메뉴 건너뛰기




Volumn 16, Issue 1, 2014, Pages 303-336

Network anomaly detection: Methods, systems and tools

Author keywords

Anomaly detection; attack; classifier; dataset; intrusion detection; NIDS; tools

Indexed keywords


EID: 84894646147     PISSN: None     EISSN: 1553877X     Source Type: Journal    
DOI: 10.1109/SURV.2013.052213.00046     Document Type: Article
Times cited : (1073)

References (231)
  • 1
    • 0007473204 scopus 로고    scopus 로고
    • An introduction to intrusion detection
    • April
    • A. Sundaram, "An introduction to intrusion detection," Crossroads, vol. 2, no. 4, pp. 3-7, April 1996.
    • (1996) Crossroads , vol.2 , Issue.4 , pp. 3-7
    • Sundaram, A.1
  • 3
    • 68049121093 scopus 로고    scopus 로고
    • Anomaly detection : A survey
    • September
    • V. Chandola, A. Banerjee, and V. Kumar, "Anomaly Detection : A Survey," ACM Computing Surveys, vol. 41, no. 3, pp. 15:1-15:58, September 2009.
    • (2009) ACM Computing Surveys , vol.41 , Issue.3 , pp. 151-1558
    • Chandola, V.1    Banerjee, A.2    Kumar, V.3
  • 4
    • 84857176805 scopus 로고    scopus 로고
    • An intrusion detection technique based on continuous binary communication channels
    • November
    • N. K. Ampah, C. M. Akujuobi, M. N. O. Sadiku, and S. Alam, "An intrusion detection technique based on continuous binary communication channels," International J. Security and Networks, vol. 6, no. 2/3, pp. 174-180, November 2011.
    • (2011) International J. Security and Networks , vol.6 , Issue.2-3 , pp. 174-180
    • Ampah, N.K.1    Akujuobi, C.M.2    Sadiku, M.N.O.3    Alam, S.4
  • 5
    • 70349687675 scopus 로고
    • On discordant observations
    • F. Y. Edgeworth, "On discordant observations," Philosophy Mag., vol. 23, no. 5, pp. 364-375, 1887.
    • (1887) Philosophy Mag. , vol.23 , Issue.5 , pp. 364-375
    • Edgeworth, F.Y.1
  • 6
    • 34250315640 scopus 로고    scopus 로고
    • An overview of anomaly detection techniques: Existing solutions and latest technological trends
    • DOI 10.1016/j.comnet.2007.02.001, PII S138912860700062X
    • A. Patcha and J. M. Park, "An overview of anomaly detection techniques: Existing solutions and latest technological trends," Computer Networks, vol. 51, no. 12, pp. 3448-3470, 2007. (Pubitemid 46921030)
    • (2007) Computer Networks , vol.51 , Issue.12 , pp. 3448-3470
    • Patcha, A.1    Park, J.-M.2
  • 7
    • 57849130705 scopus 로고    scopus 로고
    • Anomaly-based network intrusion detection : Techniques, systems and challenges
    • P. Garcia-Teodoro, J. Diaz-Verdejo, G. Macia-Fernandez, and E. Vazquez, "Anomaly-based network intrusion detection : Techniques, systems and challenges," Computers & Security, vol. 28, no. 1-2, pp. 18-28, 2009.
    • (2009) Computers & Security , vol.28 , Issue.1-2 , pp. 18-28
    • Garcia-Teodoro, P.1    Diaz-Verdejo, J.2    MacIa-Fernandez, G.3    Vazquez, E.4
  • 8
    • 7544223741 scopus 로고    scopus 로고
    • A survey of outlier detection methodologies
    • V. Hodge and J. Austin, "A survey of outlier detection methodologies," Artificial Intellligence Review, vol. 22, no. 2, pp. 85-126, 2004.
    • (2004) Artificial Intellligence Review , vol.22 , Issue.2 , pp. 85-126
    • Hodge, V.1    Austin, J.2
  • 9
    • 62849120844 scopus 로고    scopus 로고
    • A survey of techniques for internet traffic classification using machine learning
    • T. Nguyen and G. Armitage, "A Survey of Techniques for Internet Traffic Classification using Machine Learning," IEEE Commun. Surveys Tutorials, vol. 10, no. 4, pp. 56-76, 2008.
    • (2008) IEEE Commun. Surveys Tutorials , vol.10 , Issue.4 , pp. 56-76
    • Nguyen, T.1    Armitage, G.2
  • 10
    • 47949100550 scopus 로고    scopus 로고
    • A comprehensive survey of numeric and symbolic outlier mining techniques
    • M. Agyemang, K. Barker, and R. Alhajj, "A comprehensive survey of numeric and symbolic outlier mining techniques," Intelligence Data Analysis, vol. 10, no. 6, pp. 521-538, 2006.
    • (2006) Intelligence Data Analysis , vol.10 , Issue.6 , pp. 521-538
    • Agyemang, M.1    Barker, K.2    Alhajj, R.3
  • 16
    • 0020752112 scopus 로고
    • Outliers
    • R. J. Beckman and R. D. Cook, "Outliers," Technometrics, vol. 25, no. 2, pp. 119-149, 1983.
    • (1983) Technometrics , vol.25 , Issue.2 , pp. 119-149
    • Beckman, R.J.1    Cook, R.D.2
  • 18
    • 79953811849 scopus 로고    scopus 로고
    • A survey of outlier detection methods in network anomaly identification
    • April
    • P. Gogoi, D. K. Bhattacharyya, B. Borah, and J. K. Kalita, "A Survey of Outlier Detection Methods in Network Anomaly Identification," Computer Journal, vol. 54, no. 4, pp. 570-588, April 2011.
    • (2011) Computer Journal , vol.54 , Issue.4 , pp. 570-588
    • Gogoi, P.1    Bhattacharyya, D.K.2    Borah, B.3    Kalita, J.K.4
  • 22
    • 33746368048 scopus 로고    scopus 로고
    • Enhancing security using mobility-based anomaly detection in cellular mobile networks
    • DOI 10.1109/TVT.2006.874579
    • B. Sun, F. Yu, K. Wu, Y. Xiao, and V. C. M. Leung, "Enhancing security using mobility-based anomaly detection in cellular mobile networks," IEEE Trans. Veh. Technol., vol. 55, no. 4, pp. 1385-1396, July 2006. (Pubitemid 44111432)
    • (2006) IEEE Transactions on Vehicular Technology , vol.55 , Issue.4 , pp. 1385-1396
    • Sun, B.1    Yu, F.2    Wu, K.3    Xiao, Y.4    Leung, V.C.M.5
  • 23
    • 36849062699 scopus 로고    scopus 로고
    • Intrusion detection techniques in mobile ad hoc and wireless sensor networks
    • DOI 10.1109/MWC.2007.4396943
    • B. Sun, L. Osborne, Y. Xiao, and S. Guizani, "Intrusion detection techniques in mobile ad hoc and wireless sensor networks," IEEE Wireless Commun., vol. 14, no. 5, pp. 56-63, October 2007. (Pubitemid 350231654)
    • (2007) IEEE Wireless Communications , vol.14 , Issue.5 , pp. 56-63
    • Sun, B.1    Osborne, L.2    Xiao, Y.3    Guizani, S.4
  • 24
    • 36749008467 scopus 로고    scopus 로고
    • Detection of fraudulent usage in wireless networks
    • DOI 10.1109/TVT.2007.901875
    • B. Sun, Y. Xiao, and R. Wang, "Detection of Fraudulent Usage in Wireless Networks," IEEE Trans. Veh. Technol., vol. 56, no. 6, pp. 3912-3923, November 2007. (Pubitemid 350201083)
    • (2007) IEEE Transactions on Vehicular Technology , vol.56 , Issue.6 , pp. 3912-3923
    • Sun, B.1    Xiao, Y.2    Wang, R.3
  • 25
    • 34250761381 scopus 로고    scopus 로고
    • Integration of mobility and intrusion detection for wireless ad hoc networks
    • DOI 10.1002/dac.853
    • B. Sun, K. Wu, Y. Xiao, and R. Wang, "Integration of mobility and intrusion detection for wireless ad hoc networks," International J. Communication Systems, vol. 20, no. 6, pp. 695-721, June 2007. (Pubitemid 46959707)
    • (2007) International Journal of Communication Systems , vol.20 , Issue.6 , pp. 695-721
    • Sun, B.1    Wu, K.2    Xiao, Y.3    Wang, R.4
  • 26
    • 34147099073 scopus 로고    scopus 로고
    • Survey of network-based defense mechanisms countering the DoS and DDoS problems
    • April
    • T. Peng, C. Leckie, and K. Ramamohanarao, "Survey of network-based defense mechanisms countering the DoS and DDoS problems," ACM Computing Surveys, vol. 39, no. 1, pp. 1-42, April 2007.
