메뉴 건너뛰기




Volumn 141, Issue 8, 2011, Pages 2839-2848

Shrinkage tuning parameter selection in precision matrices estimation

Author keywords

Adaptive lasso; BIC; Generalized approximate cross validation; Precision matrix; SCAD penalty

Indexed keywords


EID: 79954608624     PISSN: 03783758     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jspi.2011.03.008     Document Type: Article
Times cited : (31)

References (23)
  • 1
    • 62349112885 scopus 로고    scopus 로고
    • Covariance regularization by thresholding
    • Bickel P.J., Levina E. Covariance regularization by thresholding. Annals of Statistics 2008, 36:2577-2604.
    • (2008) Annals of Statistics , vol.36 , pp. 2577-2604
    • Bickel, P.J.1    Levina, E.2
  • 2
    • 39449104740 scopus 로고    scopus 로고
    • Pattern recognition and machine learning
    • Springer Science+Business Media, New York, NY
    • Bishop C.M. Pattern recognition and machine learning. Information Science and Statistics 2006, Springer Science+Business Media, New York, NY.
    • (2006) Information Science and Statistics
    • Bishop, C.M.1
  • 3
    • 1642317557 scopus 로고    scopus 로고
    • Gene expression profile of adult T-cell acute lymphocytic leukemia identifies distinct subsets of patients with different response to therapy and survival
    • Chiaretti S., Li X., Gentleman R., Vitale A., Vignetti M., Mandelli F., Ritz J., Foa R. Gene expression profile of adult T-cell acute lymphocytic leukemia identifies distinct subsets of patients with different response to therapy and survival. Blood 2004, 103:2771-2778.
    • (2004) Blood , vol.103 , pp. 2771-2778
    • Chiaretti, S.1    Li, X.2    Gentleman, R.3    Vitale, A.4    Vignetti, M.5    Mandelli, F.6    Ritz, J.7    Foa, R.8
  • 4
    • 34250263445 scopus 로고
    • Smoothing noisy data with spline functions
    • Craven P., Wahba G. Smoothing noisy data with spline functions. Numerische Mathematik 1979, 31:377-403.
    • (1979) Numerische Mathematik , vol.31 , pp. 377-403
    • Craven, P.1    Wahba, G.2
  • 5
    • 0001038826 scopus 로고
    • Covariance selection
    • Dempster A.P. Covariance selection. Biometrics 1972, 28:157-175.
    • (1972) Biometrics , vol.28 , pp. 157-175
    • Dempster, A.P.1
  • 6
    • 79954594490 scopus 로고    scopus 로고
    • Bayesian covariance selection. Working Paper, ISDS, Duke University.
    • Dobra, A., West, M., 2004. Bayesian covariance selection. Working Paper, ISDS, Duke University.
    • (2004)
    • Dobra, A.1    West, M.2
  • 7
    • 21444449622 scopus 로고    scopus 로고
    • A generalized approximate cross validation for smoothing splines with non-Gaussian data
    • Dong X.A., Wahba G. A generalized approximate cross validation for smoothing splines with non-Gaussian data. Statistica Sinica 1996, 6:675-692.
    • (1996) Statistica Sinica , vol.6 , pp. 675-692
    • Dong, X.A.1    Wahba, G.2
  • 8
    • 73949117731 scopus 로고    scopus 로고
    • Network exploration via the adaptive lasso and SCAD penalties
    • Fan J.Q., Feng Y., Wu Y. Network exploration via the adaptive lasso and SCAD penalties. Annals of Applied Statistics 2009, 3:521-541.
    • (2009) Annals of Applied Statistics , vol.3 , pp. 521-541
    • Fan, J.Q.1    Feng, Y.2    Wu, Y.3
  • 9
    • 1542784498 scopus 로고    scopus 로고
    • Variable selection via nonconcave penalized likelihood and its oracle properties
    • Fan J.Q., Li R.Z. Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American Statistical Association 2001, 96:1348-1360.
    • (2001) Journal of the American Statistical Association , vol.96 , pp. 1348-1360
