메뉴 건너뛰기




Volumn 11, Issue 7, 2016, Pages 627-639

Have artificial neural networks met expectations in drug discovery as implemented in QSAR framework?

Author keywords

Artificial neural networks; drug discovery; QSAR

Indexed keywords

ARTIFICIAL NEURAL NETWORK; DRUG DEVELOPMENT; HUMAN; IMMUNITY; NONLINEAR SYSTEM; PRIORITY JOURNAL; QUANTITATIVE STRUCTURE ACTIVITY RELATION; RESPONSE VARIABLE; REVIEW; SCREENING; SENSITIVITY ANALYSIS; ALGORITHM; ANIMAL; CHEMISTRY; DRUG DESIGN; PROCEDURES; THEORETICAL MODEL;

EID: 84975298002     PISSN: 17460441     EISSN: 1746045X     Source Type: Journal    
DOI: 10.1080/17460441.2016.1186876     Document Type: Review
Times cited : (30)

References (99)
  • 1
    • 33646517064 scopus 로고    scopus 로고
    • Drug discovery: selecting the optimal approach
    • F.Sams-Dodd Drug discovery: selecting the optimal approach. Drug Disc Today. 2006;11:465–472.
    • (2006) Drug Disc Today , vol.11 , pp. 465-472
    • Sams-Dodd, F.1
  • 3
    • 77958029276 scopus 로고    scopus 로고
    • Quantitative correlations of physical and chemical properties with chemical structure; utility for prediction
    • A.Katritzky, M.Kuanar, S.Slavov, et al. Quantitative correlations of physical and chemical properties with chemical structure; utility for prediction. Chem Rev. 2010;110(10):5714–5789.•• Important review for extensive QSAR approach and applications.
    • (2010) Chem Rev , vol.110 , Issue.10 , pp. 5714-5789
    • Katritzky, A.1    Kuanar, M.2    Slavov, S.3
  • 4
    • 33646822473 scopus 로고    scopus 로고
    • Physical, chemical, and technological property correlation with chemical structure: the potential of QSPR
    • A.R.Katritzky, D.A.Dobchev, M.Karelson. Physical, chemical, and technological property correlation with chemical structure: the potential of QSPR. Zeitschrift Naturforsch B. 2006;61(4):373–384.
    • (2006) Zeitschrift Naturforsch B , vol.61 , Issue.4 , pp. 373-384
    • Katritzky, A.R.1    Dobchev, D.A.2    Karelson, M.3
  • 5
    • 84866674087 scopus 로고    scopus 로고
    • Evolutionary history of QSAR: a review
    • O.P.Sharma, N.K.Saini, V.Gupta, et al. Evolutionary history of QSAR: a review. J Natur Cons. 2011;1(4):266–272.
    • (2011) J Natur Cons , vol.1 , Issue.4 , pp. 266-272
    • Sharma, O.P.1    Saini, N.K.2    Gupta, V.3
  • 6
    • 77956964002 scopus 로고    scopus 로고
    • Best practices for QSAR model development, validation, and exploitation
    • A.Tropsha. Best practices for QSAR model development, validation, and exploitation. Mol Inf. 2010;29:476–488.
    • (2010) Mol Inf , vol.29 , pp. 476-488
    • Tropsha, A.1
  • 8
    • 84990220496 scopus 로고    scopus 로고
    • The history and development of quantitative structure-activity relationships
    • J.Dearden. The history and development of quantitative structure-activity relationships. Ijqspr. 2016;1(1):1–44.
    • (2016) Ijqspr , vol.1 , Issue.1 , pp. 1-44
    • Dearden, J.1
  • 10
  • 11
    • 0042672725 scopus 로고    scopus 로고
    • Structure activity relationships and pharmacophore discovery using inductive logic programming
    • M.Sternberg, S.Muggleton. Structure activity relationships and pharmacophore discovery using inductive logic programming. QSAR Comb Sci. 2003;22:510–518.
    • (2003) QSAR Comb Sci , vol.22 , pp. 510-518
    • Sternberg, M.1    Muggleton, S.2
  • 12
    • 1042265247 scopus 로고    scopus 로고
    • Approaches to measure chemical similarity: a review
    • N.Nikolova, J.Jaworska. Approaches to measure chemical similarity: a review. QSAR Combi Sci. 2003;22:1006–1012.
    • (2003) QSAR Combi Sci , vol.22 , pp. 1006-1012
    • Nikolova, N.1    Jaworska, J.2
  • 13
    • 0034192819 scopus 로고    scopus 로고
    • High-throughput screening
    • C.Grepin, C.Pernelle. High-throughput screening. Drug Disc Today. 2000;5(5):212–214.
