메뉴 건너뛰기




Volumn 394, Issue , 2016, Pages 162-175

Graphene oxide (GO) as functional material in tailoring polyamide thin film composite (PA-TFC) reverse osmosis (RO) membranes

Author keywords

Graphene oxide (GO); Membrane desalination; Nanomaterials incorporations; PA TFC RO membranes; Sublayer adjustment; Surface modifications

Indexed keywords

CHLORINATION; COMPOSITE MEMBRANES; DESALINATION; ENERGY UTILIZATION; FUNCTIONAL MATERIALS; GRAPHENE; HYDROPHILICITY; MEMBRANE FOULING; MEMBRANES; REVERSE OSMOSIS; SURFACE TREATMENT; THIN FILMS;

EID: 84971324147     PISSN: 00119164     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.desal.2016.05.017     Document Type: Review
Times cited : (123)

References (175)
  • 2
    • 84937680756 scopus 로고    scopus 로고
    • Layer-by-layer (LBL) assembly technology as promising strategy for tailoring pressure-driven desalination membranes
    • Xu G.R., Wang S.H., Zhao H.L., Wu S.B., Xu J.M., Li L., Liu X.Y. Layer-by-layer (LBL) assembly technology as promising strategy for tailoring pressure-driven desalination membranes. J. Membr. Sci. 2015, 493:428-443.
    • (2015) J. Membr. Sci. , vol.493 , pp. 428-443
    • Xu, G.R.1    Wang, S.H.2    Zhao, H.L.3    Wu, S.B.4    Xu, J.M.5    Li, L.6    Liu, X.Y.7
  • 3
    • 79961214184 scopus 로고    scopus 로고
    • The future of seawater desalination: energy, technology, and the environment
    • Elimelech M.A.P., William A. The future of seawater desalination: energy, technology, and the environment. Science 2011, 333:712-717.
    • (2011) Science , vol.333 , pp. 712-717
    • Elimelech, M.A.P.1    William, A.2
  • 4
    • 0042342440 scopus 로고    scopus 로고
    • Energy consumption and membrane replacement cost for seawater RO desalination plants
    • Avlonitis S.A., Kouroumbas K., Vlachakis N. Energy consumption and membrane replacement cost for seawater RO desalination plants. Desalination 2003, 157:151-158.
    • (2003) Desalination , vol.157 , pp. 151-158
    • Avlonitis, S.A.1    Kouroumbas, K.2    Vlachakis, N.3
  • 7
    • 79251637224 scopus 로고    scopus 로고
    • Water permeability and water/salt selectivity tradeoff in polymers for desalination
    • Geise G.M., Park H.B., Sagle A.C., Freeman B.D., McGrath J.E. Water permeability and water/salt selectivity tradeoff in polymers for desalination. J. Membr. Sci. 2011, 369:130-138.
    • (2011) J. Membr. Sci. , vol.369 , pp. 130-138
    • Geise, G.M.1    Park, H.B.2    Sagle, A.C.3    Freeman, B.D.4    McGrath, J.E.5
  • 9
    • 84947228482 scopus 로고    scopus 로고
    • A comprehensive review on anti-fouling nanocomposite membranes for pressure driven membrane separation processes
    • Jhaveri J.H., Murthy Z.V.P. A comprehensive review on anti-fouling nanocomposite membranes for pressure driven membrane separation processes. Desalination 2016, 379:137-154.
    • (2016) Desalination , vol.379 , pp. 137-154
    • Jhaveri, J.H.1    Murthy, Z.V.P.2
  • 10
    • 84855928258 scopus 로고    scopus 로고
    • Degradation of polyamide nanofiltration and reverse osmosis membranes by hypochlorite
    • Do V.T., Tang C.Y., Reinhard M., Leckie J.O. Degradation of polyamide nanofiltration and reverse osmosis membranes by hypochlorite. Environ. Sci. Technol. 2012, 46:852-859.
    • (2012) Environ. Sci. Technol. , vol.46 , pp. 852-859
    • Do, V.T.1    Tang, C.Y.2    Reinhard, M.3    Leckie, J.O.4
  • 11
    • 84884396936 scopus 로고    scopus 로고
    • Strategies for improving the performance of the polyamide thin film composite (PA-TFC) reverse osmosis (RO) membranes: surface modifications and nanoparticles incorporations
    • Xu G.R., Wang J.N., Li C.J. Strategies for improving the performance of the polyamide thin film composite (PA-TFC) reverse osmosis (RO) membranes: surface modifications and nanoparticles incorporations. Desalination 2013, 328:83-100.
    • (2013) Desalination , vol.328 , pp. 83-100
    • Xu, G.R.1    Wang, J.N.2    Li, C.J.3
  • 12
    • 84895523087 scopus 로고    scopus 로고
    • Bulk chlorine uptake by polyamide active layers of thin-film composite membranes upon exposure to free chlorine-kinetics, mechanisms, and modeling
    • Powell J., Luh J., Coronell O. Bulk chlorine uptake by polyamide active layers of thin-film composite membranes upon exposure to free chlorine-kinetics, mechanisms, and modeling. Environ. Sci. Technol. 2014, 48:2741-2749.
