-
1
-
-
0001038826
-
Covariance selection
-
A.P.Dempster. Covariance selection. Biometrics. 1972;157–175. doi: 10.2307/2528966
-
(1972)
Biometrics
, pp. 157-175
-
-
Dempster, A.P.1
-
5
-
-
33947115409
-
Model selection and estimation in the Gaussian graphical model
-
M.Yuan, Y.Lin. Model selection and estimation in the Gaussian graphical model. Biometrika. 2007;94:19–35. doi: 10.1093/biomet/asm018
-
(2007)
Biometrika
, vol.94
, pp. 19-35
-
-
Yuan, M.1
Lin, Y.2
-
6
-
-
41549101939
-
Model selection through sparse maximum likelihood estimation for multivariate gaussian or binary data
-
O.Banerjee, L.El Ghaoui, A.d'Aspremont. Model selection through sparse maximum likelihood estimation for multivariate gaussian or binary data. J Mach Learn Res. 2008;9:485–516.
-
(2008)
J Mach Learn Res
, vol.9
, pp. 485-516
-
-
Banerjee, O.1
El Ghaoui, L.2
d'Aspremont, A.3
-
7
-
-
45849134070
-
Sparse inverse covariance estimation with the graphical lasso
-
J.Friedman, T.Hastie, R.Tibshirani. Sparse inverse covariance estimation with the graphical lasso. Biostatistics. 2008;9:432–441. doi: 10.1093/biostatistics/kxm045
-
(2008)
Biostatistics
, vol.9
, pp. 432-441
-
-
Friedman, J.1
Hastie, T.2
Tibshirani, R.3
-
8
-
-
73949117731
-
Network exploration via the adaptive LASSO and SCAD penalties
-
J.Fan, Y.Feng, Y.Wu. Network exploration via the adaptive LASSO and SCAD penalties. Ann Appl Stat. 2009;3:521–541. doi: 10.1214/08-AOAS215
-
(2009)
Ann Appl Stat
, vol.3
, pp. 521-541
-
-
Fan, J.1
Feng, Y.2
Wu, Y.3
-
9
-
-
73949122606
-
Sparsistency and rates of convergence in large covariance matrix estimation
-
C.Lam, J.Fan. Sparsistency and rates of convergence in large covariance matrix estimation. Ann Stat. 2009;37:4254–4278. doi: 10.1214/09-AOS720
-
(2009)
Ann Stat
, vol.37
, pp. 4254-4278
-
-
Lam, C.1
Fan, J.2
-
11
-
-
78650901444
-
Gene regulatory networks from multifactorial perturbations using Graphical Lasso: application to the DREAM4 Challenge
-
P.Menéndez, Y.A.I.Kourmpetis, C.J.F.ter Braak, F.A.van Eeuwijk. Gene regulatory networks from multifactorial perturbations using Graphical Lasso: application to the DREAM4 Challenge. PloS one. 2010; 5:e14147. doi: 10.1371/journal.pone.0014147
-
(2010)
PloS one
, vol.5
, pp. 14147
-
-
Menéndez, P.1
Kourmpetis, Y.A.I.2
ter Braak, C.J.F.3
van Eeuwijk, F.A.4
-
12
-
-
79954608624
-
Shrinkage tuning parameter selection in precision matrices estimation
-
H.Lian. Shrinkage tuning parameter selection in precision matrices estimation. J Statist Plan Inference. 2011;141:2839–2848. doi: 10.1016/j.jspi.2011.03.008
-
(2011)
J Statist Plan Inference
, vol.141
, pp. 2839-2848
-
-
Lian, H.1
-
13
-
-
84865012086
-
Tuning parameter selection for penalized likelihood estimation of Gaussian graphical model
-
X.Gao, D.Q.Pu, Y.Wu, H.Xu. Tuning parameter selection for penalized likelihood estimation of Gaussian graphical model. Statist Sin. 2012;22:1123.
-
(2012)
Statist Sin
, vol.22
, pp. 1123
-
-
Gao, X.1
Pu, D.Q.2
Wu, Y.3
Xu, H.4
-
14
-
-
85162017516
-
-
Extended Bayesian information criteria for Gaussian graphical models. Adv Neural Inf Process Syst. 2010;23:604–612
-
R.Foygel, M.Drton. Extended Bayesian information criteria for Gaussian graphical models. Adv Neural Inf Process Syst. 2010;23:604–612.
-
-
-
Foygel, R.1
Drton, M.2
-
15
-
-
85161992270
-
-
Stability approach to regularization selection (stars) for high dimensional graphical models. Adv Neural Inf Process Syst. 2010;23:1432–1440
-
H.Liu, K.Roeder, L.Wasserman. Stability approach to regularization selection (stars) for high dimensional graphical models. Adv Neural Inf Process Syst. 2010;23:1432–1440.