    • Fan, J.Q.1    Li, R.Z.2
  • 10
    • 24344502730 scopus 로고    scopus 로고
    • Nonconcave penalized likelihood with a diverging number of parameters
    • Fan J.Q., Peng H. Nonconcave penalized likelihood with a diverging number of parameters. Annals of Statistics 2004, 32:928-961.
    • (2004) Annals of Statistics , vol.32 , pp. 928-961
    • Fan, J.Q.1    Peng, H.2
  • 11
    • 45849134070 scopus 로고    scopus 로고
    • Sparse inverse covariance estimation with the graphical lasso
    • Friedman J., Hastie T., Tibshirani R. Sparse inverse covariance estimation with the graphical lasso. Biostatistics 2008, 9:432-441.
    • (2008) Biostatistics , vol.9 , pp. 432-441
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 12
    • 79954592129 scopus 로고    scopus 로고
    • Sparsistency and rates of convergence in large covariance matrices estimation. Arxiv online 〈〉
    • Lam, C., Fan, J.Q., 2007. Sparsistency and rates of convergence in large covariance matrices estimation. Arxiv online http://www.citebase.org/abstract?idoai:arXiv.org:0711.3933.
    • (2007)
    • Lam, C.1    Fan, J.Q.2
  • 13
    • 33645568358 scopus 로고    scopus 로고
    • Gradient directed regularization for sparse Gaussian concentration graphs, with applications to inference of genetic networks
    • Li H.Z., Gui J. Gradient directed regularization for sparse Gaussian concentration graphs, with applications to inference of genetic networks. Biostatistics 2006, 7:302-317.
    • (2006) Biostatistics , vol.7 , pp. 302-317
    • Li, H.Z.1    Gui, J.2
  • 14
    • 33747163541 scopus 로고    scopus 로고
    • High-dimensional graphs and variable selection with the Lasso
    • Meinshausen N., Buhlmann P. High-dimensional graphs and variable selection with the Lasso. Annals of Statistics 2006, 34:1436-1462.
    • (2006) Annals of Statistics , vol.34 , pp. 1436-1462
    • Meinshausen, N.1    Buhlmann, P.2
  • 15
    • 0642336882 scopus 로고    scopus 로고
    • An asymptotic theory for linear model selection
    • Shao J. An asymptotic theory for linear model selection. Statistica Sinica 1997, 7:221-242.
    • (1997) Statistica Sinica , vol.7 , pp. 221-242
    • Shao, J.1
  • 16
    • 0004272666 scopus 로고    scopus 로고
    • Cambridge University Press, Cambridge, UK, New York
    • van der Vaart A.W. Asymptotic Statistics 1998, Cambridge University Press, Cambridge, UK, New York.
    • (1998) Asymptotic Statistics
    • van der Vaart, A.W.1
  • 18
    • 34548536572 scopus 로고    scopus 로고
    • Tuning parameter selectors for the smoothly clipped absolute deviation method
    • Wang H., Li R., Tsai C.L. Tuning parameter selectors for the smoothly clipped absolute deviation method. Biometrika 2007, 94:553-568.
    • (2007) Biometrika , vol.94 , pp. 553-568
    • Wang, H.1    Li, R.2    Tsai, C.L.3
  • 20
    • 27944460480 scopus 로고    scopus 로고
    • Can the strengths of AIC and BIC be shared? A conflict between model identification and regression estimation
    • Yang Y.H. Can the strengths of AIC and BIC be shared? A conflict between model identification and regression estimation. Biometrika 2005, 92:937-950.
    • (2005) Biometrika , vol.92 , pp. 937-950
    • Yang, Y.H.1
  • 21
    • 33947115409 scopus 로고    scopus 로고
    • Model selection and estimation in the Gaussian graphical model
    • Yuan M., Lin Y. Model selection and estimation in the Gaussian graphical model. Biometrika 2007, 94:19-35.
    • (2007) Biometrika , vol.94 , pp. 19-35
    • Yuan, M.1    Lin, Y.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.