메뉴 건너뛰기




Volumn 2015 International Conference on Computer Vision, ICCV 2015, Issue , 2015, Pages 4624-4632

Love thy neighbors: Image annotation by exploiting image metadata

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTER VISION; IMAGE ANALYSIS;

EID: 84973879692     PISSN: 15505499     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICCV.2015.525     Document Type: Conference Paper
Times cited : (114)

References (50)
  • 3
    • 85161970767 scopus 로고    scopus 로고
    • Exploiting weakly-labeled web images to improve object classification: A domain adaptation approach
    • A. Bergamo and L. Torresani. Exploiting weakly-labeled web images to improve object classification: A domain adaptation approach. In NIPS, 2010.
    • (2010) NIPS
    • Bergamo, A.1    Torresani, L.2
  • 4
    • 33847419773 scopus 로고    scopus 로고
    • Supervised learning of semantic classes for image annotation and retrieval
    • G. Carneiro, A. B. Chan, P. J. Moreno, and N. Vasconcelos. Supervised learning of semantic classes for image annotation and retrieval. IEEE TPAMI, 29(3):394-410, 2007.
    • (2007) IEEE TPAMI , vol.29 , Issue.3 , pp. 394-410
    • Carneiro, G.1    Chan, A.B.2    Moreno, P.J.3    Vasconcelos, N.4
  • 5
    • 77956007413 scopus 로고    scopus 로고
    • Tag-based web photo retrieval improved by batch mode re-tagging
    • L. Chen, D. Xu, I. W. Tsang, and J. Luo. Tag-based web photo retrieval improved by batch mode re-tagging. In CVPR, 2010.
    • (2010) CVPR
    • Chen, L.1    Xu, D.2    Tsang, I.W.3    Luo, J.4
  • 6
    • 84973865248 scopus 로고    scopus 로고
    • Webly supervised learning of convolutional networks
    • X. Chen and A. Gupta. Webly supervised learning of convolutional networks. In ICCV, 2015.
    • (2015) ICCV
    • Chen, X.1    Gupta, A.2
  • 7
    • 84898803720 scopus 로고    scopus 로고
    • NEIL: Extracting visual knowledge from web data
    • X. Chen, A. Shrivastava, and A. Gupta. NEIL: Extracting visual knowledge from web data. In ICCV, 2013.
    • (2013) ICCV
    • Chen, X.1    Shrivastava, A.2    Gupta, A.3
  • 8
    • 74049158146 scopus 로고    scopus 로고
    • NUS-WIDE: A realworld web image database from national university of Singapore
    • T.-S. Chua, J. Tang, R. Hong, H. Li, Z. Luo, and Y. Zheng. NUS-WIDE: A realworld web image database from National University of Singapore. In CIVR, 2009.
    • (2009) CIVR
    • Chua, T.-S.1    Tang, J.2    Hong, R.3    Li, H.4    Luo, Z.5    Zheng, Y.6
  • 10
    • 84911368326 scopus 로고    scopus 로고
    • Learning everything about anything: Webly-supervised visual concept learning
    • S. K. Divvala, A. Farhadi, and C. Guestrin. Learning everything about anything: Webly-supervised visual concept learning. In CVPR, 2014.
    • (2014) CVPR
    • Divvala, S.K.1    Farhadi, A.2    Guestrin, C.3
  • 11
    • 84911372708 scopus 로고    scopus 로고
    • Multimodal learning in loosely-organized web images
    • K. Duan, D. Crandall, and D. Batra. Multimodal learning in loosely-organized web images. In CVPR, 2014.
    • (2014) CVPR
    • Duan, K.1    Crandall, D.2    Batra, D.3
  • 12
    • 84959203754 scopus 로고    scopus 로고
    • Collaborative feature learning from social media
    • C. Fang, H. Jin, J. Yang, and Z. Lin. Collaborative feature learning from social media. In CVPR, 2015.