    • (2000) Drug Disc Today , vol.5 , Issue.5 , pp. 212-214
    • Grepin, C.1    Pernelle, C.2
  • 14
    • 70349482953 scopus 로고    scopus 로고
    • Novel trends in high-throughput screening
    • L.M.Mayr, D.Bojanic. Novel trends in high-throughput screening. Cur Opin Pharmacol. 2009;9(5):580–588.
    • (2009) Cur Opin Pharmacol , vol.9 , Issue.5 , pp. 580-588
    • Mayr, L.M.1    Bojanic, D.2
  • 17
    • 84911446995 scopus 로고    scopus 로고
    • In silico machine learning methods in drug development
    • D.A.Dobchev, G.G.Pillai, M.Karelson. In silico machine learning methods in drug development. Curr Top Med Chem. 2014;14(16):1913–1922.
    • (2014) Curr Top Med Chem , vol.14 , Issue.16 , pp. 1913-1922
    • Dobchev, D.A.1    Pillai, G.G.2    Karelson, M.3
  • 19
    • 12344276385 scopus 로고    scopus 로고
    • Using artificial neural networks to drive virtual screening of combinatorial libraries
    • V.Lobanov. Using artificial neural networks to drive virtual screening of combinatorial libraries. Drug Disc Today. 2004;2(4):149–156.
    • (2004) Drug Disc Today , vol.2 , Issue.4 , pp. 149-156
    • Lobanov, V.1
  • 20
    • 51249194645 scopus 로고
    • A logical calculus of the ideas imminent in nervous activity
    • W.S.McCutloch, W.Pttts. A logical calculus of the ideas imminent in nervous activity. Bull Math Biophys. 1943;5:115–133.
    • (1943) Bull Math Biophys , vol.5 , pp. 115-133
    • McCutloch, W.S.1    Pttts, W.2
  • 24
    • 0002483594 scopus 로고    scopus 로고
    • Multivariate regression outperforms several robust architectures of neural networks in QSAR modeling
    • B.Lucic, N.Trinajstic. Multivariate regression outperforms several robust architectures of neural networks in QSAR modeling. J Chem Inf Comput Sci. 1999;39:121–132.
    • (1999) J Chem Inf Comput Sci , vol.39 , pp. 121-132
    • Lucic, B.1    Trinajstic, N.2
  • 26
    • 0001447184 scopus 로고
    • Neural network studies. 1. Comparison of overfitting and overtraining
    • I.V.Tetko, D.J.Livingstone, A.I.Luik. Neural network studies. 1. Comparison of overfitting and overtraining. J Chem Inf Comput Sci. 1995;35:826–833.
    • (1995) J Chem Inf Comput Sci , vol.35 , pp. 826-833
    • Tetko, I.V.1    Livingstone, D.J.2    Luik, A.I.3
  • 27
    • 58149381237 scopus 로고    scopus 로고
    • Bayesian regularization of neural networks
    • F.Burden, D.Winkler. Bayesian regularization of neural networks. Methods Mol Biol. 2008;458:25–44.
    • (2008) Methods Mol Biol , vol.458 , pp. 25-44
    • Burden, F.1    Winkler, D.2
  • 28
    • 0027212862 scopus 로고
    • Statistics using neural networks: chance effects
    • D.J.Livingstone, D.T.Manallack. Statistics using neural networks: chance effects. J Med Chem. 1993;36:1295–1297.
    • (1993) J Med Chem , vol.36 , pp. 1295-1297
    • Livingstone, D.J.1    Manallack, D.T.2
  • 29
    • 76749109588 scopus 로고    scopus 로고
    • An optimal self-pruning neural network and nonlinear descriptor selection in QSAR
    • F.Burden, D.Winkler. An optimal self-pruning neural network and nonlinear descriptor selection in QSAR. QSAR Combi Sci. 2009;28(10):1092–1097.
    • (2009) QSAR Combi Sci , vol.28 , Issue.10 , pp. 1092-1097
    • Burden, F.1    Winkler, D.2
  • 30
    • 0000513993 scopus 로고
    • Artificial neural networks: application and chance effects for QSAR data analysis
    • D.Manallack, D.J.Livingstone. Artificial neural networks: application and chance effects for QSAR data analysis. Med Chem Res. 1992;2:181–190.