    • (2007) ACM Computing Surveys , vol.39 , Issue.1 , pp. 1-42
    • Peng, T.1    Leckie, C.2    Ramamohanarao, K.3
  • 27
    • 67651046905 scopus 로고    scopus 로고
    • A comparative analysis of network dependability, fault-tolerance, reliability, security, and survivability
    • April
    • M. Al-Kuwaiti, N. Kyriakopoulos, and S. Hussein, "A comparative analysis of network dependability, fault-tolerance, reliability, security, and survivability," IEEE Commun. Surveys Tutorials, vol. 11, no. 2, pp. 106-124, April 2009.
    • (2009) IEEE Commun. Surveys Tutorials , vol.11 , Issue.2 , pp. 106-124
    • Al-Kuwaiti, M.1    Kyriakopoulos, N.2    Hussein, S.3
  • 28
    • 77953236621 scopus 로고    scopus 로고
    • A survey on network coordinates systems, design, and security
    • October
    • B. Donnet, B. Gueye, and M. A. Kaafar, "A Survey on Network Coordinates Systems, Design, and Security," IEEE Commun. Surveys Tutorials, vol. 12, no. 4, pp. 488-503, October 2010.
    • (2010) IEEE Commun. Surveys Tutorials , vol.12 , Issue.4 , pp. 488-503
    • Donnet, B.1    Gueye, B.2    Kaafar, M.A.3
  • 29
    • 70350134739 scopus 로고    scopus 로고
    • The use of computational intelligence in intrusion detection systems: A review
    • January
    • S. X. Wu and W. Banzhaf, "The use of computational intelligence in intrusion detection systems: A review," Applied Soft Computing, vol. 10, no. 1, pp. 1-35, January 2010.
    • (2010) Applied Soft Computing , vol.10 , Issue.1 , pp. 1-35
    • Wu, S.X.1    Banzhaf, W.2
  • 30
    • 77949729303 scopus 로고    scopus 로고
    • Experimental analysis of application level intrusion detection algorithms
    • Y. Dong, S. Hsu, S. Rajput, and B. Wu, "Experimental Analysis of Application Level Intrusion Detection Algorithms," International J. Security and Networks, vol. 5, no. 2/3, pp. 198-205, 2010.
    • (2010) International J. Security and Networks , vol.5 , Issue.2-3 , pp. 198-220
    • Dong, Y.1    Hsu, S.2    Rajput, S.3    Wu, B.4
  • 31
    • 77955847605 scopus 로고    scopus 로고
    • Toward credible evaluation of anomaly-based intrusion-detection methods
    • September
    • M. Tavallaee, N. Stakhanova, and A. A. Ghorbani, "Toward credible evaluation of anomaly-based intrusion-detection methods," IEEE Trans. Syst. Man Cybern. C Appl. Rev., vol. 40, no. 5, pp. 516-524, September 2010.
    • (2010) IEEE Trans. Syst. Man Cybern. C Appl. Rev. , vol.40 , Issue.5 , pp. 516-524
    • Tavallaee, M.1    Stakhanova, N.2    Ghorbani, A.A.3
  • 32
    • 0142253852 scopus 로고    scopus 로고
    • ADAM: A testbed for exploring the use of data mining in intrusion detection
    • B. Daniel, C. Julia, J. Sushil, and W. Ningning, "ADAM: a testbed for exploring the use of data mining in intrusion detection," ACM SIGMOD Record, vol. 30, no. 4, pp. 15-24, 2001.
    • (2001) ACM SIGMOD Record , vol.30 , Issue.4 , pp. 15-24
    • Daniel, B.1    Julia, C.2    Sushil, J.3    Ningning, W.4
  • 35
    • 0043166339 scopus 로고    scopus 로고
    • Anomaly detection in IP networks
    • M. Thottan and C. Ji, "Anomaly detection in IP networks," IEEE Trans. Signal Process., vol. 51, no. 8, pp. 2191-2204, 2003.
    • (2003) IEEE Trans. Signal Process. , vol.51 , Issue.8 , pp. 2191-2204
    • Thottan, M.1    Ji, C.2
  • 36
    • 4344659702 scopus 로고    scopus 로고
    • Anomaly detection methods in wired networks : A survey and taxonomy
    • October
    • J. M. Estevez-Tapiador, P. Garcia-Teodoro, and J. E. Diaz-Verdejo, "Anomaly detection methods in wired networks : a survey and taxonomy," Computer Communication, vol. 27, no. 16, pp. 1569-1584, October 2004.
    • (2004) Computer Communication , vol.27 , Issue.16 , pp. 1569-1584
    • Estevez-Tapiador, J.M.1    Garcia-Teodoro, P.2    Diaz-Verdejo, J.E.3
  • 37
    • 84867518059 scopus 로고    scopus 로고
    • A survey on security threats and detection techniques in cognitive radio networks
    • January
    • A. Fragkiadakis, E. Tragos, and I. Askoxylakis, "A Survey on Security Threats and Detection Techniques in Cognitive Radio Networks," IEEE Commun. Surveys Tutorials, vol. PP, no. 99, pp. 1-18, January 2012.
    • (2012) IEEE Commun. Surveys Tutorials , Issue.99 , pp. 1-18
    • Fragkiadakis, A.1    Tragos, E.2    Askoxylakis, I.3
  • 38
    • 0003478316 scopus 로고
    • The architecture of a network level intrusion detection system
    • University of New Mexico, Tech. Rep. TR-90
    • R. Heady, G. Luger, A. Maccabe, and M. Servilla, "The Architecture of a Network Level Intrusion Detection System," Computer Science Department, University of New Mexico, Tech. Rep. TR-90, 1990.
    • (1990) Computer Science Department
    • Heady, R.1    Luger, G.2    MacCabe, A.3    Servilla, M.4
  • 43
    • 80053510589 scopus 로고    scopus 로고
    • Surveying port scans and their detection methodologies
    • October
    • M. H. Bhuyan, D. K. Bhattacharyya, and J. K. Kalita, "Surveying Port Scans and Their Detection Methodologies," The Computer Journal, vol. 54, no. 10, pp. 1565-1581, October 2011.
    • (2011) The Computer Journal , vol.54 , Issue.10 , pp. 1565-1581
    • Bhuyan, M.H.1    Bhattacharyya, D.K.2    Kalita, J.K.3
  • 45
    • 27844550177 scopus 로고    scopus 로고
    • Parallel and distributed computing for cybersecurity
    • V. Kumar, "Parallel and distributed computing for cybersecurity," IEEE Distributed Systems Online, vol. 6, no. 10, 2005.
    • (2005) IEEE Distributed Systems Online , vol.6 , Issue.10
    • Kumar, V.1
  • 47
    • 77954875432 scopus 로고    scopus 로고
    • Anomaly-based network intrusion detection : Techniques, systems and challenges
    • M. J. Lesot and M. Rifqi, "Anomaly-based network intrusion detection : Techniques, systems and challenges," International J. Knowledge Engineering and Soft Data Paradigms, vol. 1, no. 1, pp. 63-84, 2009.
    • (2009) International J. Knowledge Engineering and Soft Data Paradigms , vol.1 , Issue.1 , pp. 63-84
    • Lesot, M.J.1    Rifqi, M.2
  • 48
    • 70349266356 scopus 로고    scopus 로고
    • Comprehensive survey on distance/similarity measures between probability density functions
    • November
    • S. H. Cha, "Comprehensive Survey on Distance/Similarity Measures between Probability Density Functions," International J. Mathematical Models and Methods in Applied Science, vol. 1, no. 4, pp. 300-307, November 2007.