    • (2014) Environ. Sci. Technol. , vol.48 , pp. 2741-2749
    • Powell, J.1    Luh, J.2    Coronell, O.3
  • 14
    • 84865979750 scopus 로고    scopus 로고
    • Effects of hypochlorous acid exposure on the rejection of salt, polyethylene glycols, boron and arsenic(V) by nanofiltration and reverse osmosis membranes
    • Do V.T., Tang C.Y., Reinhard M., Leckie J.O. Effects of hypochlorous acid exposure on the rejection of salt, polyethylene glycols, boron and arsenic(V) by nanofiltration and reverse osmosis membranes. Water Res. 2012, 46:5217-5223.
    • (2012) Water Res. , vol.46 , pp. 5217-5223
    • Do, V.T.1    Tang, C.Y.2    Reinhard, M.3    Leckie, J.O.4
  • 15
    • 84916595780 scopus 로고    scopus 로고
    • Modification of polyamide membrane surface with chlorine dioxide solutions of differing pH
    • Alayemieka E., Lee S. Modification of polyamide membrane surface with chlorine dioxide solutions of differing pH. Desalin. Water Treat. 2012, 45:84-90.
    • (2012) Desalin. Water Treat. , vol.45 , pp. 84-90
    • Alayemieka, E.1    Lee, S.2
  • 16
    • 84870951368 scopus 로고    scopus 로고
    • Effect of pH on the ageing of reverse osmosis membranes upon exposure to hypochlorite
    • Donose B.C., Sukumar S., Pidou M., Poussade Y., Keller J., Gernjak W. Effect of pH on the ageing of reverse osmosis membranes upon exposure to hypochlorite. Desalination 2013, 309:97-105.
    • (2013) Desalination , vol.309 , pp. 97-105
    • Donose, B.C.1    Sukumar, S.2    Pidou, M.3    Poussade, Y.4    Keller, J.5    Gernjak, W.6
  • 17
    • 79955874236 scopus 로고    scopus 로고
    • Permeability and chemical analysis of aromatic polyamide based membranes exposed to sodium hypochlorite
    • Ettori A., Gaudichet-Maurin E., Schrotter J.C., Aimar P., Causserand C. Permeability and chemical analysis of aromatic polyamide based membranes exposed to sodium hypochlorite. J. Membr. Sci. 2011, 375:220-230.
    • (2011) J. Membr. Sci. , vol.375 , pp. 220-230
    • Ettori, A.1    Gaudichet-Maurin, E.2    Schrotter, J.C.3    Aimar, P.4    Causserand, C.5
  • 18
    • 84923076160 scopus 로고    scopus 로고
    • Changes in physicochemical and transport properties of a reverse osmosis membrane exposed to chloraminated seawater
    • Valentino L., Renkens T., Maugin T., Croué J.P., Mariñas B.J. Changes in physicochemical and transport properties of a reverse osmosis membrane exposed to chloraminated seawater. Environ. Sci. Technol. 2015, 49:2301-2309.
    • (2015) Environ. Sci. Technol. , vol.49 , pp. 2301-2309
    • Valentino, L.1    Renkens, T.2    Maugin, T.3    Croué, J.P.4    Mariñas, B.J.5
  • 19
    • 84945313302 scopus 로고    scopus 로고
    • Amide link scission in the polyamide active layers of thin-film composite membranes upon exposure to free chlorine: kinetics and mechanisms
    • Powell J., Luh J., Coronell O. Amide link scission in the polyamide active layers of thin-film composite membranes upon exposure to free chlorine: kinetics and mechanisms. Environ. Sci. Technol. 2015, 49:12136-12144.
    • (2015) Environ. Sci. Technol. , vol.49 , pp. 12136-12144
    • Powell, J.1    Luh, J.2    Coronell, O.3
  • 20
    • 84870865331 scopus 로고    scopus 로고
    • Interfacially synthesized chlorine-resistant polyimide thin film composite (TFC) reverse osmosis (RO) membranes
    • Hong S., Kim I.C., Tak T., Kwon Y.N. Interfacially synthesized chlorine-resistant polyimide thin film composite (TFC) reverse osmosis (RO) membranes. Desalination 2013, 309:18-26.
    • (2013) Desalination , vol.309 , pp. 18-26
    • Hong, S.1    Kim, I.C.2    Tak, T.3    Kwon, Y.N.4
  • 21
    • 79551711259 scopus 로고    scopus 로고
    • Preparation and characterization of polyamide reverse-osmosis membranes with good chlorine tolerance
    • Son S.H., Jegal J. Preparation and characterization of polyamide reverse-osmosis membranes with good chlorine tolerance. J. Appl. Polym. Sci. 2011, 120:1245-1252.