    • (1992) Med Chem Res , vol.2 , pp. 181-190
    • Manallack, D.1    Livingstone, D.J.2
  • 31
    • 84959562437 scopus 로고    scopus 로고
    • Graph-based processing of macromolecular information
    • C.Munteanu, V.Aguiar-Pulido, A.Freire, et al. Graph-based processing of macromolecular information. Curr Bioinformatics. 2015;10(5):606–631.
    • (2015) Curr Bioinformatics , vol.10 , Issue.5 , pp. 606-631
    • Munteanu, C.1    Aguiar-Pulido, V.2    Freire, A.3
  • 32
    • 20444409456 scopus 로고    scopus 로고
    • Interpreting computational neural network QSAR models: a measure of descriptor importance
    • R.Guha, P.C.Jurs. Interpreting computational neural network QSAR models: a measure of descriptor importance. J Chem Inf Model. 2005;45(3):800–806.
    • (2005) J Chem Inf Model , vol.45 , Issue.3 , pp. 800-806
    • Guha, R.1    Jurs, P.C.2
  • 33
    • 84897486898 scopus 로고    scopus 로고
    • Mechanistic interpretation of artificial neural network-based QSAR model for prediction of cathepsin K inhibition potency
    • J.Borišek, V.Drgan, N.Minovski. Mechanistic interpretation of artificial neural network-based QSAR model for prediction of cathepsin K inhibition potency. J Chemometrics. 2014;28:272–281.
    • (2014) J Chemometrics , vol.28 , pp. 272-281
    • Borišek, J.1    Drgan, V.2    Minovski, N.3
  • 34
    • 80055096902 scopus 로고    scopus 로고
    • Comparative QSARs for antimalarial endochins: importance of descriptor-thinning and noise reduction prior to feature selection
    • P.Ojha, K.Roy. Comparative QSARs for antimalarial endochins: importance of descriptor-thinning and noise reduction prior to feature selection. Chemom Intell Lab Sys. 2011;109:146–161.
    • (2011) Chemom Intell Lab Sys , vol.109 , pp. 146-161
    • Ojha, P.1    Roy, K.2
  • 35
    • 0001728908 scopus 로고    scopus 로고
    • Quantum-chemical descriptors in QSAR/QSPR studies
    • M.Karelson, V.S.Lobanov, A.R.Katritzky. Quantum-chemical descriptors in QSAR/QSPR studies. Chem Rev. 1996;96:1027–1043.
    • (1996) Chem Rev , vol.96 , pp. 1027-1043
    • Karelson, M.1    Lobanov, V.S.2    Katritzky, A.R.3
  • 38
    • 1042265247 scopus 로고    scopus 로고
    • Approaches to measure chemical similarity – a review
    • N.Nikolova, J.Jaworska. Approaches to measure chemical similarity – a review. QSAR Comb Sci. 2003;22:1006–1026.
    • (2003) QSAR Comb Sci , vol.22 , pp. 1006-1026
    • Nikolova, N.1    Jaworska, J.2
  • 39
    • 84898775471 scopus 로고    scopus 로고
    • Subchronic oral and inhalation toxicities: a challenging attempt for modeling and prediction
    • D.Dobchev, I.Tulp, G.Karelson, et al. Subchronic oral and inhalation toxicities: a challenging attempt for modeling and prediction. Mol Informatics. 2013;32:793–01.
    • (2013) Mol Informatics , vol.32 , pp. 701-793
    • Dobchev, D.1    Tulp, I.2    Karelson, G.3
  • 40
    • 0034213103 scopus 로고    scopus 로고
    • Basic concepts of artificial neural network (ANN) modeling and its application in pharmaceutical research
    • S.Agatonovic-Kustrin, R.Beresford. Basic concepts of artificial neural network (ANN) modeling and its application in pharmaceutical research. J Pharm Biomed. 2000;22(5):717–727.
    • (2000) J Pharm Biomed , vol.22 , Issue.5 , pp. 717-727
    • Agatonovic-Kustrin, S.1    Beresford, R.2
  • 41
    • 84975277259 scopus 로고    scopus 로고
    • PubChem [Internet]. [Cited 2016 May 16]. Available from: https://pubchem.ncbi.nlm.nih.gov/.
  • 42
    • 78649386109 scopus 로고    scopus 로고
    • Exploiting PubChem for virtual screening
    • X.-Q.Xie. Exploiting PubChem for virtual screening. Expert Opin Drug Discov. 2010;5(12):1205–1220.
    • (2010) Expert Opin Drug Discov , vol.5 , Issue.12 , pp. 1205-1220
    • Xie, X.-Q.1
  • 43
    • 84975277273 scopus 로고    scopus 로고
    • cited, Available from
    • CheMbl database [Internet]. [cited 2016 May 16]. Available from: https://www.ebi.ac.uk/chembldb/.
