-
1
-
-
62349112885
-
Covariance regularization by thresholding
-
Bickel P.J., Levina E. Covariance regularization by thresholding. Annals of Statistics 2008, 36:2577-2604.
-
(2008)
Annals of Statistics
, vol.36
, pp. 2577-2604
-
-
Bickel, P.J.1
Levina, E.2
-
2
-
-
39449104740
-
Pattern recognition and machine learning
-
Springer Science+Business Media, New York, NY
-
Bishop C.M. Pattern recognition and machine learning. Information Science and Statistics 2006, Springer Science+Business Media, New York, NY.
-
(2006)
Information Science and Statistics
-
-
Bishop, C.M.1
-
3
-
-
1642317557
-
Gene expression profile of adult T-cell acute lymphocytic leukemia identifies distinct subsets of patients with different response to therapy and survival
-
Chiaretti S., Li X., Gentleman R., Vitale A., Vignetti M., Mandelli F., Ritz J., Foa R. Gene expression profile of adult T-cell acute lymphocytic leukemia identifies distinct subsets of patients with different response to therapy and survival. Blood 2004, 103:2771-2778.
-
(2004)
Blood
, vol.103
, pp. 2771-2778
-
-
Chiaretti, S.1
Li, X.2
Gentleman, R.3
Vitale, A.4
Vignetti, M.5
Mandelli, F.6
Ritz, J.7
Foa, R.8
-
4
-
-
34250263445
-
Smoothing noisy data with spline functions
-
Craven P., Wahba G. Smoothing noisy data with spline functions. Numerische Mathematik 1979, 31:377-403.
-
(1979)
Numerische Mathematik
, vol.31
, pp. 377-403
-
-
Craven, P.1
Wahba, G.2
-
5
-
-
0001038826
-
Covariance selection
-
Dempster A.P. Covariance selection. Biometrics 1972, 28:157-175.
-
(1972)
Biometrics
, vol.28
, pp. 157-175
-
-
Dempster, A.P.1
-
6
-
-
79954594490
-
-
Bayesian covariance selection. Working Paper, ISDS, Duke University.
-
Dobra, A., West, M., 2004. Bayesian covariance selection. Working Paper, ISDS, Duke University.
-
(2004)
-
-
Dobra, A.1
West, M.2
-
7
-
-
21444449622
-
A generalized approximate cross validation for smoothing splines with non-Gaussian data
-
Dong X.A., Wahba G. A generalized approximate cross validation for smoothing splines with non-Gaussian data. Statistica Sinica 1996, 6:675-692.
-
(1996)
Statistica Sinica
, vol.6
, pp. 675-692
-
-
Dong, X.A.1
Wahba, G.2
-
8
-
-
73949117731
-
Network exploration via the adaptive lasso and SCAD penalties
-
Fan J.Q., Feng Y., Wu Y. Network exploration via the adaptive lasso and SCAD penalties. Annals of Applied Statistics 2009, 3:521-541.
-
(2009)
Annals of Applied Statistics
, vol.3
, pp. 521-541
-
-
Fan, J.Q.1
Feng, Y.2
Wu, Y.3
-
9
-
-
1542784498
-
Variable selection via nonconcave penalized likelihood and its oracle properties
-
Fan J.Q., Li R.Z. Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American Statistical Association 2001, 96:1348-1360.
-
(2001)
Journal of the American Statistical Association
, vol.96
, pp. 1348-1360
-
-
Fan, J.Q.1
Li, R.Z.2
-
10
-
-
24344502730
-
Nonconcave penalized likelihood with a diverging number of parameters
-
Fan J.Q., Peng H. Nonconcave penalized likelihood with a diverging number of parameters. Annals of Statistics 2004, 32:928-961.
-
(2004)
Annals of Statistics
, vol.32
, pp. 928-961
-
-
Fan, J.Q.1
Peng, H.2
-
11
-
-
45849134070
-
Sparse inverse covariance estimation with the graphical lasso
-
Friedman J., Hastie T., Tibshirani R. Sparse inverse covariance estimation with the graphical lasso. Biostatistics 2008, 9:432-441.
-
(2008)
Biostatistics
, vol.9
, pp. 432-441
-
-
Friedman, J.1
Hastie, T.2
Tibshirani, R.3
-
12
-
-
79954592129
-
-
Sparsistency and rates of convergence in large covariance matrices estimation. Arxiv online 〈〉
-
Lam, C., Fan, J.Q., 2007. Sparsistency and rates of convergence in large covariance matrices estimation. Arxiv online http://www.citebase.org/abstract?idoai:arXiv.org:0711.3933.
-
(2007)
-
-
Lam, C.1
Fan, J.Q.2
-
13
-
-
33645568358
-
Gradient directed regularization for sparse Gaussian concentration graphs, with applications to inference of genetic networks
-
Li H.Z., Gui J. Gradient directed regularization for sparse Gaussian concentration graphs, with applications to inference of genetic networks. Biostatistics 2006, 7:302-317.
-
(2006)
Biostatistics
, vol.7
, pp. 302-317
-
-
Li, H.Z.1
Gui, J.2
-
14
-
-
33747163541
-
High-dimensional graphs and variable selection with the Lasso
-
Meinshausen N., Buhlmann P. High-dimensional graphs and variable selection with the Lasso. Annals of Statistics 2006, 34:1436-1462.
-
(2006)
Annals of Statistics
, vol.34
, pp. 1436-1462
-
-
Meinshausen, N.1
Buhlmann, P.2
-
15
-
-
0642336882
-
An asymptotic theory for linear model selection
-
Shao J. An asymptotic theory for linear model selection. Statistica Sinica 1997, 7:221-242.
-
(1997)
Statistica Sinica
, vol.7
, pp. 221-242
-
-
Shao, J.1
-
16
-
-
0004272666
-
-
Cambridge University Press, Cambridge, UK, New York
-
van der Vaart A.W. Asymptotic Statistics 1998, Cambridge University Press, Cambridge, UK, New York.
-
(1998)
Asymptotic Statistics
-
-
van der Vaart, A.W.1
-
18
-
-
34548536572
-
Tuning parameter selectors for the smoothly clipped absolute deviation method
-
Wang H., Li R., Tsai C.L. Tuning parameter selectors for the smoothly clipped absolute deviation method. Biometrika 2007, 94:553-568.
-
(2007)
Biometrika
, vol.94
, pp. 553-568
-
-
Wang, H.1
Li, R.2
Tsai, C.L.3
-
20
-
-
27944460480
-
Can the strengths of AIC and BIC be shared? A conflict between model identification and regression estimation
-
Yang Y.H. Can the strengths of AIC and BIC be shared? A conflict between model identification and regression estimation. Biometrika 2005, 92:937-950.
-
(2005)
Biometrika
, vol.92
, pp. 937-950
-
-
Yang, Y.H.1
-
21
-
-
33947115409
-
Model selection and estimation in the Gaussian graphical model
-
Yuan M., Lin Y. Model selection and estimation in the Gaussian graphical model. Biometrika 2007, 94:19-35.
-
(2007)
Biometrika
, vol.94
, pp. 19-35
-
-
Yuan, M.1
Lin, Y.2
|