    • (2007) International J. Mathematical Models and Methods in Applied Science , vol.1 , Issue.4 , pp. 300-307
    • Cha, S.H.1
  • 52
    • 70449464202 scopus 로고    scopus 로고
    • Data clustering theory algorithms and applications
    • G. Gan, C. Ma, and J. Wu, Data Clustering Theory, Algorithms and Applications. SIAM, 2007.
    • (2007) SIAM
    • Gan, G.1    Ma, C.2    Wu, J.3
  • 53
    • 85008008416 scopus 로고    scopus 로고
    • An integrated framework for visualized and exploratory pattern discovery in mixed data
    • C. C. Hsu and S. H. Wang, "An integrated framework for visualized and exploratory pattern discovery in mixed data," IEEE Trans. Knowl. Data Eng., vol. 18, no. 2, pp. 161-173, 2005.
    • (2005) IEEE Trans. Knowl. Data Eng. , vol.18 , Issue.2 , pp. 161-173
    • Hsu, C.C.1    Wang, S.H.2
  • 55
    • 1642475063 scopus 로고    scopus 로고
    • Resampling approach for anomaly detection in multispectral images
    • SPIE
    • J. Theiler and D. M. Cai, "Resampling approach for anomaly detection in multispectral images," in Proc. SPIE, vol. 5093. SPIE, 2003, pp. 230-240.
    • (2003) Proc. SPIE , vol.5093 , pp. 230-240
    • Theiler, J.1    Cai, D.M.2
  • 56
    • 32344449062 scopus 로고    scopus 로고
    • An approach to spacecraft anomaly detection problem using Kernel Feature Space
    • DOI 10.1145/1081870.1081917, KDD-2005 - Proceedings of the 11th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
    • R. Fujimaki, T. Yairi, and K. Machida, "An approach to spacecraft anomaly detection problem using kernel feature space," in Proc. 11th ACM SIGKDD International Conference on Knowledge Discovery in Data Mining. USA: ACM, 2005, pp. 401-410. (Pubitemid 43218302)
    • (2005) Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining , pp. 401-410
    • Fujimaki, R.1    Yairi, T.2    Machida, K.3
  • 59
    • 0013326060 scopus 로고    scopus 로고
    • Feature selection for classification
    • M. Dash and H. Liu, "Feature Selection for Classification," Intelligent Data Analysis, vol. 1, pp. 131-156, 1997.
    • (1997) Intelligent Data Analysis , vol.1 , pp. 131-156
    • Dash, M.1    Liu, H.2
  • 61
    • 67649726426 scopus 로고    scopus 로고
    • Building lightweight intrusion detection system using wrapper-based feature selection mechanisms
    • Y. Li, J. L. Wang, Z. Tian, T. Lu, and C. Young, "Building lightweight intrusion detection system using wrapper-based feature selection mechanisms," Computers & Security, vol. 28, no. 6, pp. 466-475, 2009.
    • (2009) Computers & Security , vol.28 , Issue.6 , pp. 466-475
    • Li, Y.1    Wang, J.L.2    Tian, Z.3    Lu, T.4    Young, C.5
  • 63
    • 84943383590 scopus 로고    scopus 로고
    • Identifying important features for intrusion detection using support vector machines and neural networks
    • USA: IEEE CS
    • A. H. Sung and S. Mukkamala, "Identifying Important Features for Intrusion Detection Using Support Vector Machines and Neural Networks," in Proc. Symposium on Applications and the Internet. USA: IEEE CS, 2003, pp. 209-217.
    • (2003) Proc. Symposium on Applications and the Internet , pp. 209-217
    • Sung, A.H.1    Mukkamala, S.2
  • 64
    • 24344458137 scopus 로고    scopus 로고
    • Feature selection based on mutual information: Criteria of Max-Dependency, Max-Relevance, and Min-Redundancy
    • DOI 10.1109/TPAMI.2005.159
    • H. Peng, F. Long, and C. Ding, "Feature Selection Based on Mutual Information : Criteria of Max-Dependency, Max-Relevance, and Min-Redundancy," IEEE Trans. Pattern Anal. Mach. Intell., vol. 27, no. 8, pp. 1226-1238, August 2005. (Pubitemid 41245053)
    • (2005) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.27 , Issue.8 , pp. 1226-1238
    • Peng, H.1    Long, F.2    Ding, C.3
  • 66
    • 84941155240 scopus 로고
    • Well separated clusters and optimal fuzzy partitions
    • J. Dunn, "Well separated clusters and optimal fuzzy partitions," J. Cybernetics, vol. 4, pp. 95-104, 1974.
    • (1974) J. Cybernetics , vol.4 , pp. 95-104
    • Dunn, J.1
  • 69
    • 84879597103 scopus 로고
    • Measuring the power of hierarchical cluster analysis
    • F. B. Baker and L. J. Hubert, "Measuring the power of hierarchical cluster analysis," J. American Statistics Association, vol. 70, no. 349, pp. 31-38, 1975.
    • (1975) J. American Statistics Association , vol.70 , Issue.349 , pp. 31-38
    • Baker, F.B.1    Hubert, L.J.2
  • 70
    • 0001699630 scopus 로고
    • Methods of comparing classifications
    • F. J. Rohlf, "Methods of Comparing Classifications," Annual Review of Ecology and Systematics, vol. 5, no. 1, pp. 101-113, 1974.
    • (1974) Annual Review of Ecology and Systematics , vol.5 , Issue.1 , pp. 101-113
    • Rohlf, F.J.1
  • 71
    • 0023453329 scopus 로고
    • Silhouettes : A graphical aid to the interpretation and validation of cluster analysis
    • P. J. Rousseeuw, "Silhouettes : a graphical aid to the interpretation and validation of cluster analysis," J. Computational and Applied Mathematics, vol. 20, no. 1, pp. 53-65, 1987.
    • (1987) J. Computational and Applied Mathematics , vol.20 , Issue.1 , pp. 53-65
    • Rousseeuw, P.J.1
  • 72
    • 34248978779 scopus 로고
    • Measures of associations for crossvalidations
    • L. Goodman and W. Kruskal, "Measures of associations for crossvalidations," J. American Statistics Association, vol. 49, pp. 732-764, 1954.
    • (1954) J. American Statistics Association , vol.49 , pp. 732-764
    • Goodman, L.1    Kruskal, W.2
  • 73
    • 84980090975 scopus 로고
    • The distribution of flora in the alpine zone
    • P. Jaccard, "The distribution of flora in the alpine zone," New Phytologist, vol. 11, no. 2, pp. 37-50, 1912.
    • (1912) New Phytologist , vol.11 , Issue.2 , pp. 37-50
    • Jaccard, P.1
  • 74
    • 84950632109 scopus 로고
    • Objective criteria for the evaluation of clustering methods
    • W. M. Rand, "Objective criteria for the evaluation of clustering methods," J. American Statistical Association, vol. 66, no. 336, pp. 846-850, 1971.
    • (1971) J. American Statistical Association , vol.66 , Issue.336 , pp. 846-850
    • Rand, W.M.1
  • 75
    • 0016206886 scopus 로고
    • Numerical taxonomy with fuzzy sets
    • J. C. Bezdek, "Numerical taxonomy with fuzzy sets," J. Mathematical Biology, vol. 1, no. 1, pp. 57-71, 1974.
    • (1974) J. Mathematical Biology , vol.1 , Issue.1 , pp. 57-71
    • Bezdek, J.C.1
  • 76
    • 0015644823 scopus 로고
    • Cluster Validity with fuzzy sets
    • , "Cluster Validity with fuzzy sets," J. Cybernetics, vol. 3, no. 3, pp. 58-78, 1974.
    • (1974) J. Cybernetics , vol.3 , Issue.3 , pp. 58-78
  • 78
    • 0000218526 scopus 로고
    • Rejection of outliers
    • F. J. Anscombe and I. Guttman, "Rejection of outliers," Technometrics, vol. 2, no. 2, pp. 123-147, 1960.
    • (1960) Technometrics , vol.2 , Issue.2 , pp. 123-147
    • Anscombe, F.J.1    Guttman, I.2
  • 79
    • 0009900351 scopus 로고    scopus 로고
    • Anomaly detection over noisy data using learned probability distributions
    • Morgan Kaufmann
    • E. Eskin, "Anomaly detection over noisy data using learned probability distributions," in Proc. 7th International Conference on Machine Learning. Morgan Kaufmann, 2000, pp. 255-262.