    • (2016)
  • 44
    • 84975277245 scopus 로고    scopus 로고
    • cited, Available from
    • Matlab package [Internet]. [cited 2016 May 16]. Available from: http://www.mathworks.com.
    • (2016)
  • 45
    • 84975264851 scopus 로고    scopus 로고
    • cited, Available from
    • Mathematica package. [cited 2016 May 16]. Available from: https://www.wolfram.com/mathematica/.
    • (2016)
  • 46
    • 84975277236 scopus 로고    scopus 로고
    • cited, Available from
    • Statistica software [Internet]. [cited 2016 May 16]. Available from: www.statsoft.com.
    • (2016)
  • 47
    • 84975277237 scopus 로고    scopus 로고
    • cited, Available from
    • Neuralware software [Internet]. [cited 2016 May 16]. Available from: http://neuralware.com/.
    • (2016)
  • 48
    • 84975277250 scopus 로고    scopus 로고
    • cited, Available from
    • RRegrs package [Internet]. [cited 2016 May 16]. Available from: https://github.com/enanomapper/RRegrs/.
    • (2016)
  • 49
    • 84941650396 scopus 로고    scopus 로고
    • RRegrs: an R package for computer-aided model selection with multiple regression models
    • G.Tsiliki, C.Munteanu, J.Seoane, et al. RRegrs: an R package for computer-aided model selection with multiple regression models. J Chemoinformatics. 2015;7(1):1–16.
    • (2015) J Chemoinformatics , vol.7 , Issue.1 , pp. 1-16
    • Tsiliki, G.1    Munteanu, C.2    Seoane, J.3
  • 50
    • 84975276526 scopus 로고    scopus 로고
    • cited, Available from
    • Virtual computational chemistry lab [Internet]. [cited 2016 May 16]. Available from: http://www.vcclab.org.
    • (2016)
  • 51
    • 27344459398 scopus 로고    scopus 로고
    • Virtual computational chemistry laboratory - design and description
    • I.V.Tetko, J.Gasteiger, R.Todeschini, et al. Virtual computational chemistry laboratory - design and description. J Comput Aid Mol Des. 2005;19:453–463.
    • (2005) J Comput Aid Mol Des , vol.19 , pp. 453-463
    • Tetko, I.V.1    Gasteiger, J.2    Todeschini, R.3
  • 52
    • 84975272529 scopus 로고    scopus 로고
    • cited, Available from
    • NL-MIND-BEST service [Internet]. [cited 2016 May 16]. Available from: http://bio-aims.udc.es/NL-MIND-BEST.php.
    • (2016)
  • 54
    • 40049095552 scopus 로고    scopus 로고
    • QSAR study of neuraminidase inhibitors based on heuristic method and radial basis function network
    • W.J.Lu, Y.L.Chen, W.P.Ma, et al. QSAR study of neuraminidase inhibitors based on heuristic method and radial basis function network. Eur J Med Chem. 2008;43:569–576.
    • (2008) Eur J Med Chem , vol.43 , pp. 569-576
    • Lu, W.J.1    Chen, Y.L.2    Ma, W.P.3
  • 55
    • 34248389661 scopus 로고    scopus 로고
    • QSPR analysis for intrinsic viscosity of polymer solutions by means of GA-MLR and RBFNN
    • F.Gharagheizi. QSPR analysis for intrinsic viscosity of polymer solutions by means of GA-MLR and RBFNN. Comput Mater Sci. 2007;40:159–167.
    • (2007) Comput Mater Sci , vol.40 , pp. 159-167
    • Gharagheizi, F.1
  • 57
    • 70649103872 scopus 로고    scopus 로고
    • Clustering: a neural network approach
    • K.-L.Du. Clustering: a neural network approach. Neural Net. 2010;23:89–107.
    • (2010) Neural Net , vol.23 , pp. 89-107
    • Du, K.-L.1
  • 59
    • 84975252720 scopus 로고    scopus 로고
    • Application of neural networks to large dataset QSAR, virtual screening, and library design
    • English L.B., (ed), Clifton (NY):: Springer Protocols
    • D.A.Winkler, F.R.Burden. Application of neural networks to large dataset QSAR, virtual screening, and library design. In: L.B.English, editor. Combinatorial library. Methods in molecular biology. Clifton (NY): Springer Protocols; 2002.