    • (2015) CVPR
    • Fang, C.1    Jin, H.2    Yang, J.3    Lin, Z.4
  • 13
    • 84973923418 scopus 로고    scopus 로고
    • Image tag completion by noisy matrix recovery
    • Z. Feng, S. Feng, R. Jin, and A. K. Jain. Image tag completion by noisy matrix recovery. In ECCV, 2014.
    • (2014) ECCV
    • Feng, Z.1    Feng, S.2    Jin, R.3    Jain, A.K.4
  • 14
    • 33745839880 scopus 로고    scopus 로고
    • Learning object categories from google's image search
    • R. Fergus, L. Fei-Fei, P. Perona, and A. Zisserman. Learning object categories from google's image search. In ICCV, 2005.
    • (2005) ICCV
    • Fergus, R.1    Fei-Fei, L.2    Perona, P.3    Zisserman, A.4
  • 15
    • 85083950293 scopus 로고    scopus 로고
    • Deep convolutional ranking for multilabel image annotation
    • Y. Gong, Y. Jia, T. K. Leung, A. Toshev, and S. Ioffe. Deep convolutional ranking for multilabel image annotation. In ICLR, 2014.
    • (2014) ICLR
    • Gong, Y.1    Jia, Y.2    Leung, T.K.3    Toshev, A.4    Ioffe, S.5
  • 16
    • 84894905366 scopus 로고    scopus 로고
    • A multi-view embedding space for internet images, tags, and their semantics
    • Y. Gong, Q. Ke, M. Isard, and S. Lazebnik. A multi-view embedding space for internet images, tags, and their semantics. IJCV, 106(2):210-233, 2014.
    • (2014) IJCV , vol.106 , Issue.2 , pp. 210-233
    • Gong, Y.1    Ke, Q.2    Isard, M.3    Lazebnik, S.4
  • 17
    • 46149118255 scopus 로고    scopus 로고
    • A discriminative kernel-based approach to rank images from text queries
    • D. Grangier and S. Bengio. A discriminative kernel-based approach to rank images from text queries. IEEE TPAMI, 30(8):1371-1384, 2008.
    • (2008) IEEE TPAMI , vol.30 , Issue.8 , pp. 1371-1384
    • Grangier, D.1    Bengio, S.2
  • 18
    • 77953202699 scopus 로고    scopus 로고
    • Tagprop: Discriminative metric learning in nearest neighbor models for image auto-annotation
    • M. Guillaumin, T. Mensink, J. Verbeek, and C. Schmid. Tagprop: Discriminative metric learning in nearest neighbor models for image auto-annotation. In ICCV, 2009.
    • (2009) ICCV
    • Guillaumin, M.1    Mensink, T.2    Verbeek, J.3    Schmid, C.4
  • 19
    • 77956006653 scopus 로고    scopus 로고
    • Multimodal semi-supervised learning for image classification
    • M. Guillaumin, J. Verbeek, and C. Schmid. Multimodal semi-supervised learning for image classification. In CVPR, 2010.
    • (2010) CVPR
    • Guillaumin, M.1    Verbeek, J.2    Schmid, C.3
  • 20
    • 51949088643 scopus 로고    scopus 로고
    • IM2GPS: Estimating geographic information from a single image
    • J. Hays and A. A. Efros. IM2GPS: estimating geographic information from a single image. In CVPR, 2008.
    • (2008) CVPR
    • Hays, J.1    Efros, A.A.2
  • 23
    • 84867097097 scopus 로고    scopus 로고
    • Learning the relative importance of objects from tagged images for retrieval and cross-modal search
    • S. J. Hwang and K. Grauman. Learning the relative importance of objects from tagged images for retrieval and cross-modal search. IJCV, 100(2):134-153, 2012.
    • (2012) IJCV , vol.100 , Issue.2 , pp. 134-153
    • Hwang, S.J.1    Grauman, K.2
  • 25
    • 84911384894 scopus 로고    scopus 로고
    • NMF-KNN: Image annotation using weighted multi-view non-negative matrix factorization
    • M. M. Kalayeh, H. Idrees, and M. Shah. NMF-KNN: Image annotation using weighted multi-view non-negative matrix factorization. In CVPR, 2014.