    • (2000) Proc. 7th International Conference on Machine Learning , pp. 255-262
    • Eskin, E.1
  • 80
    • 0032462467 scopus 로고    scopus 로고
    • Applications of probability density estimation to the detection of abnormal conditions in engineering
    • M. Desforges, P. Jacob, and J. Cooper, "Applications of probability density estimation to the detection of abnormal conditions in engineering," in Proc. Institute of Mechanical Engineers, vol. 212, 1998, pp. 687-703.
    • (1998) Proc. Institute of Mechanical Engineers , vol.212 , pp. 687-703
    • Desforges, M.1    Jacob, P.2    Cooper, J.3
  • 81
    • 0036804085 scopus 로고    scopus 로고
    • Network intrusion and fault detection: A statistical anomaly approach
    • DOI 10.1109/MCOM.2002.1039860
    • C. Manikopoulos and S. Papavassiliou, "Network Intrusion and Fault Detection: A Statistical Anomaly Approach," IEEE Commun. Mag., vol. 40, no. 10, pp. 76-82, October 2002. (Pubitemid 35311949)
    • (2002) IEEE Communications Magazine , vol.40 , Issue.10 , pp. 76-82
    • Manikopoulos, C.1    Papavassiliou, S.2
  • 82
    • 84872384093 scopus 로고    scopus 로고
    • A machine learning approach to anomaly detection
    • Florida Institute of Technology, Tech. Rep. CS-2003-06
    • P. K. Chan, M. V. Mahoney, and M. H. Arshad, "A machine learning approach to anomaly detection," Department of Computer Science, Florida Institute of Technology, Tech. Rep. CS-2003-06, 2003.
    • (2003) Department of Computer Science
    • Chan, P.K.1    Mahoney, M.V.2    Arshad, M.H.3
  • 87
    • 59949095579 scopus 로고    scopus 로고
    • Network anomaly detection based on wavelet analysis
    • 837601 January
    • W. Lu and A. A. Ghorbani, "Network Anomaly Detection Based on Wavelet Analysis," EURASIP J. Advances in Signal Processing, vol. 2009, no. 837601, January 2009.
    • (2009) EURASIP J. Advances in Signal Processing , vol.2009
    • Lu, W.1    Ghorbani, A.A.2
  • 89
    • 84856667841 scopus 로고    scopus 로고
    • A nonparametric adaptive CUSUM method and its application in network anomaly detection
    • M. Yu, "A Nonparametric Adaptive CUSUM Method And Its Application In Network Anomaly Detection," International J. Advancements in Computing Technology, vol. 4, no. 1, pp. 280-288, 2012.
    • (2012) International J. Advancements in Computing Technology , vol.4 , Issue.1 , pp. 280-288
    • Yu, M.1
  • 90
    • 0031276011 scopus 로고    scopus 로고
    • Bayesian network classifiers
    • N. Friedman, D. Geiger, and M. Goldszmidt, "Bayesian Network Classifiers," Machine Learning, vol. 29, no. 2-3, pp. 131-163, November 1997. (Pubitemid 127510036)
    • (1997) Machine Learning , vol.29 , Issue.2-3 , pp. 131-163
    • Friedman, N.1    Geiger, D.2    Goldszmidt, M.3
  • 92
    • 0001882616 scopus 로고
    • Fast algorithms for mining association rules in large databases
    • San Francisco, CA, USA: Morgan Kaufmann
    • R. Agrawal and R. Srikant, "Fast Algorithms for Mining Association Rules in Large Databases," in Proc. 20th International Conference on Very Large Data Bases. San Francisco, CA, USA: Morgan Kaufmann, 1994, pp. 487-499.
    • (1994) Proc. 20th International Conference on Very Large Data Bases , pp. 487-499
    • Agrawal, R.1    Srikant, R.2
  • 95
    • 24944518771 scopus 로고    scopus 로고
    • Anomaly internet network traffic detection by kernel principle component classifier
    • Advances in Neural Networks - ISNN 2005: Second International Symposium on Neural Networks. Proceedings
    • H. Tong, C. Li, J. He, J. Chen, Q. A. Tran, H. X. Duan, and X. Li, "Anomaly Internet Network Traffic Detection by Kernel Principle Component Classifier," in Proc. 2nd International Symposium on Neural Networks, vol. LNCS. 3498, 2005, pp. 476-481. (Pubitemid 41315131)
    • (2005) Lecture Notes in Computer Science , vol.3498 , pp. 476-481
    • Tong, H.1    Li, C.2    He, J.3    Chen, J.4    Tran, Q.-A.5    Duan, H.6    Li, X.7
  • 96
    • 33847704184 scopus 로고    scopus 로고
    • K-Means+ID3: A novel method for supervised anomaly detection by cascading k-Means clustering and ID3 decision tree learning methods
    • DOI 10.1109/TKDE.2007.44
    • S. R. Gaddam, V. V. Phoha, and K. S. Balagani, "K-Means+ID3: A Novel Method for Supervised Anomaly Detection by Cascading KMeans Clustering and ID3 Decision Tree Learning Methods," IEEE Trans. Knowl. Data Eng., vol. 19, no. 3, pp. 345-354, Mar 2007. (Pubitemid 46374532)
    • (2007) IEEE Transactions on Knowledge and Data Engineering , vol.19 , Issue.3 , pp. 345-354
    • Gaddam, S.R.1    Phoha, V.V.2    Balagani, K.S.3
  • 100
    • 82255175861 scopus 로고    scopus 로고
    • A differentiated one-class classification method with applications to intrusion detection
    • March
    • I. Kang, M. K. Jeong, and D. Kong, "A differentiated one-class classification method with applications to intrusion detection," Expert Systems with Applications, vol. 39, no. 4, pp. 3899-3905, March 2012.
    • (2012) Expert Systems with Applications , vol.39 , Issue.4 , pp. 3899-3905
    • Kang, I.1    Jeong, M.K.2    Kong, D.3
  • 101
    • 69249230890 scopus 로고    scopus 로고
    • Intrusion detection by machine learning: A review
    • December
    • C. F. Tsai, Y. F. Hsu, C. Y. Lin, and W. Y. Lin, "Intrusion detection by machine learning: A review," Expert Systems with Applications, vol. 36, no. 10, pp. 11 994-12 000, December 2009.
    • (2009) Expert Systems with Applications , vol.36 , Issue.10 , pp. 11994-12000
    • Tsai, C.F.1    Hsu, Y.F.2    Lin, C.Y.3    Lin, W.Y.4
  • 102
    • 78650634152 scopus 로고    scopus 로고
    • Efficient decision tree for protocol analysis in intrusion detection
    • December
    • T. Abbes, A. Bouhoula, and M. Rusinowitch, "Efficient decision tree for protocol analysis in intrusion detection," International J. Security and Networks, vol. 5, no. 4, pp. 220-235, December 2010.
    • (2010) International J. Security and Networks , vol.5 , Issue.4 , pp. 220-235
    • Abbes, T.1    Bouhoula, A.2    Rusinowitch, M.3
  • 104
    • 0000487102 scopus 로고    scopus 로고
    • Estimating the support of a high-dimensional distribution
    • DOI 10.1162/089976601750264965
    • B. Scḧolkopf, J. C. Platt, J. C. Shawe-Taylor, A. J. Smola, and R. C. Williamson, "Estimating the Support of a High-Dimensional Distribution," Neural Computation, vol. 13, no. 7, pp. 1443-1471, July 2001. (Pubitemid 33595028)
    • (2001) Neural Computation , vol.13 , Issue.7 , pp. 1443-1471
    • Scholkopf, B.1    Platt, J.C.2    Shawe-Taylor, J.3    Smola, A.J.4    Williamson, R.C.5
  • 105
    • 67349229828 scopus 로고    scopus 로고
    • A real-time network intrusion detection system for large-scale attacks based on an incremental mining approach
    • M. Y. Su, G. J. Yu, and C. Y. Lin, "A real-time network intrusion detection system for large-scale attacks based on an incremental mining approach," Computers & Security, vol. 28, no. 5, pp. 301-309, 2009.
