA and CoMSIA methodologies. Pest Manag Sci. 2003;59(4):393–400.
-
(2003)
Pest Manag Sci
, vol.59
, Issue.4
, pp. 393-400
-
-
Bordas, B.1
Komives, T.2
Lopata, A.3
-
92
-
-
0033970811
-
Neural networks are useful tools for drug design
-
G.Schneider. Neural networks are useful tools for drug design. Neural Net. 2000;13:15–16.
-
(2000)
Neural Net
, vol.13
, pp. 15-16
-
-
Schneider, G.1
-
93
-
-
0023515080
-
Counterpropagation networks
-
R.Hecht-Nielsen. Counterpropagation networks. Appl Opt. 1987;26(23):4979–4983.
-
(1987)
Appl Opt
, vol.26
, Issue.23
, pp. 4979-4983
-
-
Hecht-Nielsen, R.1
-
94
-
-
84975245268
-
Predicting the absorption potential of chemical compounds through a deep learning approach
-
M.Shin, D.Jang, H.Nam, et al. Predicting the absorption potential of chemical compounds through a deep learning approach. IEEE/ACM Trans Comput Bio Bioinf. 2016;PP(99):1–1.
-
(2016)
IEEE/ACM Trans Comput Bio Bioinf
, vol.PP
, Issue.99
, pp. 1
-
-
Shin, M.1
Jang, D.2
Nam, H.3
-
95
-
-
84975287014
-
-
cited, Available from
-
ScienceDirect indexing [Internet]. [cited 2016 May 16]. Available from: http://www.sciencedirect.com/.
-
(2016)
-
-
-
96
-
-
0032735695
-
Neural networks in drug discovery: have they lived up to their promise?
-
D.Manallack, D.Livingstone. Neural networks in drug discovery: have they lived up to their promise? Eur J Med Chem. 1999;34:195−208.
-
(1999)
Eur J Med Chem
, vol.34
, pp. 195-208
-
-
Manallack, D.1
Livingstone, D.2
-
97
-
-
84975249914
-
-
cited, Available from
-
Dragon software [Internet]. [cited 2016 May 16]. Available from: http://www.talete.mi.it/products/dragon_description.htm.
-
(2016)
-
-
-
98
-
-
84975311810
-
-
cited, Available from
-
CODESA-PRO software [Internet]. [cited 2016 May 16]. Available from: http://codessa-pro.com/.
-
(2016)
-
-
-
99
-
-
84975249889
-
Chemical informatics functionality in R
-
R.Guha. Chemical informatics functionality in R. J Stat Soft. 2007;6:4–18.
-
(2007)
J Stat Soft
, vol.6
, pp. 4-18
-
-
Guha, R.1
|