메뉴 건너뛰기




Volumn , Issue , 2014, Pages 2465-2472

Multimodal learning in loosely-organized web images

Author keywords

graphical models; multimodal image modeling; object recognition; semi supervised learning

Indexed keywords

INFORMATION THEORY; LEARNING SYSTEMS; OBJECT RECOGNITION; SEMI-SUPERVISED LEARNING; SUPPORT VECTOR MACHINES; WEBSITES;

EID: 84911372708     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2014.316     Document Type: Conference Paper
Times cited : (10)

References (23)
  • 1
    • 67650932694 scopus 로고    scopus 로고
    • A comparison of extrinsic clustering evaluation metrics based on formal constraints
    • E. Amigo, J. Gonzalo, J. Artiles, and F. Verdejo. A comparison of extrinsic clustering evaluation metrics based on formal constraints. Inform. Retrieval, 12(4), 2009.
    • (2009) Inform. Retrieval , vol.12 , Issue.4
    • Amigo, E.1    Gonzalo, J.2    Artiles, J.3    Verdejo, F.4
  • 2
    • 12244300524 scopus 로고    scopus 로고
    • A probabilistic framework for semi-supervised clustering
    • S. Basu, M. Bilenko, and R. Mooney. A probabilistic framework for semi-supervised clustering. In KDD, 2004.
    • (2004) KDD
    • Basu, S.1    Bilenko, M.2    Mooney, R.3
  • 3
    • 35148817020 scopus 로고    scopus 로고
    • Multi-modal clustering for multimedia collections
    • R. Bekkerman and J. Jeon. Multi-modal clustering for multimedia collections. In CVPR, 2007.
    • (2007) CVPR
    • Bekkerman, R.1    Jeon, J.2
  • 5
    • 84883069149 scopus 로고    scopus 로고
    • Web image clustering by consistent utilization of visual features and surrounding texts
    • B. Gao, T.-Y. Liu, T. Qin, X. Zheng, Q. Cheng, and W.-Y. Ma. Web image clustering by consistent utilization of visual features and surrounding texts. In ACM Multimedia, 2005.
    • (2005) ACM Multimedia
    • Gao, B.1    Liu, T.-Y.2    Qin, T.3    Zheng, X.4    Cheng, Q.5    Ma, W.-Y.6
  • 6
    • 31144465285 scopus 로고    scopus 로고
    • Unsupervised image-set clustering using an information theoretic framework
    • J. Goldberger, S. Gordon, and H. Greenspan. Unsupervised image-set clustering using an information theoretic framework. IEEE Trans. Image Proc., pages 449-458, 2006.
    • (2006) IEEE Trans. Image Proc , pp. 449-458
    • Goldberger, J.1    Gordon, S.2    Greenspan, H.3
  • 7
    • 77956006653 scopus 로고    scopus 로고
    • Multimodal semi-supervised learning for image classification
    • M. Guillaumin, J. Verbeek, and C. Schmid. Multimodal semi-supervised learning for image classification. In CVPR, 2010.
    • (2010) CVPR
    • Guillaumin, M.1    Verbeek, J.2    Schmid, C.3
  • 8
    • 33750129298 scopus 로고    scopus 로고
    • Convergent tree-reweighted message passing for energy minimization
    • V. Kolmogorov. Convergent tree-reweighted message passing for energy minimization. PAMI, 28(10), 2006.
    • (2006) PAMI , vol.28 , Issue.10
    • Kolmogorov, V.1
  • 9
    • 85162513516 scopus 로고    scopus 로고
    • Object bank: A high-level image representation for scene classification & semantic feature sparsification
    • L.-J. Li, H. Su, E. P. Xing, and L. Fei-Fei. Object bank: A high-level image representation for scene classification & semantic feature sparsification. In NIPS, 2010.
    • (2010) NIPS
    • Li, L.-J.1    Su, H.2    Xing, E.P.3    Fei-Fei, L.4
  • 10
    • 77953228638 scopus 로고    scopus 로고
    • Landmark classification in large-scale image collections
    • Y. Li, D. Crandall, and D. Huttenlocher. Landmark classification in large-scale image collections. In ICCV, 2009.
    • (2009) ICCV
    • Li, Y.1    Crandall, D.2    Huttenlocher, D.3
  • 11
    • 70450267700 scopus 로고    scopus 로고
    • Constrained clustering via spectral regularization
    • Z. Li, J. Liu, and X. Tang. Constrained clustering via spectral regularization. In CVPR, 2009.