    • (2009) Computers & Security , vol.28 , Issue.5 , pp. 301-309
    • Su, M.Y.1    Yu, G.J.2    Lin, C.Y.3
  • 106
    • 36049030250 scopus 로고    scopus 로고
    • A new intrusion detection system using support vector machines and hierarchical clustering
    • October
    • L. Khan, M. Awad, and B. Thuraisingham, "A New Intrusion Detection System Using Support Vector Machines and Hierarchical Clustering," The VLDB Journal, vol. 16, no. 4, pp. 507-521, October 2007.
    • (2007) The VLDB Journal , vol.16 , Issue.4 , pp. 507-521
    • Khan, L.1    Awad, M.2    Thuraisingham, B.3
  • 107
    • 78651378423 scopus 로고    scopus 로고
    • A K-means and naive bayes learning approach for better intrusion detection
    • Z. Muda, W. Yassin, M. N. Sulaiman, and N. I. Udzir, "A K-means and naive bayes learning approach for better intrusion detection," Information Technology J., vol. 10, no. 3, pp. 648-655, 2011.
    • (2011) Information Technology J. , vol.10 , Issue.3 , pp. 648-655
    • Muda, Z.1    Yassin, W.2    Sulaiman, M.N.3    Udzir, N.I.4
  • 108
    • 33744584654 scopus 로고
    • Induction of decision trees
    • March
    • J. R. Quinlan, "Induction of Decision Trees," Machine Learning, vol. 1, no. 1, pp. 81-106, March 1986.
    • (1986) Machine Learning , vol.1 , Issue.1 , pp. 81-106
    • Quinlan, J.R.1
  • 109
    • 84894657861 scopus 로고    scopus 로고
    • Springer ch. SVM Tutorial-Classification, Regression and Ranking
    • H. Yu and S. Kim, Handbook of Natural Computing. Springer, 2003, ch. SVM Tutorial-Classification, Regression and Ranking.
    • (2003) Handbook of Natural Computing
    • Yu, H.1    Kim, S.2
  • 111
    • 79953835698 scopus 로고    scopus 로고
    • RODD: An effective reference-based outlier detection technique for large datasets
    • Springer
    • M. H. Bhuyan, D. K. Bhattacharyya, and J. K. Kalita, "RODD: An Effective Reference-Based Outlier Detection Technique for Large Datasets," in Advanced Computing. Springer, 2011, vol. 133, pp. 76-84.
    • (2011) Advanced Computing , vol.133 , pp. 76-84
    • Bhuyan, M.H.1    Bhattacharyya, D.K.2    Kalita, J.K.3
  • 112
    • 0034455983 scopus 로고    scopus 로고
    • Adaptive intrusion detection: A data mining approach
    • DOI 10.1023/A:1006624031083
    • W. Lee, S. J. Stolfo, and K. W. Mok, "Adaptive Intrusion Detection : A Data Mining Approach," Artificial Intelligence Review, vol. 14, no. 6, pp. 533-567, 2000. (Pubitemid 32286605)
    • (2000) Artificial Intelligence Review , vol.14 , Issue.6 , pp. 533-567
    • Lee, W.1    Stolfo, S.J.2    Mok, K.W.3
  • 116
    • 84868695480 scopus 로고    scopus 로고
    • Unsupervised anomaly detection in network intrusion detection using clusters
    • Darlinghurst, Australia, Australia: Australian Computer Society, Inc.
    • K. Leung and C. Leckie, "Unsupervised anomaly detection in network intrusion detection using clusters," in Proc. 28th Australasian conference on Computer Science-Volume 38. Darlinghurst, Australia, Australia: Australian Computer Society, Inc., 2005, pp. 333-342.
    • (2005) Proc. 28th Australasian Conference on Computer Science , vol.38 , pp. 333-342
    • Leung, K.1    Leckie, C.2
  • 118
    • 84858698273 scopus 로고    scopus 로고
    • Unsupervised network intrusion detection systems: Detecting the unknown without knowledge
    • April
    • P. Casas, J. Mazel, and P. Owezarski, "Unsupervised Network Intrusion Detection Systems: Detecting the Unknown without Knowledge," Computer Communications, vol. 35, no. 7, pp. 772-783, April 2012.
    • (2012) Computer Communications , vol.35 , Issue.7 , pp. 772-783
    • Casas, P.1    Mazel, J.2    Owezarski, P.3
  • 121
    • 78650662129 scopus 로고    scopus 로고
    • Enhancing intrusion detection system with proximity information
    • December
    • Z. Zhuang, Y. Li, and Z. Chen, "Enhancing Intrusion Detection System with proximity information," International J. Security and Networks, vol. 5, no. 4, pp. 207-219, December 2010.
    • (2010) International J. Security and Networks , vol.5 , Issue.4 , pp. 207-219
    • Zhuang, Z.1    Li, Y.2    Chen, Z.3
  • 123
    • 33646553013 scopus 로고    scopus 로고
    • Fast distributed outlier detection in mixed-attribute data sets
    • M. E. Otey, A. Ghoting, and S. Parthasarathy, "Fast distributed outlier detection in mixed-attribute data sets," Data Mining and Knowledge Discovery, vol. 12, no. 2-3, pp. 203-228, 2006.
    • (2006) Data Mining and Knowledge Discovery , vol.12 , Issue.2-3 , pp. 203-228
    • Otey, M.E.1    Ghoting, A.2    Parthasarathy, S.3
  • 125
    • 33644860127 scopus 로고    scopus 로고
    • A clustering-based method for unsupervised intrusion detections
    • DOI 10.1016/j.patrec.2005.11.007, PII S0167865505003557
    • S. Jiang, X. Song, H. Wang, J.-J. Han, and Q.-H. Li, "A clusteringbased method for unsupervised intrusion detections," Pattern Recognition Letters, vol. 27, no. 7, pp. 802-810, May 2006. (Pubitemid 43374863)
    • (2006) Pattern Recognition Letters , vol.27 , Issue.7 , pp. 802-810
    • Jiang, S.1    Song, X.2    Wang, H.3    Han, J.-J.4    Li, Q.-H.5
  • 126
    • 51249086020 scopus 로고    scopus 로고
    • A closed-form expression for static worm-scanning strategies
    • Beijing, China: IEEE CS, May
    • Z. Chen and C. Chen, "A Closed-Form Expression for Static Worm-Scanning Strategies," in Proc. IEEE International Conference on Communications. Beijing, China: IEEE CS, May 2008, pp. 1573-1577.
    • (2008) Proc IEEE International Conference on Communications , pp. 1573-1577
    • Chen, Z.1    Chen, C.2
  • 127
    • 0035879674 scopus 로고    scopus 로고
    • Intrusion detection through learning behavior model
    • DOI 10.1016/S0140-3664(00)00364-9, PII S0140366400003649
    • B. Balajinath and S. V. Raghavan, "Intrusion detection through learning behavior model," Computer Communications, vol. 24, no. 12, pp. 1202-1212, July 2001. (Pubitemid 32610612)
    • (2001) Computer Communications , vol.24 , Issue.12 , pp. 1202-1212
    • Balajinath, B.1    Raghavan, S.V.2
  • 128
    • 84871879955 scopus 로고    scopus 로고
    • Rule based network intrusion detection using genetic algorithm
    • March
    • M. S. A. Khan, "Rule based Network Intrusion Detection using Genetic Algorithm," International J. Computer Applications, vol. 18, no. 8, pp. 26-29, March 2011.
    • (2011) International J. Computer Applications , vol.18 , Issue.8 , pp. 26-29
    • Khan, M.S.A.1
  • 129
    • 0004063090 scopus 로고    scopus 로고
    • New Jersey: Prentice Hall
    • S. Haykin, Neural Networks. New Jersey: Prentice Hall, 1999.
    • (1999) Neural Networks
    • Haykin, S.1
  • 130
    • 33748100382 scopus 로고    scopus 로고
    • RT-UNNID: A practical solution to real-time network-based intrusion detection using unsupervised neural networks
    • DOI 10.1016/j.cose.2006.05.003, PII S0167404806000782
    • M. Amini, R. Jalili, and H. R. Shahriari, "RT-UNNID: A practical solution to real-time network-based intrusion detection using unsupervised neural networks," Computers & Security, vol. 25, no. 6, pp. 459-468, 2006. (Pubitemid 44307350)
    • (2006) Computers and Security , vol.25 , Issue.6 , pp. 459-468
    • Amini, M.1    Jalili, R.2    Shahriari, H.R.3
  • 132
    • 0025489075 scopus 로고
    • The self-organizing map
    • T. Kohonen, "The self-organizing map," Proc. IEEE, vol. 78, no. 9, pp. 1464-1480, 1990.