    • (2002) Combinatorial library. Methods in molecular biology
    • Winkler, D.A.1    Burden, F.R.2
  • 61
    • 0037424611 scopus 로고    scopus 로고
    • Artificial neural networks and genetic algorithms in QSAR
    • S.P.Niculescu. Artificial neural networks and genetic algorithms in QSAR. J Mol Struc. 2003;622(1–2):71–83.
    • (2003) J Mol Struc , vol.622 , Issue.1-2 , pp. 71-83
    • Niculescu, S.P.1
  • 63
    • 84876671465 scopus 로고    scopus 로고
    • Chemoinformatics for rational discovery of safe antibacterial drugs: simultaneous predictions of biological activity against streptococci and toxicological profiles in laboratory animals
    • A.Speck-Planche, V.Kleandrova, M.Cordeiro. Chemoinformatics for rational discovery of safe antibacterial drugs: simultaneous predictions of biological activity against streptococci and toxicological profiles in laboratory animals. Bioorg Med Chem. 2013;21(10):2727–2732.
    • (2013) Bioorg Med Chem , vol.21 , Issue.10 , pp. 2727-2732
    • Speck-Planche, A.1    Kleandrova, V.2    Cordeiro, M.3
  • 64
    • 84870225630 scopus 로고    scopus 로고
    • Molecular fingerprint-based artificial neural networks QSAR (FANN-QSAR) for ligand biological activity predictions
    • K.Myint, L.R.Wang, Q.Tong, et al. Molecular fingerprint-based artificial neural networks QSAR (FANN-QSAR) for ligand biological activity predictions. Mol Pharmaceutics. 2012;9:2912–2923.
    • (2012) Mol Pharmaceutics , vol.9 , pp. 2912-2923
    • Myint, K.1    Wang, L.R.2    Tong, Q.3
  • 65
    • 84975227941 scopus 로고    scopus 로고
    • cited, May 16, Available from
    • NCI database [Internet]. [cited 2016 May 16]. Available from: http://dctd.cancer.gov/ResearchResources/default.htm.
    • (2016)
  • 66
    • 84888081169 scopus 로고    scopus 로고
    • Artificial neural network modeling of antimycobacterial chemical space to introduce efficient descriptors employed for drug design
    • S.Sardari, H.Kohanzad, G.Ghavami. Artificial neural network modeling of antimycobacterial chemical space to introduce efficient descriptors employed for drug design. Chemom Intel Lab Sys. 2014;130:151–158.
    • (2014) Chemom Intel Lab Sys , vol.130 , pp. 151-158
    • Sardari, S.1    Kohanzad, H.2    Ghavami, G.3
  • 67
    • 84866731321 scopus 로고    scopus 로고
    • Prediction of aqueous solubility of drug-like molecules using a novel algorithm for automatic adjustment of relative importance of descriptors implemented in counter-propagation artificial neural networks
    • S.Eric, M.Kalinic, A.Popovic, et al. Prediction of aqueous solubility of drug-like molecules using a novel algorithm for automatic adjustment of relative importance of descriptors implemented in counter-propagation artificial neural networks. Int J Pharm. 2012;437(1–2):232–241.
    • (2012) Int J Pharm , vol.437 , Issue.1-2 , pp. 232-241
    • Eric, S.1    Kalinic, M.2    Popovic, A.3
  • 68
    • 84857732011 scopus 로고    scopus 로고
    • Discovery of 2-(2-benzoxazoyl amino)-4-aryl-5-cyanopyrimidine as negative allosteric modulators (NAMs) of metabotropic glutamate receptor 5 (mGlu5): from an artificial neural network virtual screen to an in vivo tool compound
    • R.Mueller, E.S.Dawson, J.Meiler, et al. Discovery of 2-(2-benzoxazoyl amino)-4-aryl-5-cyanopyrimidine as negative allosteric modulators (NAMs) of metabotropic glutamate receptor 5 (mGlu5): from an artificial neural network virtual screen to an in vivo tool compound. Chemom Med Chem. 2012;7:406–414.
    • (2012) Chemom Med Chem , vol.7 , pp. 406-414
    • Mueller, R.1    Dawson, E.S.2    Meiler, J.3
  • 69
    • 79251513628 scopus 로고    scopus 로고
    • Artificial neural network-based drug design for diabetes mellitus using flavonoids
    • J.C.Patra, B.H.Chua. Artificial neural network-based drug design for diabetes mellitus using flavonoids. J Comput Chem. 2011;32(4):555–567.
