메뉴 건너뛰기




Volumn , Issue , 2011, Pages 1583-1590

Object segmentation in video: A hierarchical variational approach for turning point trajectories into dense regions

Author keywords

[No Author keywords available]

Indexed keywords

CONTINUOUS DOMAIN; DENSE REGION; HIGH QUALITY; NONLINEAR DIFFUSION PROCESS; OBJECT SEGMENTATION; POINT TRAJECTORY; SUPERPIXELS; TURNING POINTS; UNSUPERVISED SEGMENTATION; VARIATIONAL APPROACHES; VARIATIONAL METHODS; VIDEO SHOTS;

EID: 84856688133     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICCV.2011.6126418     Document Type: Conference Paper
Times cited : (232)

References (24)
  • 2
    • 20244370379 scopus 로고    scopus 로고
    • Variational analysis in sobolev and BV spaces: Applications to pdes and optimization
    • 3
    • H. Attouch, G. Buttazzo, and G. Michaille. Variational Analysis in Sobolev and BV Spaces: Applications to PDEs and Optimization. SIAM, Philadelphia, 2006. 3
    • (2006) SIAM Philadelphia
    • Attouch, H.1    Buttazzo, G.2    Michaille, G.3
  • 3
    • 50649112540 scopus 로고    scopus 로고
    • A geodesic framework for fast interactive image and video segmentation and matting
    • 2
    • X. Bai and G. Sapiro. A geodesic framework for fast interactive image and video segmentation and matting. ICCV, 2007. 2
    • (2007) ICCV
    • Bai, X.1    Sapiro, G.2
  • 5
    • 77953223104 scopus 로고    scopus 로고
    • Video object segmentation by tracking regions
    • 2
    • W. Brendel and S. Todorovic. Video object segmentation by tracking regions. ICCV, 2009. 2
    • (2009) ICCV
    • Brendel, W.1    Todorovic, S.2
  • 7
    • 80052912117 scopus 로고    scopus 로고
    • Object segmentation by long-term analysis of point trajectories
    • 6. 1, 2, 5, 7
    • T. Brox and J. Malik. Object segmentation by long-term analysis of point trajectories. ECCV, 2010. 1, 2, 5, 6, 7
    • (2010) ECCV
    • Brox, T.1    Malik, J.2
  • 8
    • 33750153530 scopus 로고    scopus 로고
    • Algorithms for finding global minimizers of image segmentation and denoising models
    • 3
    • T. Chan, S. Esedoglu, and M. Nikolova. Algorithms for finding global minimizers of image segmentation and denoising models. SIAM Journal on Applied Mathematics, 66(5):1632-1648, 2006. 3
    • (2006) SIAM Journal on Applied Mathematics , vol.66 , Issue.5 , pp. 1632-1648
    • Chan, T.1    Esedoglu, S.2    Nikolova, M.3
  • 9
    • 56449092085 scopus 로고    scopus 로고
    • Efficient projections onto the 1-ball for learning in high dimensions
    • New York, NY, USA, 3
    • J. Duchi, S. Shalev-Shwartz, Y. Singer, and T. Chandra. Efficient projections onto the 1-ball for learning in high dimensions. ICML, pages 272-279, New York, NY, USA, 2008. 3
    • (2008) ICML , pp. 272-279
    • Duchi, J.1    Shalev-Shwartz, S.2    Singer, Y.3    Chandra, T.4
  • 13
    • 77955986879 scopus 로고    scopus 로고
    • Efficient hierarchical graph-based video segmentation
    • 2
    • M. Grundmann, V. Kwatra, M. Han, and I. Essa. Efficient hierarchical graph-based video segmentation. CVPR, 2010. 2
    • (2010) CVPR
    • Grundmann, M.1    Kwatra, V.2    Han, M.3    Essa, I.4
  • 14
    • 77953186768 scopus 로고    scopus 로고
    • Convex optimization for multi-class image labeling with a novel family of total variation based regularizers
    • 2, 3
    • J. Lellmann, F. Becker, and C. Schnörr. Convex optimization for multi-class image labeling with a novel family of total variation based regularizers. ICCV, 2009. 2, 3
    • (2009) ICCV
    • Lellmann, J.1    Becker, F.2    Schnörr, C.3
  • 15
    • 84856655399 scopus 로고    scopus 로고
    • Track to the future: Spatio-temporal video segmentation with long-range motion cues
    • 2
    • J. Lezama, K. Alahari, J. Sivic, and I. Laptev. Track to the future: Spatio-temporal video segmentation with long-range motion cues. CVPR, 2011. 2
    • (2011) CVPR
    • Lezama, J.1    Alahari, K.2    Sivic, J.3    Laptev, I.4
  • 16
    • 78349290112 scopus 로고    scopus 로고
    • Interactive motion segmentation
    • volume 6376 of LNCS Springer, 2
    • C. Nieuwenhuis, B. Berkels, M. Rumpf, and D. Cremers. Interactive motion segmentation. DAGM, volume 6376 of LNCS, pages 483-492. Springer, 2010. 2
    • (2010) DAGM , pp. 483-492
    • Nieuwenhuis, C.1    Berkels, B.2    Rumpf, M.3    Cremers, D.4
  • 18
    • 70450194857 scopus 로고    scopus 로고
    • A convex relaxation approach for computing minimal partitions
    • 2, 3
    • T. Pock, A. Chambolle, D. Cremers, and H. Bischof. A convex relaxation approach for computing minimal partitions. CVPR, 2009. 2, 3
    • (2009) CVPR
    • Pock, T.1    Chambolle, A.2    Cremers, D.3    Bischof, H.4
  • 19
    • 79960540691 scopus 로고    scopus 로고
    • LIVEcut: Learningbased interactive video segmentation by evaluation of multiple propagated cues
    • 2
    • B. L. Price, B. S. Morse, and S. Cohen. LIVEcut: learningbased interactive video segmentation by evaluation of multiple propagated cues. ICCV, 2009. 2
    • (2009) ICCV
    • Price, B.L.1    Morse, B.S.2    Cohen, S.3
  • 20
    • 77953221169 scopus 로고    scopus 로고
    • Background subtraction for freely moving cameras
    • 1
    • Y. Sheikh, O. Javed, and T. Kanade. Background subtraction for freely moving cameras. ICCV, 2009. 1
    • (2009) ICCV
    • Sheikh, Y.1    Javed, O.2    Kanade, T.3
  • 21
    • 50649084500 scopus 로고    scopus 로고
    • A seeded image segmentation framework unifying graph cuts and random walkter which yields a new algorithm
    • 2
    • A. Sinop and L. Grady. A seeded image segmentation framework unifying graph cuts and random walkter which yields a new algorithm. ICCV, 2007. 2
    • (2007) ICCV
    • Sinop, A.1    Grady, L.2
  • 22
    • 0002856681 scopus 로고
    • Principles of object perception
    • 1
    • E. Spelke. Principles of object perception. Cognitive Science, 14:29-56, 1990. 1
    • (1990) Cognitive Science , vol.14 , pp. 29-56
    • Spelke, E.1
  • 24
    • 80052926908 scopus 로고    scopus 로고
    • Mulitple hypothesis video segmentation from superpixel flows
    • Springer, 2
    • A. Vazquez-Reina, S. Avidan, H. Pfister, and E. Miller. Mulitple hypothesis video segmentation from superpixel flows. ECCV, LNCS. Springer, 2010. 2
    • (2010) ECCV LNCS
    • Vazquez-Reina, A.1    Avidan, S.2    Pfister, H.3    Miller, E.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.