    • (1990) Proc. IEEE , vol.78 , Issue.9 , pp. 1464-1480
    • Kohonen, T.1
  • 134
  • 135
    • 33847406678 scopus 로고    scopus 로고
    • A hierarchical intrusion detection model based on the PCA neural networks
    • DOI 10.1016/j.neucom.2006.10.146, PII S0925231206004644, Advances in Computational Intelligence and Learning 14th European Symposium on Artificial Neural Networks 2006
    • G. Liu, Z. Yi, and S. Yang, "A hierarchical intrusion detection model based on the PCA neural networks," Neurocomputing, vol. 70, no. 7-9, pp. 1561-1568, 2007. (Pubitemid 46336771)
    • (2007) Neurocomputing , vol.70 , Issue.7-9 , pp. 1561-1568
    • Liu, G.1    Yi, Z.2    Yang, S.3
  • 138
    • 0028391673 scopus 로고
    • Application of the recurrent multilayer perceptron in modeling complex process dynamics
    • A. Parlos, K. Chong, and A. Atiya, "Application of the recurrent multilayer perceptron in modeling complex process dynamics," IEEE Trans. Neural Netw., vol. 5, no. 2, pp. 255-266, 1994.
    • (1994) IEEE Trans. Neural Netw. , vol.5 , Issue.2 , pp. 255-266
    • Parlos, A.1    Chong, K.2    Atiya, A.3
  • 139
    • 2442537609 scopus 로고    scopus 로고
    • NSOM: A tool to detect denial of service attacks using self-organizing maps
    • University of California, Davis Davis, California, U.S.A., Tech. Rep.
    • K. Labib and R. Vemuri, "NSOM: A Tool To Detect Denial Of Service Attacks Using Self-Organizing Maps," Department of Applied Science University of California, Davis Davis, California, U.S.A., Tech. Rep., 2002.
    • (2002) Department of Applied Science
    • Labib, K.1    Vemuri, R.2
  • 141
    • 0141441130 scopus 로고    scopus 로고
    • PHAD: Packet header anomaly detection for identifying hostile network traffic
    • Florida Tech, Tech. Rep. cs-2001-04
    • M. V. Mahoney and P. K. Chan, "PHAD: Packet Header Anomaly Detection for Identifying Hostile Network Traffic," Dept. of Computer Science, Florida Tech, Tech. Rep. cs-2001-04, 2001.
    • (2001) Dept. of Computer Science
    • Mahoney, M.V.1    Chan, P.K.2
  • 143
  • 144
    • 58549089680 scopus 로고    scopus 로고
    • Intrusion detection using fuzzy association rules
    • March
    • A. Tajbakhsh, M. Rahmati, and A. Mirzaei, "Intrusion detection using fuzzy association rules," Applied Soft Computing, vol. 9, no. 2, pp. 462-469, March 2009.
    • (2009) Applied Soft Computing , vol.9 , Issue.2 , pp. 462-469
    • Tajbakhsh, A.1    Rahmati, M.2    Mirzaei, A.3
  • 145
    • 84900537680 scopus 로고    scopus 로고
    • An intrusion-detection model based on fuzzy class-association-rule mining using genetic network programming
    • S. Mabu, C. Chen, N. Lu, K. Shimada, and K. Hirasawa, "An Intrusion-Detection Model Based on Fuzzy Class-Association-Rule Mining Using Genetic Network Programming," IEEE Trans. Syst. Man Cybern. Part C Appl. Rev., vol. 41, no. 1, pp. 130-139, 2011.
    • (2011) IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. , vol.41 , Issue.1 , pp. 130-139
    • Mabu, S.1    Chen, C.2    Lu, N.3    Shimada, K.4    Hirasawa, K.5
  • 149
    • 0242289557 scopus 로고    scopus 로고
    • A rough set theory based method for anomaly intrusion detection in computer network systems
    • November
    • Z. Cai, X. Guan, P. Shao, Q. Peng, and G. Sun, "A rough set theory based method for anomaly intrusion detection in computer network systems," Expert Systems, vol. 20, no. 5, pp. 251-259, November 2003.
    • (2003) Expert Systems , vol.20 , Issue.5 , pp. 251-259
    • Cai, Z.1    Guan, X.2    Shao, P.3    Peng, Q.4    Sun, G.5
  • 155
    • 79956148065 scopus 로고    scopus 로고
    • Artificial immune system based on interval type-2 fuzzy set paradigm
    • September
    • A. Visconti and H. Tahayori, "Artificial immune system based on interval type-2 fuzzy set paradigm," Applied Soft Computing, vol. 11, no. 6, pp. 4055-4063, September 2011.
    • (2011) Applied Soft Computing , vol.11 , Issue.6 , pp. 4055-4063
    • Visconti, A.1    Tahayori, H.2
  • 158
    • 77649270156 scopus 로고    scopus 로고
    • Sequential anomaly detection based on temporal-difference learning: Principles, models and case studies
    • X. Xu, "Sequential anomaly detection based on temporal-difference learning: Principles, models and case studies," Applied Soft Computing, vol. 10, no. 3, pp. 859-867, 2010.
    • (2010) Applied Soft Computing , vol.10 , Issue.3 , pp. 859-867
    • Xu, X.1
  • 159
    • 58349122797 scopus 로고    scopus 로고
    • Ph.D. dissertation School of Computer Science and Egineering, The University of New South Wales November
    • A. Prayote, "Knowledge Based Anomaly Detection," Ph.D. dissertation, School of Computer Science and Egineering, The University of New South Wales, November 2007.
    • (2007) Knowledge Based Anomaly Detection
    • Prayote, A.1
  • 160
    • 0029267472 scopus 로고
    • State transition analysis: A rule-based intrusion detection approach
    • K. Ilgun, R. A. Kemmerer, and P. A. Porras, "State transition analysis: A rule-based intrusion detection approach," IEEE Trans. Software Eng., vol. 21, no. 3, pp. 181-199, 1995.
    • (1995) IEEE Trans. Software Eng. , vol.21 , Issue.3 , pp. 181-199
    • Ilgun, K.1    Kemmerer, R.A.2    Porras, P.A.3
  • 161
    • 0003893616 scopus 로고
    • Requirements and model for IDES a real-time intrusion detection system
    • SRI International, USA, Tech. Rep. 83F83-01-00
    • D. E. Denning and P. G. Neumann, "Requirements and model for IDES a real-time intrusion detection system," Computer Science Laboratory, SRI International, USA, Tech. Rep. 83F83-01-00, 1985.
    • (1985) Computer Science Laboratory
    • Denning, D.E.1    Neumann, P.G.2
  • 162
    • 0037986866 scopus 로고
    • Detecting unusual program behaviour using the statistical component of the next-generation intrusion detection expert system (NIDES)
    • SRI International, USA, Tech. Rep. SRIO-CSL-95-06
    • D. Anderson, T. F. Lunt, H. Javitz, A. Tamaru, and A. Valdes, "Detecting unusual program behaviour using the statistical component of the next-generation intrusion detection expert system (NIDES)," Computer Science Laboratory, SRI International, USA, Tech. Rep. SRIO-CSL-95-06, 1995.