    • (2011) J. Appl. Polym. Sci. , vol.120 , pp. 1245-1252
    • Son, S.H.1    Jegal, J.2
  • 22
    • 84904757941 scopus 로고    scopus 로고
    • Fabrication and characterization of a novel poly(amide-urethaneimide) TFC reverse osmosis membrane with chlorine-tolerant property
    • Liu L.F., Cai Z.B., Shen J.N., Wu L.X., Hoek E.M.V., Gao C.J. Fabrication and characterization of a novel poly(amide-urethaneimide) TFC reverse osmosis membrane with chlorine-tolerant property. J. Membr. Sci. 2014, 469:397-409.
    • (2014) J. Membr. Sci. , vol.469 , pp. 397-409
    • Liu, L.F.1    Cai, Z.B.2    Shen, J.N.3    Wu, L.X.4    Hoek, E.M.V.5    Gao, C.J.6
  • 23
    • 84952684150 scopus 로고    scopus 로고
    • Recent trends in membranes and membrane processes for desalination
    • Goh P.S., Matsuura T., Ismail A.F., Hilal N. Recent trends in membranes and membrane processes for desalination. Desalination 2016, 391:43-60.
    • (2016) Desalination , vol.391 , pp. 43-60
    • Goh, P.S.1    Matsuura, T.2    Ismail, A.F.3    Hilal, N.4
  • 24
    • 39149141886 scopus 로고    scopus 로고
    • Impacts of reaction and curing conditions on polyamide composite reverse osmosis membrane properties
    • Ghosh A.K., Jeong B.H., Huang X., Hoek E.M.V. Impacts of reaction and curing conditions on polyamide composite reverse osmosis membrane properties. J. Membr. Sci. 2008, 311:34-45.
    • (2008) J. Membr. Sci. , vol.311 , pp. 34-45
    • Ghosh, A.K.1    Jeong, B.H.2    Huang, X.3    Hoek, E.M.V.4
  • 25
    • 84946422982 scopus 로고    scopus 로고
    • Preparation and characterization of thin film composite reverses osmosis membranes with wet and dry support layer
    • Fathizadeh M., Aroujalian A., Raisi A. Preparation and characterization of thin film composite reverses osmosis membranes with wet and dry support layer. Desalin. Water Treat. 2015, 56:1-12.
    • (2015) Desalin. Water Treat. , vol.56 , pp. 1-12
    • Fathizadeh, M.1    Aroujalian, A.2    Raisi, A.3
  • 26
    • 84988241282 scopus 로고    scopus 로고
    • Novel polymer matrix composite membrane doped with fumed silica particles for reverse osmosis desalination
    • Sabir A., Islam A., Shafiq M., Shafeeq A., Butt M.T.Z., Ahmad N.M., Sanaullah K., Jamil T. Novel polymer matrix composite membrane doped with fumed silica particles for reverse osmosis desalination. Desalination 2015, 368:159-170.
    • (2015) Desalination , vol.368 , pp. 159-170
    • Sabir, A.1    Islam, A.2    Shafiq, M.3    Shafeeq, A.4    Butt, M.T.Z.5    Ahmad, N.M.6    Sanaullah, K.7    Jamil, T.8
  • 27
    • 84925067795 scopus 로고    scopus 로고
    • High-performance reverse osmosis nanocomposite membranes containing the mixture of carbon nanotubes and graphene oxides
    • Kim H.J., Lim M.Y., Jung K.H., Kim D.G., Lee J.C. High-performance reverse osmosis nanocomposite membranes containing the mixture of carbon nanotubes and graphene oxides. J. Mater. Chem. A 2015, 3:6798-6809.
    • (2015) J. Mater. Chem. A , vol.3 , pp. 6798-6809
    • Kim, H.J.1    Lim, M.Y.2    Jung, K.H.3    Kim, D.G.4    Lee, J.C.5
  • 28
    • 84918800309 scopus 로고    scopus 로고
    • High-performance polyamide thin-film-nanocomposite reverse osmosis membranes containing hydrophobic zeolitic imidazolate framework-8
    • Duan J., Pan Y., Pacheco F., Litwiller E., Lai Z., Pinnau I. High-performance polyamide thin-film-nanocomposite reverse osmosis membranes containing hydrophobic zeolitic imidazolate framework-8. J. Membr. Sci. 2015, 476:303-310.
    • (2015) J. Membr. Sci. , vol.476 , pp. 303-310
    • Duan, J.1    Pan, Y.2    Pacheco, F.3    Litwiller, E.4    Lai, Z.5    Pinnau, I.6
  • 29
    • 84921287863 scopus 로고    scopus 로고
    • Efficacy of carbon nanotube positioning in the polyethersulfone support layer on the performance of thin-film composite membrane for desalination
    • Son M., Choi H.G., Liu L., Celik E., Park H., Choi H. Efficacy of carbon nanotube positioning in the polyethersulfone support layer on the performance of thin-film composite membrane for desalination. Chem. Eng. J. 2015, 266:376-384.
    • (2015) Chem. Eng. J. , vol.266 , pp. 376-384
    • Son, M.1    Choi, H.G.2    Liu, L.3    Celik, E.4    Park, H.5    Choi, H.6
  • 30
    • 84856583234 scopus 로고    scopus 로고
    • Improved membrane structures for seawater desalination by studying the influence of sublayers
    • Sotto A., Rashed A., Zhang R.X., Martínez A., Braken L., Luis P., Bruggen B.V. Improved membrane structures for seawater desalination by studying the influence of sublayers. Desalination 2012, 287:317-325.