-
-
-
Liu, H.1
Roeder, K.2
Wasserman, L.3
-
16
-
-
62349119614
-
Sparse permutation invariant covariance estimation
-
A.J.Rothman, P.J.Bickel, E.Levina, J.Zhu. Sparse permutation invariant covariance estimation. Electron J Stat. 2008;2:494–515. doi: 10.1214/08-EJS176
-
(2008)
Electron J Stat
, vol.2
, pp. 494-515
-
-
Rothman, A.J.1
Bickel, P.J.2
Levina, E.3
Zhu, J.4
-
18
-
-
33748449505
-
Bias correction of cross-validation criterion based on Kullback–Leibler information under a general condition
-
H.Yanagihara, T.Tonda, C.Matsumoto. Bias correction of cross-validation criterion based on Kullback–Leibler information under a general condition. J Multivariate Anal. 2006;97:1965–1975. doi: 10.1016/j.jmva.2005.10.009
-
(2006)
J Multivariate Anal
, vol.97
, pp. 1965-1975
-
-
Yanagihara, H.1
Tonda, T.2
Matsumoto, C.3
-
19
-
-
0000859675
-
An asymptotic equivalence of choice of model by cross-validation and Akaike's criterion
-
M.Stone. An asymptotic equivalence of choice of model by cross-validation and Akaike's criterion. J R Statist Soc. Ser B (Methodol). 1977;44–47.
-
(1977)
J R Statist Soc. Ser B (Methodol)
, pp. 44-47
-
-
Stone, M.1
-
20
-
-
0001927585
-
On information and sufficiency
-
S.Kullback, R.A.Leibler. On information and sufficiency. Ann Math Stat. 1951;22:79–86. doi: 10.1214/aoms/1177729694
-
(1951)
Ann Math Stat
, vol.22
, pp. 79-86
-
-
Kullback, S.1
Leibler, R.A.2
-
21
-
-
33746903236
-
Kullback–Liebler divergences of normal, gamma, Dirichlet and Wishart densities
-
W.D.Penny. Kullback–Liebler divergences of normal, gamma, Dirichlet and Wishart densities. Wellcome Department of Cognitive Neurology; 2001.
-
(2001)
Wellcome Department of Cognitive Neurology
-
-
Penny, W.D.1
-
22
-
-
21444449622
-
A generalized approximate cross validation for smoothing splines with non-Gaussian data
-
D.Xiang, G.Wahba. A generalized approximate cross validation for smoothing splines with non-Gaussian data. Statist Sin. 1996;6:675–692.
-
(1996)
Statist Sin
, vol.6
, pp. 675-692
-
-
Xiang, D.1
Wahba, G.2
-
23
-
-
84862774260
-
-
In: Devroye L, Karasözen B, Kohler M, Korn R, editors. Recent developments in applied probability and statistics. Physica-Verlag HD; 2010. p. 155–182. Available from:
-
R.Fried, D.Vogel. On robust Gaussian graphical modelling. In: Devroye L, Karasözen B, Kohler M, Korn R, editors. Recent developments in applied probability and statistics. Physica-Verlag HD; 2010. p. 155–182. Available from: http://www.springer.com/mathematics/probability/book/978-3-7908-2597-8.
-
On robust Gaussian graphical modelling
-
-
Fried, R.1
Vogel, D.2
-
24
-
-
8744307994
-
Multimodel inference understanding AIC and BIC in model selection
-
K.P.Burnham, D.R.Anderson. Multimodel inference understanding AIC and BIC in model selection. Sociol Methods Res. 2004;33:261–304. doi: 10.1177/0049124104268644
-
(2004)
Sociol Methods Res
, vol.33
, pp. 261-304
-
-
Burnham, K.P.1
Anderson, D.R.2
-
25
-
-
84942205103
-
-
Huge: high-dimensional undirected graph estimation. R package version 1.2.4, 2012
-
T.Zhao, H.Liu, K.Roeder, J.Lafferty, L.Wasserman. Huge: high-dimensional undirected graph estimation. R package version 1.2.4, 2012. Available from: http://cran.r-project.org/web/packages/huge/index.html
-
-
-
Zhao, T.1
Liu, H.2
Roeder, K.3
Lafferty, J.4
Wasserman, L.5
-
26
-
-
33645568358
-
Gradient directed regularization for sparse Gaussian concentration graphs, with applications to inference of genetic networks
-
H.Li, J.Gui. Gradient directed regularization for sparse Gaussian concentration graphs, with applications to inference of genetic networks. Biostatistics. 2006;7:302–317. doi: 10.1093/biostatistics/kxj008
-
(2006)
Biostatistics
, vol.7
, pp. 302-317
-
-
Li, H.1
Gui, J.2
-
27
-
-
0033931867
-
Assessing the accuracy of prediction algorithms for classification: an overview
-
P.Baldi, S.Brunak, Y.Chauvin, C.A.F.Andersen, H.Nielsen. Assessing the accuracy of prediction algorithms for classification: an overview. Bioinformatics. 2000;16:412–424. doi: 10.1093/bioinformatics/16.5.412
-
(2000)
Bioinformatics
, vol.16
, pp. 412-424
-
-
Baldi, P.1
Brunak, S.2
Chauvin, Y.3
Andersen, C.A.F.4
Nielsen, H.5
-
28
-
-
84864758525
-
Evaluation: from precision, recall and f-measure to roc., informedness, markedness & correlation
-
D.Powers. Evaluation: from precision, recall and f-measure to roc., informedness, markedness & correlation. J Mach Learn Technol. 2011;2:37–63.
-
(2011)
J Mach Learn Technol
, vol.2
, pp. 37-63
-
-
Powers, D.1
|