    • (2009) CVPR
    • Li, Z.1    Liu, J.2    Tang, X.3
  • 12
    • 51949113919 scopus 로고    scopus 로고
    • Constrained spectral clustering through affinity propagation
    • Z. Lu and M. Carreira-Perpiñán. Constrained spectral clustering through affinity propagation. In CVPR, 2008.
    • (2008) CVPR
    • Lu, Z.1    Carreira-Perpiñán, M.2
  • 13
    • 84911387011 scopus 로고    scopus 로고
    • Image labeling on a network: Using social-network metadata for image classification
    • J. J. McAuley and J. Leskovec. Image labeling on a network: Using social-network metadata for image classification. In ECCV, 2012.
    • (2012) ECCV
    • McAuley, J.J.1    Leskovec, J.2
  • 14
    • 84950632109 scopus 로고
    • Objective criteria for the evaluation of clustering methods
    • W. Rand. Objective criteria for the evaluation of clustering methods. J. Am. Statist. Assoc., 66(336):846-850, 1971.
    • (1971) J. Am. Statist. Assoc. , vol.66 , Issue.336 , pp. 846-850
    • Rand, W.1
  • 16
    • 84877724347 scopus 로고    scopus 로고
    • Multimodal learning with deep Boltzmann machines
    • N. Srivastava and R. Salakhutdinov. Multimodal learning with deep Boltzmann machines. In NIPS, 2012.
    • (2012) NIPS
    • Srivastava, N.1    Salakhutdinov, R.2
  • 17
    • 24944537843 scopus 로고    scopus 로고
    • Large margin methods for structured and interdependent output variables
    • I. Tsochantaridis, T. Joachims, T. Hofmann, and Y. Altun. Large margin methods for structured and interdependent output variables. JMLR, 6:1453-1484, 2005.
    • (2005) JMLR , vol.6 , pp. 1453-1484
    • Tsochantaridis, I.1    Joachims, T.2    Hofmann, T.3    Altun, Y.4
  • 18
    • 0001898293 scopus 로고    scopus 로고
    • Clustering with instance-level constraints
    • K. Wagstaff and C. Cardie. Clustering with instance-level constraints. In ICML, 2000.
    • (2000) ICML
    • Wagstaff, K.1    Cardie, C.2
  • 19
    • 0042377235 scopus 로고    scopus 로고
    • Constrained k-means clustering with background knowledge
    • K. Wagstaff, C. Cardie, S. Rogers, and S. Schrödl. Constrained k-means clustering with background knowledge. In ICML, 2001.
    • (2001) ICML
    • Wagstaff, K.1    Cardie, C.2    Rogers, S.3    Schrödl, S.4
  • 20
    • 84866644789 scopus 로고    scopus 로고
    • Learning image similarity from Flickr groups using fast kernel machines
    • G. Wang, D. Hoiem, and D. A. Forsyth. Learning image similarity from Flickr groups using fast kernel machines. PAMI, pages 2177-2188, 2012.
    • (2012) PAMI , pp. 2177-2188
    • Wang, G.1    Hoiem, D.2    Forsyth, D.A.3
  • 21
    • 77956978821 scopus 로고    scopus 로고
    • Image clustering using local discriminant models and global integration
    • Y. Yang, D. Xu, F. Nie, S. Yan, and Y. Zhuang. Image clustering using local discriminant models and global integration. IEEE Trans. Image Proc., pages 2761-2773, 2010.
    • (2010) IEEE Trans. Image Proc. , pp. 2761-2773
    • Yang, Y.1    Xu, D.2    Nie, F.3    Yan, S.4    Zhuang, Y.5
  • 22
    • 84867403495 scopus 로고    scopus 로고
    • Semisupervised multiview distance metric learning for cartoon synthesis
    • J. Yu, M. Wang, and D. Tao. Semisupervised multiview distance metric learning for cartoon synthesis. IEEE Trans. Image Process., pages 4636-4648, 2012.
    • (2012) IEEE Trans. Image Process , pp. 4636-4648
    • Yu, J.1    Wang, M.2    Tao, D.3
  • 23
    • 13444260824 scopus 로고    scopus 로고
    • Locality preserving clustering for image database
    • X. Zheng, D. Cai, X. He, W. Ma, and X. Lin. Locality preserving clustering for image database. In MM, 2004.
    • (2004) MM
    • Zheng, X.1    Cai, D.2    He, X.3    Ma, W.4    Lin, X.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.