    • (2012) Desalination , vol.287 , pp. 317-325
    • Sotto, A.1    Rashed, A.2    Zhang, R.X.3    Martínez, A.4    Braken, L.5    Luis, P.6    Bruggen, B.V.7
  • 31
    • 84873318033 scopus 로고    scopus 로고
    • Nano-enhanced reverse osmosis membranes
    • Buonomenna M. Nano-enhanced reverse osmosis membranes. Desalination 2013, 314:73-88.
    • (2013) Desalination , vol.314 , pp. 73-88
    • Buonomenna, M.1
  • 32
    • 77955656282 scopus 로고    scopus 로고
    • Controlled synthesis of high performance polyamide membrane with thin dense layer for water desalination
    • Kong C., Kanezashi M., Yamomoto T., Shintani T., Tsuru T. Controlled synthesis of high performance polyamide membrane with thin dense layer for water desalination. J. Membr. Sci. 2010, 362:76-80.
    • (2010) J. Membr. Sci. , vol.362 , pp. 76-80
    • Kong, C.1    Kanezashi, M.2    Yamomoto, T.3    Shintani, T.4    Tsuru, T.5
  • 33
    • 84949870415 scopus 로고    scopus 로고
    • High-flux and fouling-resistant reverse osmosis membrane prepared with incorporating zwitterionic amine monomers via interfacial polymerization
    • Ma R., Ji Y.L., Weng X.D., An Q.F., Gao C.J. High-flux and fouling-resistant reverse osmosis membrane prepared with incorporating zwitterionic amine monomers via interfacial polymerization. Desalination 2016, 381:100-110.
    • (2016) Desalination , vol.381 , pp. 100-110
    • Ma, R.1    Ji, Y.L.2    Weng, X.D.3    An, Q.F.4    Gao, C.J.5
  • 34
    • 84947235387 scopus 로고    scopus 로고
    • Reverse osmosis membranes surface-modified using an initiated chemical vapor deposition technique show resistance to alginate fouling under cross-flow conditions: filtration & subsequent characterization
    • Matin A., Shafi H., Wang M., Khan Z., Gleason K., Rahman F. Reverse osmosis membranes surface-modified using an initiated chemical vapor deposition technique show resistance to alginate fouling under cross-flow conditions: filtration & subsequent characterization. Desalination 2016, 379:108-117.
    • (2016) Desalination , vol.379 , pp. 108-117
    • Matin, A.1    Shafi, H.2    Wang, M.3    Khan, Z.4    Gleason, K.5    Rahman, F.6
  • 35
    • 84954114883 scopus 로고    scopus 로고
    • Enhancing the performance of aromatic polyamide reverse osmosis membrane by surface modification via covalent attachment of polyvinyl alcohol (PVA)
    • Hu Y., Lu K., Yan F., Shi Y., Yu P., Yu S., Li S., Gao C. Enhancing the performance of aromatic polyamide reverse osmosis membrane by surface modification via covalent attachment of polyvinyl alcohol (PVA). J. Membr. Sci. 2016, 501:209-219.
    • (2016) J. Membr. Sci. , vol.501 , pp. 209-219
    • Hu, Y.1    Lu, K.2    Yan, F.3    Shi, Y.4    Yu, P.5    Yu, S.6    Li, S.7    Gao, C.8
  • 36
    • 84941193934 scopus 로고    scopus 로고
    • Improving the hydrophilicity and fouling resistance of RO membranes by surface immobilization of PVP based on a metal-polyphenol precursor layer
    • Wu J., Wang Z., Yan W., Wang Y., Wang J., Wang S. Improving the hydrophilicity and fouling resistance of RO membranes by surface immobilization of PVP based on a metal-polyphenol precursor layer. J. Membr. Sci. 2015, 496:58-69.
    • (2015) J. Membr. Sci. , vol.496 , pp. 58-69
    • Wu, J.1    Wang, Z.2    Yan, W.3    Wang, Y.4    Wang, J.5    Wang, S.6
  • 37
    • 84939802252 scopus 로고    scopus 로고
    • Polyvinylamine-grafted polyamide reverse osmosis membrane with improved antifouling property
    • Wu J., Wang Z., Wang Y., Yan W., Wang J., Wang S. Polyvinylamine-grafted polyamide reverse osmosis membrane with improved antifouling property. J. Membr. Sci. 2015, 495:1-13.
    • (2015) J. Membr. Sci. , vol.495 , pp. 1-13
    • Wu, J.1    Wang, Z.2    Wang, Y.3    Yan, W.4    Wang, J.5    Wang, S.6
  • 38
    • 84896400074 scopus 로고    scopus 로고
    • Synergistic prevention of biofouling in seawater desalination by zwitterionic surfaces and low-level chlorination
    • Yang R., Jang H., Stocker R., Gleason K.K. Synergistic prevention of biofouling in seawater desalination by zwitterionic surfaces and low-level chlorination. Adv. Mater. 2014, 26:1711-1718.
