메뉴 건너뛰기




Volumn 85, Issue 18, 2015, Pages 3628-3640

A computationally fast alternative to cross-validation in penalized Gaussian graphical models

Author keywords

cross validation; Gaussian graphical model; generalized approximate cross validation; information criteria; Kullback Leibler loss; penalized estimation

Indexed keywords


EID: 84942193070     PISSN: 00949655     EISSN: 15635163     Source Type: Journal    
DOI: 10.1080/00949655.2014.992020     Document Type: Article
Times cited : (34)

References (29)
  • 1
    • 0001038826 scopus 로고
    • Covariance selection
    • A.P.Dempster. Covariance selection. Biometrics. 1972;157–175. doi: 10.2307/2528966
    • (1972) Biometrics , pp. 157-175
    • Dempster, A.P.1
  • 5
    • 33947115409 scopus 로고    scopus 로고
    • Model selection and estimation in the Gaussian graphical model
    • M.Yuan, Y.Lin. Model selection and estimation in the Gaussian graphical model. Biometrika. 2007;94:19–35. doi: 10.1093/biomet/asm018
    • (2007) Biometrika , vol.94 , pp. 19-35
    • Yuan, M.1    Lin, Y.2
  • 6
    • 41549101939 scopus 로고    scopus 로고
    • Model selection through sparse maximum likelihood estimation for multivariate gaussian or binary data
    • O.Banerjee, L.El Ghaoui, A.d'Aspremont. Model selection through sparse maximum likelihood estimation for multivariate gaussian or binary data. J Mach Learn Res. 2008;9:485–516.
    • (2008) J Mach Learn Res , vol.9 , pp. 485-516
    • Banerjee, O.1    El Ghaoui, L.2    d'Aspremont, A.3
  • 7
    • 45849134070 scopus 로고    scopus 로고
    • Sparse inverse covariance estimation with the graphical lasso
    • J.Friedman, T.Hastie, R.Tibshirani. Sparse inverse covariance estimation with the graphical lasso. Biostatistics. 2008;9:432–441. doi: 10.1093/biostatistics/kxm045
    • (2008) Biostatistics , vol.9 , pp. 432-441
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 8
    • 73949117731 scopus 로고    scopus 로고
    • Network exploration via the adaptive LASSO and SCAD penalties
    • J.Fan, Y.Feng, Y.Wu. Network exploration via the adaptive LASSO and SCAD penalties. Ann Appl Stat. 2009;3:521–541. doi: 10.1214/08-AOAS215
    • (2009) Ann Appl Stat , vol.3 , pp. 521-541
    • Fan, J.1    Feng, Y.2    Wu, Y.3
  • 9
    • 73949122606 scopus 로고    scopus 로고
    • Sparsistency and rates of convergence in large covariance matrix estimation
    • C.Lam, J.Fan. Sparsistency and rates of convergence in large covariance matrix estimation. Ann Stat. 2009;37:4254–4278. doi: 10.1214/09-AOS720
    • (2009) Ann Stat , vol.37 , pp. 4254-4278
    • Lam, C.1    Fan, J.2
  • 11
    • 78650901444 scopus 로고    scopus 로고
    • Gene regulatory networks from multifactorial perturbations using Graphical Lasso: application to the DREAM4 Challenge
    • P.Menéndez, Y.A.I.Kourmpetis, C.J.F.ter Braak, F.A.van Eeuwijk. Gene regulatory networks from multifactorial perturbations using Graphical Lasso: application to the DREAM4 Challenge. PloS one. 2010; 5:e14147. doi: 10.1371/journal.pone.0014147
    • (2010) PloS one , vol.5 , pp. 14147
    • Menéndez, P.1    Kourmpetis, Y.A.I.2    ter Braak, C.J.F.3    van Eeuwijk, F.A.4
  • 12
    • 79954608624 scopus 로고    scopus 로고
    • Shrinkage tuning parameter selection in precision matrices estimation
    • H.Lian. Shrinkage tuning parameter selection in precision matrices estimation. J Statist Plan Inference. 2011;141:2839–2848. doi: 10.1016/j.jspi.2011.03.008
    • (2011) J Statist Plan Inference , vol.141 , pp. 2839-2848
    • Lian, H.1
  • 13
    • 84865012086 scopus 로고    scopus 로고
    • Tuning parameter selection for penalized likelihood estimation of Gaussian graphical model
    • X.Gao, D.Q.Pu, Y.Wu, H.Xu. Tuning parameter selection for penalized likelihood estimation of Gaussian graphical model. Statist Sin. 2012;22:1123.
    • (2012) Statist Sin , vol.22 , pp. 1123
    • Gao, X.1    Pu, D.Q.2    Wu, Y.3    Xu, H.4
  • 14
    • 85162017516 scopus 로고    scopus 로고
    • Extended Bayesian information criteria for Gaussian graphical models. Adv Neural Inf Process Syst. 2010;23:604–612
    • R.Foygel, M.Drton. Extended Bayesian information criteria for Gaussian graphical models. Adv Neural Inf Process Syst. 2010;23:604–612.
    • Foygel, R.1    Drton, M.2
  • 15
    • 85161992270 scopus 로고    scopus 로고
    • Stability approach to regularization selection (stars) for high dimensional graphical models. Adv Neural Inf Process Syst. 2010;23:1432–1440
    • H.Liu, K.Roeder, L.Wasserman. Stability approach to regularization selection (stars) for high dimensional graphical models. Adv Neural Inf Process Syst. 2010;23:1432–1440.
    • Liu, H.1    Roeder, K.2    Wasserman, L.3
  • 16
    • 62349119614 scopus 로고    scopus 로고
    • Sparse permutation invariant covariance estimation