    • (2011) J Comput Chem , vol.32 , Issue.4 , pp. 555-567
    • Patra, J.C.1    Chua, B.H.2
  • 70
    • 70350022343 scopus 로고    scopus 로고
    • Artificial neural networks-based approach to design ARIs using QSAR for diabetes mellitus
    • J.C.Patra, O.Singh. Artificial neural networks-based approach to design ARIs using QSAR for diabetes mellitus. J Comput Chem. 2009;30:2494–2508.
    • (2009) J Comput Chem , vol.30 , pp. 2494-2508
    • Patra, J.C.1    Singh, O.2
  • 71
    • 77953662145 scopus 로고    scopus 로고
    • Prediction of cell-penetrating peptides using artificial neural networks
    • D.A.Dobchev, I.Mager, I.Tulp, et al. Prediction of cell-penetrating peptides using artificial neural networks. Cur Comp-Aided Drug Des. 2010;6:79–89.
    • (2010) Cur Comp-Aided Drug Des , vol.6 , pp. 79-89
    • Dobchev, D.A.1    Mager, I.2    Tulp, I.3
  • 72
    • 78651280055 scopus 로고    scopus 로고
    • Prediction of the hERG potassium channel inhibition potential with use of the artificial neural networks
    • S.Polak, B.Wisniowska, M.Ahamadi, et al. Prediction of the hERG potassium channel inhibition potential with use of the artificial neural networks. Adv Intel Soft Comput. 2010;75:91–99.
    • (2010) Adv Intel Soft Comput , vol.75 , pp. 91-99
    • Polak, S.1    Wisniowska, B.2    Ahamadi, M.3
  • 73
    • 54949121773 scopus 로고    scopus 로고
    • Artificial neural networks in ADMET modeling: prediction of blood-brain barrier permeation
    • A.Guerra, J.A.Paez, N.E.Campillo. Artificial neural networks in ADMET modeling: prediction of blood-brain barrier permeation. QSAR Combi Sci. 2007;27(5):586–594.
    • (2007) QSAR Combi Sci , vol.27 , Issue.5 , pp. 586-594
    • Guerra, A.1    Paez, J.A.2    Campillo, N.E.3
  • 74
    • 84910010871 scopus 로고    scopus 로고
    • Diverse classification models for anti-hepatitis C virus activity of thiourea derivatives
    • N.Khatri, V.Lather, A.Madan. Diverse classification models for anti-hepatitis C virus activity of thiourea derivatives. Chemom Intel Lab Sys. 2015;140:13–21.
    • (2015) Chemom Intel Lab Sys , vol.140 , pp. 13-21
    • Khatri, N.1    Lather, V.2    Madan, A.3
  • 75
    • 44349110097 scopus 로고    scopus 로고
    • Identification of gene transcript signatures predictive for estrogen receptor and lymph node status using a stepwise forward selection artificial neural network modeling approach
    • L.Lancashire, R.C.Rees, G.Ball. Identification of gene transcript signatures predictive for estrogen receptor and lymph node status using a stepwise forward selection artificial neural network modeling approach. Art Intel Med. 2008;43:99–111.
    • (2008) Art Intel Med , vol.43 , pp. 99-111
    • Lancashire, L.1    Rees, R.C.2    Ball, G.3
  • 76
    • 33744824393 scopus 로고    scopus 로고
    • Skin permeation rate as a function of chemical structure
    • A.R.Katritzky, D.A.Dobchev, D.Fara, et al. Skin permeation rate as a function of chemical structure. J Med Chem. 2006;49(11):3305–3314.
    • (2006) J Med Chem , vol.49 , Issue.11 , pp. 3305-3314
    • Katritzky, A.R.1    Dobchev, D.A.2    Fara, D.3
  • 77
    • 44949189671 scopus 로고    scopus 로고
    • Synthesis and bioassay of novel mosquito repellents predicted from chemical structure
    • A.R.Katritzky, Z.Q.Wang, S.Slavov, et al. Synthesis and bioassay of novel mosquito repellents predicted from chemical structure. Proc Natl Acad Sci. 2008;105:7359–7364.
    • (2008) Proc Natl Acad Sci , vol.105 , pp. 7359-7364
    • Katritzky, A.R.1    Wang, Z.Q.2    Slavov, S.3
  • 78
    • 84896938175 scopus 로고    scopus 로고
    • ANN multiscale model of anti-HIV drugs activity vs AIDS prevalence in the US at county level based on information indices of molecular graphs and social networks
    • H.González-Díaz, D.M.Herrera-Ibatá, A.Duardo-Sánchez, et al. ANN multiscale model of anti-HIV drugs activity vs AIDS prevalence in the US at county level based on information indices of molecular graphs and social networks. J Chem Inf Model. 2014;54(3):744–755.