    • (1995) Computer Science Laboratory
    • Anderson, D.1    Lunt, T.F.2    Javitz, H.3    Tamaru, A.4    Valdes, A.5
  • 166
    • 0029563452 scopus 로고
    • Prudent expert systems with credentials: Managing the expertise of decision support systems
    • DOI 10.1016/0020-7101(95)01136-3
    • G. Edwards, B. Kang, P. Preston, and P. Compton, "Prudent expert systems with credentials: Managing the expertise of decision support systems," International journal of biomedical computing, vol. 40, no. 2, pp. 125-132, 1995. (Pubitemid 26019936)
    • (1995) International Journal of Bio-Medical Computing , vol.40 , Issue.2 , pp. 125-132
    • Edwards, G.1    Kang, B.H.2    Preston, P.3    Compton, P.4
  • 167
    • 85086420396 scopus 로고    scopus 로고
    • Syntax vs. Semantics: Competing approaches to dynamic network intrusion detection
    • DOI 10.1504/IJSN.2008.016199
    • W. Scheirer and M. C. Chuah, "Syntax vs. semantics : competing approaches to dynamic network intrusion detection," International Journal Securrity and Networks, vol. 3, no. 1, pp. 24-35, December 2008. (Pubitemid 351546019)
    • (2008) International Journal of Security and Networks , vol.3 , Issue.1 , pp. 24-35
    • Scheirer, W.1    Chuah, M.C.2
  • 170
    • 77953137615 scopus 로고    scopus 로고
    • Intrusion detection for mobile devices using the knowledge-based, temporal abstraction method
    • August
    • A. Shabtai, U. Kanonov, and Y. Elovici, "Intrusion detection for mobile devices using the knowledge-based, temporal abstraction method," J. System Software, vol. 83, no. 8, pp. 1524-1537, August 2010.
    • (2010) J. System Software , vol.83 , Issue.8 , pp. 1524-1537
    • Shabtai, A.1    Kanonov, U.2    Elovici, Y.3
  • 171
    • 35449003730 scopus 로고    scopus 로고
    • A user-oriented ontology-based approach for network intrusion detection
    • January
    • S. S. Hung and D. S. M. Liu, "A user-oriented ontology-based approach for network intrusion detection," Computer Standards & Interfaces, vol. 30, no. 1-2, pp. 78-88, January 2008.
    • (2008) Computer Standards & Interfaces , vol.30 , Issue.1-2 , pp. 78-88
    • Hung, S.S.1    Liu, D.S.M.2
  • 172
    • 33748611921 scopus 로고    scopus 로고
    • Ensemble based systems in decision making
    • R. Polikar, "Ensemble based systems in decision making," IEEE Circuits Syst. Mag., vol. 6, no. 3, pp. 21-45, 2006.
    • (2006) IEEE Circuits Syst. Mag. , vol.6 , Issue.3 , pp. 21-45
    • Polikar, R.1
  • 174
    • 35348821822 scopus 로고    scopus 로고
    • Intrusion detection in computer networks by a modular ensemble of one-class classifiers
    • DOI 10.1016/j.inffus.2006.10.002, PII S1566253506000765, Applications of Ensemble Methods
    • G. Giacinto, R. Perdisci, M. D. Rio, and F. Roli, "Intrusion detection in computer networks by a modular ensemble of one-class classifiers," Information Fusion, vol. 9, no. 1, pp. 69-82, January 2008. (Pubitemid 47589059)
    • (2008) Information Fusion , vol.9 , Issue.1 , pp. 69-82
    • Giacinto, G.1    Perdisci, R.2    Del Rio, M.3    Roli, F.4
  • 175
    • 75149176174 scopus 로고    scopus 로고
    • Ensemble-based classifiers
    • February
    • L. Rokach, "Ensemble-based classifiers," Artificial Intelligence Review, vol. 33, no. 1-2, pp. 1-39, February 2010.
    • (2010) Artificial Intelligence Review , vol.33 , Issue.1-2 , pp. 1-39
    • Rokach, L.1
  • 178
    • 19944364877 scopus 로고    scopus 로고
    • Feature deduction and ensemble design of intrusion detection systems
    • DOI 10.1016/j.cose.2004.09.008, PII S016740480400238X
    • S. Chebrolu, A. Abraham, and J. P. Thomas, "Feature deduction and ensemble design of intrusion detection systems," Computers & Security, vol. 24, no. 4, pp. 295-307, 2005. (Pubitemid 40752313)
    • (2005) Computers and Security , vol.24 , Issue.4 , pp. 295-307
    • Chebrolu, S.1    Abraham, A.2    Thomas, J.P.3
  • 180
    • 60349101742 scopus 로고    scopus 로고
    • Using an ensemble of one-class SVM classifiers to harden payload-based anomaly detection systems
    • DOI 10.1109/ICDM.2006.165, 4053075, Proceedings - Sixth International Conference on Data Mining, ICDM 2006
    • R. Perdisci, G. Gu, and W. Lee, "Using an Ensemble of One-Class SVM Classifiers to Harden Payload-based Anomaly Detection Systems," in Proc. 6th International Conference on Data Mining. USA: IEEE CS, 2006, pp. 488-498. (Pubitemid 47485828)
    • (2007) Proceedings - IEEE International Conference on Data Mining, ICDM , pp. 488-498
    • Perdisci, R.1    Gu, O.2    Lee, W.3
  • 181
    • 77954816351 scopus 로고    scopus 로고
    • An ensemble-based evolutionary framework for coping with distributed intrusion detection
    • June
    • G. Folino, C. Pizzuti, and G. Spezzano, "An ensemble-based evolutionary framework for coping with distributed intrusion detection," Genetic Programming and Evolvable Machines, vol. 11, no. 2, pp. 131-146, June 2010.
    • (2010) Genetic Programming and Evolvable Machines , vol.11 , Issue.2 , pp. 131-146
    • Folino, G.1    Pizzuti, C.2    Spezzano, G.3
  • 183
    • 61749083929 scopus 로고    scopus 로고
    • McPAD: A multiple classifier system for accurate payload-based anomaly detection
    • April
    • R. Perdisci, D. Ariu, P. Fogla, G. Giacinto, and W. Lee, "McPAD: A multiple classifier system for accurate payload-based anomaly detection," Computer Networks, vol. 53, no. 6, pp. 864-881, April 2009.
    • (2009) Computer Networks , vol.53 , Issue.6 , pp. 864-881
    • Perdisci, R.1    Ariu, D.2    Fogla, P.3    Giacinto, G.4    Lee, W.5
  • 184
    • 80052778744 scopus 로고    scopus 로고
    • Adaptive rocbased ensembles of HMMs applied to anomaly detection
    • January
    • W. Khreich, E. Granger, A. Miri, and R. Sabourin, "Adaptive ROCbased ensembles of HMMs applied to anomaly detection," Pattern Recognition, vol. 45, no. 1, pp. 208-230, January 2012.
    • (2012) Pattern Recognition , vol.45 , Issue.1 , pp. 208-230
    • Khreich, W.1    Granger, E.2    Miri, A.3    Sabourin, R.4
  • 185
    • 0038330235 scopus 로고    scopus 로고
    • Fusion of multiple classifiers for intrusion detection in computer networks
    • DOI 10.1016/S0167-8655(03)00004-7
    • G. Giacinto, F. Roli, and L. Didaci, "Fusion of multiple classifiers for intrusion detection in computer networks," Pattern Recognition Letters, vol. 24, no. 12, pp. 1795-1803, August 2003. (Pubitemid 36558001)
    • (2003) Pattern Recognition Letters , vol.24 , Issue.12 , pp. 1795-1803
    • Giacinto, G.1    Roli, F.2    Didaci, L.3
  • 187
    • 49549110728 scopus 로고    scopus 로고
    • Data fusion and cost minimization for intrusion detection
    • D. Parikh and T. Chen, "Data Fusion and Cost Minimization for Intrusion Detection," IEEE Trans. Inf. For. Security, vol. 3, no. 3, pp. 381-389, 2008.
    • (2008) IEEE Trans. Inf. For. Security , vol.3 , Issue.3 , pp. 381-389
    • Parikh, D.1    Chen, T.2
  • 188
    • 79959299204 scopus 로고    scopus 로고
    • Decision-level fusion model of multi-source intrusion detection alerts
    • L. Zhi-dong, Y. Wu, W. Wei, and M. Da-peng, "Decision-level fusion model of multi-source intrusion detection alerts," J. Communications, vol. 32, no. 5, pp. 121-128, 2011.
    • (2011) J. Communications , vol.32 , Issue.5 , pp. 121-128
    • Zhi-Dong, L.1    Wu, Y.2    Wei, W.3    Da-Peng, M.4
  • 189
    • 84863186562 scopus 로고    scopus 로고
    • Hierarchical method for anomaly detection and attack identification in high-speed network
    • R. Yan and C. Shao, "Hierarchical Method for Anomaly Detection and Attack Identification in High-speed Network," Information Technology J., vol. 11, no. 9, pp. 1243-1250, 2012.