    • (2014) CVPR
    • Kalayeh, M.M.1    Idrees, H.2    Shah, M.3
  • 26
    • 84866035470 scopus 로고    scopus 로고
    • Modeling and analysis of dynamic behaviors of web image collections
    • G. Kim, E. P. Xing, and A. Torralba. Modeling and analysis of dynamic behaviors of web image collections. In ECCV, 2010.
    • (2010) ECCV
    • Kim, G.1    Xing, E.P.2    Torralba, A.3
  • 27
    • 84876231242 scopus 로고    scopus 로고
    • ImageNet classification using deep convolutional neural networks
    • A. Krizhevsky, I. Sutskever, and G. Hinton. ImageNet classification using deep convolutional neural networks. In NIPS, 2012.
    • (2012) NIPS
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.3
  • 28
    • 84908552195 scopus 로고    scopus 로고
    • Photo recall: Using the internet to label your photos
    • N. Kumar and S. Seitz. Photo recall: Using the internet to label your photos. In CVPR Workshops, 2014.
    • (2014) CVPR Workshops
    • Kumar, N.1    Seitz, S.2
  • 29
    • 84887364095 scopus 로고    scopus 로고
    • A max-margin riffled independence model for image tag ranking
    • T. Lan and G. Mori. A max-margin riffled independence model for image tag ranking. In CVPR, 2013.
    • (2013) CVPR
    • Lan, T.1    Mori, G.2
  • 30
    • 24644452540 scopus 로고    scopus 로고
    • A model for learning the semantics of pictures
    • V. Lavrenko, R. Manmatha, and J. Jeon. A model for learning the semantics of pictures. In NIPS, 2003.
    • (2003) NIPS
    • Lavrenko, V.1    Manmatha, R.2    Jeon, J.3
  • 31
    • 0032203257 scopus 로고    scopus 로고
    • Gradient-based learning applied to document recognition
    • Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recognition. Proc. of the IEEE, 86(11):2278-2324, 1998.
    • (1998) Proc. of the IEEE , vol.86 , Issue.11 , pp. 2278-2324
    • LeCun, Y.1    Bottou, L.2    Bengio, Y.3    Haffner, P.4
  • 32
    • 77951297833 scopus 로고    scopus 로고
    • OPTIMOL: Automatic online picture collection via incremental model learning
    • L.-J. Li and L. Fei-Fei. OPTIMOL: Automatic online picture collection via incremental model learning. IJCV, 88(2):147-168, 2010.
    • (2010) IJCV , vol.88 , Issue.2 , pp. 147-168
    • Li, L.-J.1    Fei-Fei, L.2
  • 33
    • 70350333307 scopus 로고    scopus 로고
    • Learning social tag relevance by neighbor voting
    • X. Li, C. G. M. Snoek, and M. Worring. Learning social tag relevance by neighbor voting. IEEE TMM, 11(7):1310-1322, 2009.
    • (2009) IEEE TMM , vol.11 , Issue.7 , pp. 1310-1322
    • Li, X.1    Snoek, C.G.M.2    Worring, M.3
  • 35
    • 77953228638 scopus 로고    scopus 로고
    • Landmark classification in large-scale image collections
    • Y. Li, D. Crandall, and D. Huttenlocker. Landmark classification in large-scale image collections. In ICCV, 2009.
    • (2009) ICCV
    • Li, Y.1    Crandall, D.2    Huttenlocker, D.3
  • 36
    • 70449580491 scopus 로고    scopus 로고
    • A new baseline for image annotation
    • A. Makadia, V. Pavlovic, and S. Kumar. A new baseline for image annotation. In ECCV, 2008.
    • (2008) ECCV
    • Makadia, A.1    Pavlovic, V.2    Kumar, S.3
  • 37
    • 84911387011 scopus 로고    scopus 로고
    • Image labeling on a network: Using socialnetwork metadata for image classification
    • J. McAuley and J. Leskovec. Image labeling on a network: using socialnetwork metadata for image classification. In ECCV, 2012.