    • (2014) J Chem Inf Model , vol.54 , Issue.3 , pp. 744-755
    • González-Díaz, H.1    Herrera-Ibatá, D.M.2    Duardo-Sánchez, A.3
  • 79
    • 0141882047 scopus 로고    scopus 로고
    • History and evolution of the pharmacophore concept in computer-aided drug design
    • O.Guner. History and evolution of the pharmacophore concept in computer-aided drug design. Curr Top Med Chem. 2002;2(12):1321–1332.
    • (2002) Curr Top Med Chem , vol.2 , Issue.12 , pp. 1321-1332
    • Guner, O.1
  • 80
    • 0347755449 scopus 로고    scopus 로고
    • Predicting molecular interactions in silico: I. A guide to pharmacophore identification and its applications to drug design
    • O.Dror, A.Shulman-Peleg, R.Nussinov, et al. Predicting molecular interactions in silico: I. A guide to pharmacophore identification and its applications to drug design. Curr Med Chem. 2004;11(1):71–90.
    • (2004) Curr Med Chem , vol.11 , Issue.1 , pp. 71-90
    • Dror, O.1    Shulman-Peleg, A.2    Nussinov, R.3
  • 82
    • 0027944195 scopus 로고
    • Molecular similarity indices in a comparative analysis (CoMSIA) of drug molecules to correlate and predict their biological activity
    • G.Klebe, U.Abraham, T.Mietzner. Molecular similarity indices in a comparative analysis (CoMSIA) of drug molecules to correlate and predict their biological activity. J Med Chem. 1994;37:4130–4146.
    • (1994) J Med Chem , vol.37 , pp. 4130-4146
    • Klebe, G.1    Abraham, U.2    Mietzner, T.3
  • 83
    • 1442293369 scopus 로고    scopus 로고
    • Current state and perspectives of 3D-QSAR
    • M.Akamatsu. Current state and perspectives of 3D-QSAR. Curr Top Med Chem. 2002;2(12):1381–1394.
    • (2002) Curr Top Med Chem , vol.2 , Issue.12 , pp. 1381-1394
    • Akamatsu, M.1
  • 84
    • 23844477186 scopus 로고    scopus 로고
    • Application of 3D-QSAR techniques in anti-HIV-1 drug design-an overview
    • A.K.Debnath. Application of 3D-QSAR techniques in anti-HIV-1 drug design-an overview. Curr Pharm Des. 2005;11(24):3091–3110.
    • (2005) Curr Pharm Des , vol.11 , Issue.24 , pp. 3091-3110
    • Debnath, A.K.1
  • 85
    • 14544300624 scopus 로고    scopus 로고
    • Matrix metalloproteinase inhibitors: a review on pharmacophore mapping and (Q)SARs results
    • C.A.Kontogiorgis, P.Papaioannou, D.J.Hadjipavlou-Litina. Matrix metalloproteinase inhibitors: a review on pharmacophore mapping and (Q)SARs results. Curr Med Chem. 2005;12(3):339–355.
    • (2005) Curr Med Chem , vol.12 , Issue.3 , pp. 339-355
    • Kontogiorgis, C.A.1    Papaioannou, P.2    Hadjipavlou-Litina, D.J.3
  • 86
    • 1642350377 scopus 로고    scopus 로고
    • Neuronal nicotinic acetylcholine receptor agonists: pharmacophores, evolutionary QSAR and 3D-QSAR models
    • O.Nicolotti, C.Altomare, M.Pellegrini-Calace, et al. Neuronal nicotinic acetylcholine receptor agonists: pharmacophores, evolutionary QSAR and 3D-QSAR models. Curr Top Med Chem. 2004;4(3):335–360.
    • (2004) Curr Top Med Chem , vol.4 , Issue.3 , pp. 335-360
    • Nicolotti, O.1    Altomare, C.2    Pellegrini-Calace, M.3
  • 87
    • 28844455041 scopus 로고    scopus 로고
    • 3D-QSAR study of ring substituted quinoline class of anti-tuberculosis agents
    • A.Nayyar, A.Malde, R.Jain, et al. 3D-QSAR study of ring substituted quinoline class of anti-tuberculosis agents. Bioorg Med Chem. 2006;14(3):847–856.
    • (2006) Bioorg Med Chem , vol.14 , Issue.3 , pp. 847-856
    • Nayyar, A.1    Malde, A.2    Jain, R.3
  • 88
    • 3843057862 scopus 로고    scopus 로고
    • Biology and chemistry of the inhibition of nitric oxide synthases by pteridine-derivatives as therapeutic agents
    • H.Matter, P.Kotsonis. Biology and chemistry of the inhibition of nitric oxide synthases by pteridine-derivatives as therapeutic agents. Med Res Rev. 2004;24(5):662–684.