    • (2012) Information Technology J. , vol.11 , Issue.9 , pp. 1243-1250
    • Yan, R.1    Shao, C.2
  • 192
    • 79955482186 scopus 로고    scopus 로고
    • HMMPayl: An intrusion detection system based on Hidden Markov Models
    • D. Ariu, R. Tronci, and G. Giacinto, "HMMPayl: An intrusion detection system based on Hidden Markov Models," Computers & Security, vol. 30, no. 4, pp. 221-241, 2011.
    • (2011) Computers & Security , vol.30 , Issue.4 , pp. 221-241
    • Ariu, D.1    Tronci, R.2    Giacinto, G.3
  • 195
    • 62249168871 scopus 로고    scopus 로고
    • A hybrid intrusion detection system design for computer network security
    • May
    • M. A. Aydin, A. H. Zaim, and K. G. Ceylan, "A hybrid intrusion detection system design for computer network security," Computers & Electrical Engineering, vol. 35, no. 3, pp. 517-526, May 2009.
    • (2009) Computers & Electrical Engineering , vol.35 , Issue.3 , pp. 517-526
    • Aydin, M.A.1    Zaim, A.H.2    Ceylan, K.G.3
  • 199
    • 33750514606 scopus 로고    scopus 로고
    • Modeling intrusion detection system using hybrid intelligent systems
    • DOI 10.1016/j.jnca.2005.06.003, PII S1084804505000445, Network and Information Security: A Computational Intelligence Approach
    • S. Peddabachigari, A. Abraham, C. Grosan, and J. Thomas, "Modeling intrusion detection system using hybrid intelligent systems," J. Network and Computer Applications, vol. 30, no. 1, pp. 114-132, January 2007. (Pubitemid 44666486)
    • (2007) Journal of Network and Computer Applications , vol.30 , Issue.1 , pp. 114-132
    • Peddabachigari, S.1    Abraham, A.2    Grosan, C.3    Thomas, J.4
  • 200
    • 50649094035 scopus 로고    scopus 로고
    • Random-forests-based network intrusion detection systems
    • J. Zhang, M. Zulkernine, and A. Haque, "Random-Forests-Based Network Intrusion Detection Systems," IEEE Trans. Syst. Man Cybern. C, vol. 38, no. 5, pp. 649-659, 2008.
    • (2008) IEEE Trans. Syst. Man Cybern. C , vol.38 , Issue.5 , pp. 649-659
    • Zhang, J.1    Zulkernine, M.2    Haque, A.3
  • 201
    • 69349090629 scopus 로고    scopus 로고
    • A research using hybrid RBF/Elman neural networks for intrusion detection system secure model
    • X. Tong, Z. Wang, and H. Yu, "A research using hybrid RBF/Elman neural networks for intrusion detection system secure model," Computer Physics Communications, vol. 180, no. 10, pp. 1795-1801, 2009.
    • (2009) Computer Physics Communications , vol.180 , Issue.10 , pp. 1795-1801
    • Tong, X.1    Wang, Z.2    Yu, H.3
  • 209
    • 69249205008 scopus 로고    scopus 로고
    • I. S. T. G. MIT Lincoln Lab March
    • I. S. T. G. MIT Lincoln Lab, "DARPA Intrusion Detection Data Sets," http://www.ll.mit.edu/mission/communications/ist/corpora/ideval/ data/2000data.html, March 2000.
    • (2000) DARPA Intrusion Detection Data Sets
  • 210
    • 84894669448 scopus 로고    scopus 로고
    • Defcon,The Shmoo Group
    • Defcon, "The Shmoo Group," http://cctf.shmoo.com/, 2011.
    • (2011)
  • 212
    • 84894672516 scopus 로고    scopus 로고
    • LBNL, Lawrence Berkeley National Laboratory and ICSI, LBNL/ICSI Enterprise Tracing Project
    • LBNL, "Lawrence Berkeley National Laboratory and ICSI, LBNL/ICSI Enterprise Tracing Project," http://www.icir.org/enterprisetracing/, 2005.
    • (2005)
  • 213
  • 214
    • 84859430323 scopus 로고    scopus 로고
    • Towards developing a systematic approach to generate benchmark datasets for intrusion detection
    • A. Shiravi, H. Shiravi, M. Tavallaee, and A. A. Ghorbani, "Towards developing a systematic approach to generate benchmark datasets for intrusion detection," Computers & Security, vol. 31, no. 3, pp. 357-374, 2012.
    • (2012) Computers & Security , vol.31 , Issue.3 , pp. 357-374
    • Shiravi, A.1    Shiravi, H.2    Tavallaee, M.3    Ghorbani, A.A.4
  • 216
    • 84870694700 scopus 로고    scopus 로고
    • AOCD : An adaptive outlier based coordinated scan detection approach
    • M. H. Bhuyan, D. K. Bhattacharyya, and J. K. Kalita, "AOCD : An Adaptive Outlier Based Coordinated Scan Detection Approach," International J. Network Security, vol. 14, no. 6, pp. 339-351, 2012.
    • (2012) International J. Network Security , vol.14 , Issue.6 , pp. 339-351
    • Bhuyan, M.H.1    Bhattacharyya, D.K.2    Kalita, J.K.3
  • 218
    • 84894667588 scopus 로고    scopus 로고
    • NFDUMP, NFDUMP Tool
    • NFDUMP, "NFDUMP Tool," http://nfdump.sourceforge.net/, 2011.
    • (2011)
  • 220
    • 85019691440 scopus 로고    scopus 로고
    • Testing Intrusion detection systems: A critique of the 1998 and 1999 DARPA intrusion detection system evaluations as performed by Lincoln Laboratory
    • November
    • J. McHugh, "Testing Intrusion detection systems: a critique of the 1998 and 1999 DARPA intrusion detection system evaluations as performed by Lincoln Laboratory," ACM Trans. Inf. System Security, vol. 3, no. 4, pp. 262-294, November 2000.
    • (2000) ACM Trans. Inf. System Security , vol.3 , Issue.4 , pp. 262-294
    • McHugh, J.1
  • 222
    • 78651432290 scopus 로고    scopus 로고
    • Intrusion detection using continuous time bayesian networks
    • J. Xu and C. R. Shelton, "Intrusion Detection using Continuous Time Bayesian Networks," J. Artificial Intelligence Research, vol. 39, pp. 745-774, 2010.
    • (2010) J. Artificial Intelligence Research , vol.39 , pp. 745-774
    • Xu, J.1    Shelton, C.R.2
  • 223
    • 84928016636 scopus 로고    scopus 로고
    • The base-rate fallacy and the difficulty of intrusion detection
    • August
    • S. Axelsson, "The base-rate fallacy and the difficulty of intrusion detection," ACM Trans. Inf. System Security, vol. 3, no. 3, pp. 186-205, August 2000.
    • (2000) ACM Trans. Inf. System Security , vol.3 , Issue.3 , pp. 186-205
    • Axelsson, S.1
  • 228
    • 10044229782 scopus 로고    scopus 로고
    • Lawrence Erlbaum Assoc Inc ch. Performance Alanysis and Evaluation
    • S. M. Weiss and T. Zhang, The handbook of data mining. Lawrence Erlbaum Assoc Inc, 2003, ch. Performance Alanysis and Evaluation, pp. 426-439.
    • (2003) The Handbook of Data Mining , pp. 426-439
    • Weiss, S.M.1    Zhang, T.2
  • 229
    • 0035283313 scopus 로고    scopus 로고
    • Robust classification for imprecise environments
    • DOI 10.1023/A:1007601015854
    • F. J. Provost and T. Fawcett, "Robust Classification for Imprecise Environments," Machine Learning, vol. 42, no. 3, pp. 203-231, 2001. (Pubitemid 32188799)
    • (2001) Machine Learning , vol.42 , Issue.3 , pp. 203-231
    • Provost, F.1    Fawcett, T.2
  • 230
    • 34548146810 scopus 로고    scopus 로고
    • Proper use of ROC curves in intrusion/anomaly detection
    • University of Newcastle upon Tyne Tech. Rep. CS-TR-871 November
    • R. A. Maxion and R. R. Roberts, "Proper Use of ROC Curves in Intrusion/Anomaly Detection," School of Computing Science, University of Newcastle upon Tyne, Tech. Rep. CS-TR-871, November 2004.
    • (2004) School of Computing Science
    • Maxion, R.A.1    Roberts, R.R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.