메뉴 건너뛰기




Volumn 20, Issue 3, 2004, Pages 475-494

Detecting new forms of network intrusion using genetic programming

Author keywords

Anomaly detection; Genetic programming; Intrusion detection; Network security; Rule coverage; Rule evolution

Indexed keywords

COMPUTER SIMULATION; DATA PRIVACY; DATA STRUCTURES; GENETIC ALGORITHMS; NETWORK PROTOCOLS; PACKET SWITCHING;

EID: 4344588856     PISSN: 08247935     EISSN: None     Source Type: Journal    
DOI: 10.1111/j.0824-7935.2004.00247.x     Document Type: Review
Times cited : (101)

References (17)
  • 1
    • 0004048154 scopus 로고
    • Computer security threat monitoring and surveillance
    • James P. Anderson Co., Fort Washington, PA
    • ANDERSON, J. P. 1980, Computer Security Threat Monitoring and Surveillance, Technical Report, James P. Anderson Co., Fort Washington, PA.
    • (1980) Technical Report
    • Anderson, J.P.1
  • 2
    • 0035879674 scopus 로고    scopus 로고
    • Intrusion detection through learning behavior model
    • BALAJINATH, B., and S. RAGHAVAN. 2001. Intrusion detection through learning behavior model. Computer Communications, 24(12):1202-1212.
    • (2001) Computer Communications , vol.24 , Issue.12 , pp. 1202-1212
    • Balajinath, B.1    Raghavan, S.2
  • 4
    • 0043235621 scopus 로고    scopus 로고
    • Rule-based coverage analysis applied to test case selection
    • BARR, V. 1997. Rule-based coverage analysis applied to test case selection. Annals of Software Engineering, 4.
    • (1997) Annals of Software Engineering , vol.4
    • Barr, V.1
  • 7
    • 74949104861 scopus 로고
    • Applying genetic programming to intrusion detection
    • Technical Report, FS-95-01. AAAI Press
    • CROSBIE, M., and G. SPAFFORD. 1995. Applying genetic programming to intrusion detection. Technical Report, FS-95-01, AAAI Fall Symposium Series. AAAI Press.
    • (1995) AAAI Fall Symposium Series
    • Crosbie, M.1    Spafford, G.2
  • 8
    • 33847310953 scopus 로고    scopus 로고
    • Adaptive model generation for intrusion detection systems
    • Workshop on Intrusion Detection and Prevention, Athens, GR
    • ESKIN, E., and M. MILLER, Z. D. ZHONG, G. YI, W-A. LEE, and S. STOLFO. 2000. Adaptive model generation for intrusion detection systems. In Workshop on Intrusion Detection and Prevention, 7th ACM Conference on Computer Security, Athens, GR.
    • (2000) 7th ACM Conference on Computer Security
    • Eskin, E.1    Miller, M.2    Zhong, Z.D.3    Yi, G.4    Lee, W.-A.5    Stolfo, S.6
  • 12
    • 84948667727 scopus 로고    scopus 로고
    • Complete expression trees for evolving fuzzy classifiers systems with genetic algorithms and application to network intrusion detection
    • New Orleans, LA
    • GOMEZ, J., D. DASGUPTA, O. NASAROUI, and F. GONZALEZ. 2002. Complete expression trees for evolving fuzzy classifiers systems with genetic algorithms and application to network intrusion detection. In Proceedings of NAFIPS-FLINT joint Conference, New Orleans, LA, pp. 469-474.
    • (2002) Proceedings of NAFIPS-FLINT Joint Conference , pp. 469-474
    • Gomez, J.1    Dasgupta, D.2    Nasaroui, O.3    Gonzalez, F.4
  • 15
    • 0034301517 scopus 로고    scopus 로고
    • 1999 DARPA off-line intrusion detection evaluation
    • LIPPMANN, R. 2000. The 1999 DARPA off-line intrusion detection evaluation. Computer Networks, 34(4):579-595.
    • (2000) Computer Networks , vol.34 , Issue.4 , pp. 579-595
    • Lippmann, R.1
  • 16
    • 4344583370 scopus 로고
    • Genetic algorithms: An alternative tool for security audit trails analysis
    • Supelec, France
    • ME, L. 1992. Genetic algorithms: An alternative tool for security audit trails analysis. Technical Report, Supelec, France.
    • (1992) Technical Report
    • Me, L.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.