    • (2004) Med Res Rev , vol.24 , Issue.5 , pp. 662-684
    • Matter, H.1    Kotsonis, P.2
  • 89
    • 28844482974 scopus 로고    scopus 로고
    • Molecular modeling and 3D-QSAR studies of indolomorphinan derivatives as kappa opioid antagonists
    • W.Li, Y.Tang, Y.L.Zheng, et al. Molecular modeling and 3D-QSAR studies of indolomorphinan derivatives as kappa opioid antagonists. Bioorg Med Chem. 2006;14(3):601–610.
    • (2006) Bioorg Med Chem , vol.14 , Issue.3 , pp. 601-610
    • Li, W.1    Tang, Y.2    Zheng, Y.L.3
  • 90
    • 1342310847 scopus 로고    scopus 로고
    • Computational vaccinology: quantitative approaches
    • D.R.Flower, H.McSparron, M.J.Blythe, et al. Computational vaccinology: quantitative approaches. Novartis Found Symp. 2003;254:102–120.
    • (2003) Novartis Found Symp , vol.254 , pp. 102-120
    • Flower, D.R.1    McSparron, H.2    Blythe, M.J.3
  • 91
    • 0242584957 scopus 로고    scopus 로고
    • Ligand-based computer-aided pesticide design. A review of applications of the CoMFA and CoMSIA methodologies
    • B.Bordas, T.Komives, A.Lopata. Ligand-based computer-aided pesticide design. A review of applications of the CoMFA and CoMSIA methodologies. Pest Manag Sci. 2003;59(4):393–400.
    • (2003) Pest Manag Sci , vol.59 , Issue.4 , pp. 393-400
    • Bordas, B.1    Komives, T.2    Lopata, A.3
  • 92
    • 0033970811 scopus 로고    scopus 로고
    • Neural networks are useful tools for drug design
    • G.Schneider. Neural networks are useful tools for drug design. Neural Net. 2000;13:15–16.
    • (2000) Neural Net , vol.13 , pp. 15-16
    • Schneider, G.1
  • 93
    • 0023515080 scopus 로고
    • Counterpropagation networks
    • R.Hecht-Nielsen. Counterpropagation networks. Appl Opt. 1987;26(23):4979–4983.
    • (1987) Appl Opt , vol.26 , Issue.23 , pp. 4979-4983
    • Hecht-Nielsen, R.1
  • 94
    • 84975245268 scopus 로고    scopus 로고
    • Predicting the absorption potential of chemical compounds through a deep learning approach
    • M.Shin, D.Jang, H.Nam, et al. Predicting the absorption potential of chemical compounds through a deep learning approach. IEEE/ACM Trans Comput Bio Bioinf. 2016;PP(99):1–1.
    • (2016) IEEE/ACM Trans Comput Bio Bioinf , vol.PP , Issue.99 , pp. 1
    • Shin, M.1    Jang, D.2    Nam, H.3
  • 95
    • 84975287014 scopus 로고    scopus 로고
    • cited, Available from
    • ScienceDirect indexing [Internet]. [cited 2016 May 16]. Available from: http://www.sciencedirect.com/.
    • (2016)
  • 96
    • 0032735695 scopus 로고    scopus 로고
    • Neural networks in drug discovery: have they lived up to their promise?
    • D.Manallack, D.Livingstone. Neural networks in drug discovery: have they lived up to their promise? Eur J Med Chem. 1999;34:195−208.
    • (1999) Eur J Med Chem , vol.34 , pp. 195-208
    • Manallack, D.1    Livingstone, D.2
  • 97
    • 84975249914 scopus 로고    scopus 로고
    • cited, Available from
    • Dragon software [Internet]. [cited 2016 May 16]. Available from: http://www.talete.mi.it/products/dragon_description.htm.
    • (2016)
  • 98
    • 84975311810 scopus 로고    scopus 로고
    • cited, Available from
    • CODESA-PRO software [Internet]. [cited 2016 May 16]. Available from: http://codessa-pro.com/.
    • (2016)
  • 99
    • 84975249889 scopus 로고    scopus 로고
    • Chemical informatics functionality in R
    • R.Guha. Chemical informatics functionality in R. J Stat Soft. 2007;6:4–18.
    • (2007) J Stat Soft , vol.6 , pp. 4-18
    • Guha, R.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.