    • (2014) Adv. Mater. , vol.26 , pp. 1711-1718
    • Yang, R.1    Jang, H.2    Stocker, R.3    Gleason, K.K.4
  • 41
    • 84892682825 scopus 로고    scopus 로고
    • Tailoring the permselectivity of water desalination membranes via nanoparticle assembly
    • Chan E.P., Mulhearn W.D., Huang Y.R., Lee J.H., Lee D., Stafford C.M. Tailoring the permselectivity of water desalination membranes via nanoparticle assembly. Langmuir 2014, 30:611-616.
    • (2014) Langmuir , vol.30 , pp. 611-616
    • Chan, E.P.1    Mulhearn, W.D.2    Huang, Y.R.3    Lee, J.H.4    Lee, D.5    Stafford, C.M.6
  • 43
    • 84949649754 scopus 로고    scopus 로고
    • Water desalination through zeolitic imidazolate framework membranes: significant role of functional groups
    • Gupta K.M., Zhang K., Jiang J. Water desalination through zeolitic imidazolate framework membranes: significant role of functional groups. Langmuir 2015, 31:13230-13237.
    • (2015) Langmuir , vol.31 , pp. 13230-13237
    • Gupta, K.M.1    Zhang, K.2    Jiang, J.3
  • 44
    • 84892863301 scopus 로고    scopus 로고
    • Carbon nanotube membranes for water purification: a bright future in water desalination
    • Das R., Ali M.E., Hamid S.B.A., Ramakrishna S., Chowdhury Z.Z. Carbon nanotube membranes for water purification: a bright future in water desalination. Desalination 2014, 336:97-109.
    • (2014) Desalination , vol.336 , pp. 97-109
    • Das, R.1    Ali, M.E.2    Hamid, S.B.A.3    Ramakrishna, S.4    Chowdhury, Z.Z.5
  • 46
    • 84918829886 scopus 로고    scopus 로고
    • High-flux reverse osmosis membranes incorporated with NaY zeolite nanoparticles for brackish water desalination
    • Dong H., Zhao L., Zhang L., Chen H., Gao C., Winston Ho W.S. High-flux reverse osmosis membranes incorporated with NaY zeolite nanoparticles for brackish water desalination. J. Membr. Sci. 2015, 476:373-383.
    • (2015) J. Membr. Sci. , vol.476 , pp. 373-383
    • Dong, H.1    Zhao, L.2    Zhang, L.3    Chen, H.4    Gao, C.5    Winston Ho, W.S.6
  • 48
    • 84935920002 scopus 로고    scopus 로고
    • Fast water thermo-pumping flow across nanotube membranes for desalination
    • Zhao K., Wu H. Fast water thermo-pumping flow across nanotube membranes for desalination. Nano Lett. 2015, 15:3664-3668.
    • (2015) Nano Lett. , vol.15 , pp. 3664-3668
    • Zhao, K.1    Wu, H.2
  • 49
    • 84903776686 scopus 로고    scopus 로고
    • Experimental evidence of rapid water transport through carbon nanotubes embedded in polymeric desalination membranes
    • Lee H.D., Kim H.W., Cho Y.H., Park H.B. Experimental evidence of rapid water transport through carbon nanotubes embedded in polymeric desalination membranes. Small 2014, 10:2653-2660.
    • (2014) Small , vol.10 , pp. 2653-2660
    • Lee, H.D.1    Kim, H.W.2    Cho, Y.H.3    Park, H.B.4
  • 51
    • 0035829539 scopus 로고    scopus 로고
    • Water conduction through the hydrophobic channel of a carbon nanotube
    • Hummer G., Rasaiah J.C., Noworyta J.P. Water conduction through the hydrophobic channel of a carbon nanotube. Nature 2001, 414:188-190.
    • (2001) Nature , vol.414 , pp. 188-190
    • Hummer, G.1    Rasaiah, J.C.2    Noworyta, J.P.3
  • 52
    • 39649089584 scopus 로고    scopus 로고
    • Designing carbon nanotube membranes for efficient water desalination
    • Corry B. Designing carbon nanotube membranes for efficient water desalination. J. Phys. Chem. B 2008, 112:1427-1434.
    • (2008) J. Phys. Chem. B , vol.112 , pp. 1427-1434
    • Corry, B.1
  • 53
    • 84938747451 scopus 로고    scopus 로고
    • Water transport inside carbon nanotubes mediated by phonon-induced oscillating friction
    • Ma M., Grey F., Shen L., Urbakh M., Wu S., Liu J.Z., Liu Y., Zheng Q. Water transport inside carbon nanotubes mediated by phonon-induced oscillating friction. Nat. Nanotechnol. 2015, 10:692-695.
