메뉴 건너뛰기




Volumn 8, Issue , 2015, Pages 2693-2700

On the existence of the weighted bridge penalized Gaussian likelihood precision matrix estimator

Author keywords

High dimensional data; Precision matrix; Ridge penalty; Sparsity

Indexed keywords


EID: 84939512010     PISSN: 19357524     EISSN: None     Source Type: Journal    
DOI: 10.1214/14-EJS973     Document Type: Article
Times cited : (4)

References (22)
  • 2
    • 82255195996 scopus 로고    scopus 로고
    • Sparse estimation of a covariance matrix
    • MR2860325
    • Bien, J. and Tibshirani, R. J. (2011). Sparse estimation of a covariance matrix. Biometrika98 807–820. MR2860325
    • (2011) Biometrika , vol.98 , pp. 807-820
    • Bien, J.1    Tibshirani, R.J.2
  • 3
    • 0040676062 scopus 로고
    • On the existence of maximum likelihood estimators for graphical Gaussian models
    • MR1241392
    • Buhl, S. L. (1993). On the existence of maximum likelihood estimators for graphical Gaussian models. Scandinavian Journal of Statistics20 263–270. MR1241392
    • (1993) Scandinavian Journal of Statistics , vol.20 , pp. 263-270
    • Buhl, S.L.1
  • 4
    • 45849134070 scopus 로고    scopus 로고
    • Sparse inverse covariance estimation with the graphical lasso
    • Friedman, J., Hastie, T. and Tibshirani, R. (2008). Sparse inverse covariance estimation with the graphical lasso. Biostatistics 9 432–441.
    • (2008) Biostatistics , vol.9 , pp. 432-441
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 6
    • 84877783090 scopus 로고    scopus 로고
    • A Divide-and-Conquer Method for Sparse Inverse Covariance Estimation
    • (F. Pereira, C. J. C. Burges, L. Bottou and K. Q. Weinberger, eds.)
    • Hsieh, C.-J., Banerjee, A., Dhillon, I. S. and Ravikumar, P. K. (2012). A Divide-and-Conquer Method for Sparse Inverse Covariance Estimation. In Advances in Neural Information Processing Systems, 25 (F. Pereira, C. J. C. Burges, L. Bottou and K. Q. Weinberger, eds.) 2330–2338. Curran Associates, Inc.
    • (2012) Advances in Neural Information Processing Systems , vol.25 , pp. 2330-2338
    • Hsieh, C.-J.1    Banerjee, A.2    Dhillon, I.S.3    Ravikumar, P.K.4
  • 7
    • 73949122606 scopus 로고    scopus 로고
    • Sparsistency and rates of convergence in large covariance matrices estimation
    • MR2572459
    • Lam, C. and Fan, J. (2009). Sparsistency and rates of convergence in large covariance matrices estimation. Annals of Statistics37 4254–4278. MR2572459
    • (2009) Annals of Statistics , vol.37 , pp. 4254-4278
    • Lam, C.1    Fan, J.2
  • 8
    • 0346961488 scopus 로고    scopus 로고
    • A well-conditioned estimator for largedimensional covariance matrices
    • MR2026339
    • Ledoit, O. and Wolf, M. (2003). A well-conditioned estimator for largedimensional covariance matrices. Journal of Multivariate Analysis 88 365–411. MR2026339
    • (2003) Journal of Multivariate Analysis , vol.88 , pp. 365-411
    • Ledoit, O.1    Wolf, M.2
  • 9
    • 77956030532 scopus 로고    scopus 로고
    • Adaptive first-order methods for general sparse inverse covariance selection
    • MR2678953
    • Lu, Z. (2010). Adaptive first-order methods for general sparse inverse covariance selection. SIAM Journal on Matrix Analysis and Its Applications 31 2000–2016. MR2678953
    • (2010) SIAM Journal on Matrix Analysis and Its Applications , vol.31 , pp. 2000-2016
    • Lu, Z.1
  • 10
    • 84859447804 scopus 로고    scopus 로고
    • Exact covariance thresholding into connected components for large-scale Graphical Lasso
    • MR2913718
    • Mazumder, R. and Hastie, T. (2012). Exact covariance thresholding into connected components for large-scale Graphical Lasso. Journal of Machine Learning Research13 781–794. MR2913718
    • (2012) Journal of Machine Learning Research , vol.13 , pp. 781-794
    • Mazumder, R.1    Hastie, T.2
  • 11
    • 42649092921 scopus 로고    scopus 로고
    • A note on the lasso for graphical Gaussian model selection
    • MR2398362
    • Meinshausen, N. (2008). A note on the lasso for graphical Gaussian model selection. Statistics and Probability Letters78 880–884. MR2398362
    • (2008) Statistics and Probability Letters , vol.78 , pp. 880-884
    • Meinshausen, N.1
  • 12
    • 82655175460 scopus 로고    scopus 로고
    • Modeling covariance matrices: The GLM and regularization perspectives
    • MR2917961
    • Pourahmadi, M. (2011). Modeling covariance matrices: The GLM and regularization perspectives. Statistical Science26 369–387. MR2917961
    • (2011) Statistical Science , vol.26 , pp. 369-387
    • Pourahmadi, M.1
  • 13
    • 80555142374 scopus 로고    scopus 로고
    • High-dimensional covariance estimation by minimizing l1-penalized log-determinant divergence
    • MR2836766
    • Ravikumar, P., Wainwright, M. J., Raskutti, G. and Yu, B. (2011). High-dimensional covariance estimation by minimizing l1-penalized log-determinant divergence. Electronic Journal of Statistics5 935–980. MR2836766
    • (2011) Electronic Journal of Statistics , vol.5 , pp. 935-980
    • Ravikumar, P.1    Wainwright, M.J.2    Raskutti, G.3    Yu, B.4
  • 15
    • 77955901795 scopus 로고    scopus 로고
    • A new approach to Cholesky-based covariance regularization in high dimensions
    • MR2672482
    • Rothman, A. J., Levina, E. and Zhu, J. (2010a). A new approach to Cholesky-based covariance regularization in high dimensions. Biometrika97 539–550. MR2672482
    • (2010) Biometrika , vol.97 , pp. 539-550
    • Rothman, A.J.1    Levina, E.2    Zhu, J.3
  • 18
    • 84871240277 scopus 로고    scopus 로고
    • Geometry of maximum likelihood estimation in Gaussian graphical models
    • MR3014306
    • Uhler, C. (2012). Geometry of maximum likelihood estimation in Gaussian graphical models. Annals of Statistics40 238–261. MR3014306
    • (2012) Annals of Statistics , vol.40 , pp. 238-261
    • Uhler, C.1
  • 20
    • 66849143711 scopus 로고    scopus 로고
    • Covariance-regularized regression and classification for high-dimensional problems
    • MR2749910
    • Witten, D. M. and Tibshirani, R. (2009). Covariance-regularized regression and classification for high-dimensional problems. Journal of The Royal Statistical Society Series B71 615–636. MR2749910
    • (2009) Journal of the Royal Statistical Society Series B , vol.71 , pp. 615-636
    • Witten, D.M.1    Tibshirani, R.2
  • 22
    • 33947115409 scopus 로고    scopus 로고
    • Model selection and estimation in the Gaussian graphical model
    • MR2367824
    • Yuan, M. and Lin, Y. (2007). Model selection and estimation in the Gaussian graphical model. Biometrika94 19–35. MR2367824
    • (2007) Biometrika , vol.94 , pp. 19-35
    • Yuan, M.1    Lin, Y.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.