    • (2012) ECCV
    • McAuley, J.1    Leskovec, J.2
  • 38
    • 84911366552 scopus 로고    scopus 로고
    • Semi-supervised relational topic model for weakly annotated image recognition in social media
    • Z. Niu, G. Hua, X. Gao, and Q. Tian. Semi-supervised relational topic model for weakly annotated image recognition in social media. In CVPR, 2014.
    • (2014) CVPR
    • Niu, Z.1    Hua, G.2    Gao, X.3    Tian, Q.4
  • 39
    • 85083953063 scopus 로고    scopus 로고
    • Very deep convolutional networks for largescale image recognition
    • K. Simonyan and A. Zisserman. Very deep convolutional networks for largescale image recognition. In ICLR, 2015.
    • (2015) ICLR
    • Simonyan, K.1    Zisserman, A.2
  • 40
    • 84877724347 scopus 로고    scopus 로고
    • Multimodal learning with deep boltzmann machines
    • N. Srivastava and R. Salakhutdinov. Multimodal learning with deep boltzmann machines. In NIPS, 2012.
    • (2012) NIPS
    • Srivastava, N.1    Salakhutdinov, R.2
  • 41
    • 51849138720 scopus 로고    scopus 로고
    • Autotagging facebook: Social network context improves photo annotation
    • Z. Stone, T. Zickler, and T. Darrell. Autotagging facebook: Social network context improves photo annotation. In CVPR Workshops, 2008.
    • (2008) CVPR Workshops
    • Stone, Z.1    Zickler, T.2    Darrell, T.3
  • 42
    • 84893343292 scopus 로고    scopus 로고
    • Lecture 6. 5-rmsprop: Divide the gradient by a running average of its recent magnitude
    • T. Tieleman and G. Hinton. Lecture 6. 5-rmsprop: Divide the gradient by a running average of its recent magnitude. Coursera: Neural Networks for Machine Learning, 2012.
    • (2012) Coursera: Neural Networks for Machine Learning
    • Tieleman, T.1    Hinton, G.2
  • 44
    • 84885412937 scopus 로고    scopus 로고
    • Image annotation using metric learning in semantic neighbourhoods
    • Y. Verma and C. Jawahar. Image annotation using metric learning in semantic neighbourhoods. In ECCV, 2012.
    • (2012) ECCV
    • Verma, Y.1    Jawahar, C.2
  • 45
    • 77953194802 scopus 로고    scopus 로고
    • Learning image similarity from flickr groups using stochastic intersection kernel machines
    • G. Wang, D. Hoiem, and D. Forsyth. Learning image similarity from flickr groups using stochastic intersection kernel machines. In ICCV, 2009.
    • (2009) ICCV
    • Wang, G.1    Hoiem, D.2    Forsyth, D.3
  • 46
    • 84867117593 scopus 로고    scopus 로고
    • Wsabie: Scaling up to large vocabulary image annotation
    • J. Weston, S. Bengio, and N. Usunier. Wsabie: Scaling up to large vocabulary image annotation. In IJCAI, 2011.
    • (2011) IJCAI
    • Weston, J.1    Bengio, S.2    Usunier, N.3
  • 47
    • 84937861157 scopus 로고    scopus 로고
    • Predicting useful neighborhoods for lazy local learning
    • A. Yu and K. Grauman. Predicting useful neighborhoods for lazy local learning. In NIPS, 2014.
    • (2014) NIPS
    • Yu, A.1    Grauman, K.2
  • 48
    • 84911421206 scopus 로고    scopus 로고
    • GPS-tag refinement using random walks with an adaptive damping factor
    • A. Zamir, S. Ardeshir, and M. Shah. Gps-tag refinement using random walks with an adaptive damping factor. In CVPR, 2014.
    • (2014) CVPR
    • Zamir, A.1    Ardeshir, S.2    Shah, M.3
  • 50
    • 78650977486 scopus 로고    scopus 로고
    • Image tag refinement towards low-rank, content-tag prior and error sparsity
    • G. Zhu, S. Yan, and Y. Ma. Image tag refinement towards low-rank, content-tag prior and error sparsity. In MM, 2010.
    • (2010) MM
    • Zhu, G.1    Yan, S.2    Ma, Y.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.