    • (2015) Nat. Nanotechnol. , vol.10 , pp. 692-695
    • Ma, M.1    Grey, F.2    Shen, L.3    Urbakh, M.4    Wu, S.5    Liu, J.Z.6    Liu, Y.7    Zheng, Q.8
  • 54
    • 84879675187 scopus 로고    scopus 로고
    • Zwitterion functionalized carbon nanotube/polyamide nanocomposite membranes for water desalination
    • Chan W.-F., Chen H.-y., Surapathi A., Taylor M.G., Shao X., Marand E., Johnson J.K. Zwitterion functionalized carbon nanotube/polyamide nanocomposite membranes for water desalination. ACS Nano 2013, 7:5308-5319.
    • (2013) ACS Nano , vol.7 , pp. 5308-5319
    • Chan, W.-F.1    Chen, H.-Y.2    Surapathi, A.3    Taylor, M.G.4    Shao, X.5    Marand, E.6    Johnson, J.K.7
  • 55
    • 84898406889 scopus 로고    scopus 로고
    • Tunable water desalination across graphene oxide framework membranes
    • Nicolaï A., Sumpter B.G., Meunier V. Tunable water desalination across graphene oxide framework membranes. Phys. Chem. Chem. Phys. 2014, 16:8646-8654.
    • (2014) Phys. Chem. Chem. Phys. , vol.16 , pp. 8646-8654
    • Nicolaï, A.1    Sumpter, B.G.2    Meunier, V.3
  • 57
    • 84870032455 scopus 로고    scopus 로고
    • Thermal properties of graphene: fundamentals and applications
    • Pop E., Varshney V., Roy A.K. Thermal properties of graphene: fundamentals and applications. MRS Bull. 2012, 37:1273-1281.
    • (2012) MRS Bull. , vol.37 , pp. 1273-1281
    • Pop, E.1    Varshney, V.2    Roy, A.K.3
  • 60
    • 84924854984 scopus 로고    scopus 로고
    • The role of graphene for electrochemical energy storage
    • Raccichini R., Varzi A., Passerini S., Scrosati B. The role of graphene for electrochemical energy storage. Nat. Mater. 2015, 14:271-279.
    • (2015) Nat. Mater. , vol.14 , pp. 271-279
    • Raccichini, R.1    Varzi, A.2    Passerini, S.3    Scrosati, B.4
  • 61
    • 84921515260 scopus 로고    scopus 로고
    • 2 using metal sulfide as a hydrogen-evolving photocatalyst and reduced graphene oxide as a solid-state electron mediator
    • 2 using metal sulfide as a hydrogen-evolving photocatalyst and reduced graphene oxide as a solid-state electron mediator. J. Am. Chem. Soc. 2015, 137:604-607.
    • (2015) J. Am. Chem. Soc. , vol.137 , pp. 604-607
    • Iwashina, K.1    Iwase, A.2    Ng, Y.H.3    Amal, R.4    Kudo, A.5
  • 62
    • 84942536273 scopus 로고    scopus 로고
    • Graphene-based photocatalysts for solar-fuel generation
    • Xiang Q., Cheng B., Yu J. Graphene-based photocatalysts for solar-fuel generation. Angew. Chem. Int. Ed. 2015, 54:11350-11366.
    • (2015) Angew. Chem. Int. Ed. , vol.54 , pp. 11350-11366
    • Xiang, Q.1    Cheng, B.2    Yu, J.3
  • 64
    • 84937123237 scopus 로고    scopus 로고
    • Graphene-based membranes for molecular separation
    • Huang L., Zhang M., Li C., Shi G. Graphene-based membranes for molecular separation. J. Phys. Chem. Lett. 2015, 6:2806-2815.
    • (2015) J. Phys. Chem. Lett. , vol.6 , pp. 2806-2815
    • Huang, L.1    Zhang, M.2    Li, C.3    Shi, G.4
  • 66
    • 84866081469 scopus 로고    scopus 로고
    • Water desalination: graphene cleans up water
    • Wang E.N., Karnik R. Water desalination: graphene cleans up water. Nat. Nanotechnol. 2012, 7:552-554.
    • (2012) Nat. Nanotechnol. , vol.7 , pp. 552-554
    • Wang, E.N.1    Karnik, R.2
  • 67
    • 84925433150 scopus 로고    scopus 로고
    • Graphene oxide-assisted membranes: fabrication and potential applications in desalination and water purification
    • Hegab H.M., Zou L. Graphene oxide-assisted membranes: fabrication and potential applications in desalination and water purification. J. Membr. Sci. 2015, 484:96-106.
    • (2015) J. Membr. Sci. , vol.484 , pp. 96-106
    • Hegab, H.M.1    Zou, L.2
  • 68
    • 84939974377 scopus 로고    scopus 로고
    • Nanoporous graphene as a reverse osmosis membrane: recent insights from theory and simulation
    • Cohen-Tanugi D., Grossman J.C. Nanoporous graphene as a reverse osmosis membrane: recent insights from theory and simulation. Desalination 2015, 366:59-70.
    • (2015) Desalination , vol.366 , pp. 59-70
    • Cohen-Tanugi, D.1    Grossman, J.C.2
  • 69
    • 84916614044 scopus 로고    scopus 로고
    • Graphene-based nanomaterial: the state-of-the-art material for cutting edge desalination technology
    • Goh P.S., Ismail A.F. Graphene-based nanomaterial: the state-of-the-art material for cutting edge desalination technology. Desalination 2015, 356:115-128.