    • A.J.Rothman, P.J.Bickel, E.Levina, J.Zhu. Sparse permutation invariant covariance estimation. Electron J Stat. 2008;2:494–515. doi: 10.1214/08-EJS176
    • (2008) Electron J Stat , vol.2 , pp. 494-515
    • Rothman, A.J.1    Bickel, P.J.2    Levina, E.3    Zhu, J.4
  • 18
    • 33748449505 scopus 로고    scopus 로고
    • Bias correction of cross-validation criterion based on Kullback–Leibler information under a general condition
    • H.Yanagihara, T.Tonda, C.Matsumoto. Bias correction of cross-validation criterion based on Kullback–Leibler information under a general condition. J Multivariate Anal. 2006;97:1965–1975. doi: 10.1016/j.jmva.2005.10.009
    • (2006) J Multivariate Anal , vol.97 , pp. 1965-1975
    • Yanagihara, H.1    Tonda, T.2    Matsumoto, C.3
  • 19
    • 0000859675 scopus 로고
    • An asymptotic equivalence of choice of model by cross-validation and Akaike's criterion
    • M.Stone. An asymptotic equivalence of choice of model by cross-validation and Akaike's criterion. J R Statist Soc. Ser B (Methodol). 1977;44–47.
    • (1977) J R Statist Soc. Ser B (Methodol) , pp. 44-47
    • Stone, M.1
  • 20
    • 0001927585 scopus 로고
    • On information and sufficiency
    • S.Kullback, R.A.Leibler. On information and sufficiency. Ann Math Stat. 1951;22:79–86. doi: 10.1214/aoms/1177729694
    • (1951) Ann Math Stat , vol.22 , pp. 79-86
    • Kullback, S.1    Leibler, R.A.2
  • 21
    • 33746903236 scopus 로고    scopus 로고
    • Kullback–Liebler divergences of normal, gamma, Dirichlet and Wishart densities
    • W.D.Penny. Kullback–Liebler divergences of normal, gamma, Dirichlet and Wishart densities. Wellcome Department of Cognitive Neurology; 2001.
    • (2001) Wellcome Department of Cognitive Neurology
    • Penny, W.D.1
  • 22
    • 21444449622 scopus 로고    scopus 로고
    • A generalized approximate cross validation for smoothing splines with non-Gaussian data
    • D.Xiang, G.Wahba. A generalized approximate cross validation for smoothing splines with non-Gaussian data. Statist Sin. 1996;6:675–692.
    • (1996) Statist Sin , vol.6 , pp. 675-692
    • Xiang, D.1    Wahba, G.2
  • 23
    • 84862774260 scopus 로고    scopus 로고
    • In: Devroye L, Karasözen B, Kohler M, Korn R, editors. Recent developments in applied probability and statistics. Physica-Verlag HD; 2010. p. 155–182. Available from:
    • R.Fried, D.Vogel. On robust Gaussian graphical modelling. In: Devroye L, Karasözen B, Kohler M, Korn R, editors. Recent developments in applied probability and statistics. Physica-Verlag HD; 2010. p. 155–182. Available from: http://www.springer.com/mathematics/probability/book/978-3-7908-2597-8.
    • On robust Gaussian graphical modelling
    • Fried, R.1    Vogel, D.2
  • 24
    • 8744307994 scopus 로고    scopus 로고
    • Multimodel inference understanding AIC and BIC in model selection
    • K.P.Burnham, D.R.Anderson. Multimodel inference understanding AIC and BIC in model selection. Sociol Methods Res. 2004;33:261–304. doi: 10.1177/0049124104268644
    • (2004) Sociol Methods Res , vol.33 , pp. 261-304
    • Burnham, K.P.1    Anderson, D.R.2
  • 25
    • 84942205103 scopus 로고    scopus 로고
    • Huge: high-dimensional undirected graph estimation. R package version 1.2.4, 2012
    • T.Zhao, H.Liu, K.Roeder, J.Lafferty, L.Wasserman. Huge: high-dimensional undirected graph estimation. R package version 1.2.4, 2012. Available from: http://cran.r-project.org/web/packages/huge/index.html
    • Zhao, T.1    Liu, H.2    Roeder, K.3    Lafferty, J.4    Wasserman, L.5
  • 26
    • 33645568358 scopus 로고    scopus 로고
    • Gradient directed regularization for sparse Gaussian concentration graphs, with applications to inference of genetic networks
    • H.Li, J.Gui. Gradient directed regularization for sparse Gaussian concentration graphs, with applications to inference of genetic networks. Biostatistics. 2006;7:302–317. doi: 10.1093/biostatistics/kxj008
    • (2006) Biostatistics , vol.7 , pp. 302-317
    • Li, H.1    Gui, J.2
  • 27
    • 0033931867 scopus 로고    scopus 로고
    • Assessing the accuracy of prediction algorithms for classification: an overview
    • P.Baldi, S.Brunak, Y.Chauvin, C.A.F.Andersen, H.Nielsen. Assessing the accuracy of prediction algorithms for classification: an overview. Bioinformatics. 2000;16:412–424. doi: 10.1093/bioinformatics/16.5.412
    • (2000) Bioinformatics , vol.16 , pp. 412-424
    • Baldi, P.1    Brunak, S.2    Chauvin, Y.3    Andersen, C.A.F.4    Nielsen, H.5
  • 28
    • 84864758525 scopus 로고    scopus 로고
    • Evaluation: from precision, recall and f-measure to roc., informedness, markedness & correlation
    • D.Powers. Evaluation: from precision, recall and f-measure to roc., informedness, markedness & correlation. J Mach Learn Technol. 2011;2:37–63.
    • (2011) J Mach Learn Technol , vol.2 , pp. 37-63
    • Powers, D.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.