    • (2015) Desalination , vol.356 , pp. 115-128
    • Goh, P.S.1    Ismail, A.F.2
  • 70
    • 84905575969 scopus 로고    scopus 로고
    • Graphene oxide nanosheet: an emerging star material for novel separation membranes
    • Huang H., Ying Y., Peng X. Graphene oxide nanosheet: an emerging star material for novel separation membranes. J. Mater. Chem. A 2014, 2:13772-13782.
    • (2014) J. Mater. Chem. A , vol.2 , pp. 13772-13782
    • Huang, H.1    Ying, Y.2    Peng, X.3
  • 71
    • 84964647492 scopus 로고    scopus 로고
    • Can carbon-based nanomaterials revolutionize membrane fabrication for water treatment and desalination?
    • Manawi Y., Kochkodan V., Hussein M.A., Khaleel M.A., Khraisheh M., Hilal N. Can carbon-based nanomaterials revolutionize membrane fabrication for water treatment and desalination?. Desalination 2016, 391:69-88.
    • (2016) Desalination , vol.391 , pp. 69-88
    • Manawi, Y.1    Kochkodan, V.2    Hussein, M.A.3    Khaleel, M.A.4    Khraisheh, M.5    Hilal, N.6
  • 72
    • 84916639900 scopus 로고    scopus 로고
    • Functional graphene nanosheets: the next generation membranes for water desalination
    • Mahmoud K.A., Mansoor B., Mansour A., Khraisheh M. Functional graphene nanosheets: the next generation membranes for water desalination. Desalination 2015, 356:208-225.
    • (2015) Desalination , vol.356 , pp. 208-225
    • Mahmoud, K.A.1    Mansoor, B.2    Mansour, A.3    Khraisheh, M.4
  • 73
    • 77952719236 scopus 로고    scopus 로고
    • Water transport through ultrathin graphene
    • Suk M.E., Aluru N.R. Water transport through ultrathin graphene. J. Phys. Chem. Lett. 2010, 1:1590-1594.
    • (2010) J. Phys. Chem. Lett. , vol.1 , pp. 1590-1594
    • Suk, M.E.1    Aluru, N.R.2
  • 74
    • 57549101676 scopus 로고    scopus 로고
    • Selective ion passage through functionalized graphene nanopores
    • Sint K., Wang B., Král P. Selective ion passage through functionalized graphene nanopores. J. Am. Chem. Soc. 2008, 130:16448-16449.
    • (2008) J. Am. Chem. Soc. , vol.130 , pp. 16448-16449
    • Sint, K.1    Wang, B.2    Král, P.3
  • 75
    • 84863847073 scopus 로고    scopus 로고
    • Water desalination across nanoporous graphene
    • Cohen-Tanugi D., Grossman J.C. Water desalination across nanoporous graphene. Nano Lett. 2012, 12:3602-3608.
    • (2012) Nano Lett. , vol.12 , pp. 3602-3608
    • Cohen-Tanugi, D.1    Grossman, J.C.2
  • 76
    • 84884896884 scopus 로고    scopus 로고
    • Simulation insights for graphene-based water desalination membranes
    • Konatham D., Yu J., Ho T.A., Striolo A. Simulation insights for graphene-based water desalination membranes. Langmuir 2013, 29:11884-11897.
    • (2013) Langmuir , vol.29 , pp. 11884-11897
    • Konatham, D.1    Yu, J.2    Ho, T.A.3    Striolo, A.4
  • 77
    • 84910128484 scopus 로고    scopus 로고
    • Mechanical strength of nanoporous graphene as a desalination membrane
    • Cohen-Tanugi D., Grossman J.C. Mechanical strength of nanoporous graphene as a desalination membrane. Nano Lett. 2014, 14:6171-6178.
    • (2014) Nano Lett. , vol.14 , pp. 6171-6178
    • Cohen-Tanugi, D.1    Grossman, J.C.2
  • 86
    • 52349104848 scopus 로고    scopus 로고
    • Electron beam nanosculpting of suspended graphene sheets
    • Fischbein M.D., Drndic M. Electron beam nanosculpting of suspended graphene sheets. Appl. Phys. Lett. 2008, 93:113107.
    • (2008) Appl. Phys. Lett. , vol.93 , pp. 113107
    • Fischbein, M.D.1    Drndic, M.2
  • 87
    • 84958149578 scopus 로고    scopus 로고
    • Multilayer nanoporous graphene membranes for water desalination
    • Cohen-Tanugi D., Lin L.C., Grossman J.C. Multilayer nanoporous graphene membranes for water desalination. Nano Lett. 2016, 16:1027-1033.
    • (2016) Nano Lett. , vol.16 , pp. 1027-1033
    • Cohen-Tanugi, D.1    Lin, L.C.2    Grossman, J.C.3
  • 88
    • 84862810252 scopus 로고    scopus 로고
    • Polyamide interfacial composite membranes prepared from m-phenylene diamine, trimesoyl chloride and a new disulfonated diamine
    • Xie W., Geise G.M., Freeman B.D., Lee H.S., Byun G., McGrath J.E. Polyamide interfacial composite membranes prepared from m-phenylene diamine, trimesoyl chloride and a new disulfonated diamine. J. Membr. Sci. 2012, 403:152-161.
    • (2012) J. Membr. Sci. , vol.403 , pp. 152-161
    • Xie, W.1    Geise, G.M.2    Freeman, B.D.3    Lee, H.S.4    Byun, G.5    McGrath, J.E.6
  • 92
    • 84876255000 scopus 로고    scopus 로고
    • Enabling graphene oxide nanosheets as water separation membranes
    • Hu M., Mi B. Enabling graphene oxide nanosheets as water separation membranes. Environ. Sci. Technol. 2013, 47:3715-3723.
    • (2013) Environ. Sci. Technol. , vol.47 , pp. 3715-3723
    • Hu, M.1    Mi, B.2
  • 93
    • 70350680954 scopus 로고    scopus 로고
    • Selling graphene by the ton
    • Segal M. Selling graphene by the ton. Nat. Nanotechnol. 2009, 4:612-614.
    • (2009) Nat. Nanotechnol. , vol.4 , pp. 612-614
    • Segal, M.1
  • 94
    • 67049114637 scopus 로고    scopus 로고
    • Chemical methods for the production of graphenes
    • Park S., Ruoff R.S. Chemical methods for the production of graphenes. Nat. Nanotechnol. 2009, 4:217-224.
    • (2009) Nat. Nanotechnol. , vol.4 , pp. 217-224
    • Park, S.1    Ruoff, R.S.2
  • 96
  • 98
    • 84892883939 scopus 로고    scopus 로고
    • Biofouling resistance of reverse osmosis membrane modified with polydopamine
    • Karkhanechi H., Takagi R., Matsuyama H. Biofouling resistance of reverse osmosis membrane modified with polydopamine. Desalination 2014, 336:87-96.
    • (2014) Desalination , vol.336 , pp. 87-96
    • Karkhanechi, H.1    Takagi, R.2    Matsuyama, H.3
  • 99
    • 84886435870 scopus 로고    scopus 로고
    • Surface coating on the polyamide TFC RO membrane for chlorine resistance and antifouling performance improvement
    • Ni L., Meng J., Li X., Zhang Y. Surface coating on the polyamide TFC RO membrane for chlorine resistance and antifouling performance improvement. J. Membr. Sci. 2014, 451:205-215.
    • (2014) J. Membr. Sci. , vol.451 , pp. 205-215
    • Ni, L.1    Meng, J.2    Li, X.3    Zhang, Y.4
  • 100
    • 84911492269 scopus 로고    scopus 로고
    • Low fouling and improved chlorine resistant thin film composite reverse osmosis membranes by cerium(IV)/polyvinyl alcohol mediated surface modification
    • Rana H.H., Saha N.K., Jewrajka S.K., Reddy A.V.R. Low fouling and improved chlorine resistant thin film composite reverse osmosis membranes by cerium(IV)/polyvinyl alcohol mediated surface modification. Desalination 2015, 357:93-103.
    • (2015) Desalination , vol.357 , pp. 93-103
    • Rana, H.H.1    Saha, N.K.2    Jewrajka, S.K.3    Reddy, A.V.R.4
  • 101
    • 84925670381 scopus 로고    scopus 로고
    • Improving fouling resistance and chlorine stability of aromatic polyamide thin-film composite RO membrane by surface grafting of polyvinyl alcohol (PVA)
    • Liu M., Chen Q., Wang L., Yu S., Gao C. Improving fouling resistance and chlorine stability of aromatic polyamide thin-film composite RO membrane by surface grafting of polyvinyl alcohol (PVA). Desalination 2015, 367:11-20.
    • (2015) Desalination , vol.367 , pp. 11-20
    • Liu, M.1    Chen, Q.2    Wang, L.3    Yu, S.4    Gao, C.5
  • 102
    • 84922496384 scopus 로고    scopus 로고
    • Surface modification of reverse osmosis membranes with zwitterionic coating for improved resistance to fouling
    • Shafi H.Z., Khan Z., Yang R., Gleason K.K. Surface modification of reverse osmosis membranes with zwitterionic coating for improved resistance to fouling. Desalination 2015, 362:93-103.
    • (2015) Desalination , vol.362 , pp. 93-103
    • Shafi, H.Z.1    Khan, Z.2    Yang, R.3    Gleason, K.K.4
  • 103
    • 84858438742 scopus 로고    scopus 로고
    • Using zwitterionic amino acid l-DOPA to modify the surface of thin film composite polyamide reverse osmosis membranes to increase their fouling resistance
    • Azari S., Zou L. Using zwitterionic amino acid l-DOPA to modify the surface of thin film composite polyamide reverse osmosis membranes to increase their fouling resistance. J. Membr. Sci. 2012, 401:68-75.
    • (2012) J. Membr. Sci. , vol.401 , pp. 68-75
    • Azari, S.1    Zou, L.2
  • 104
    • 84948437369 scopus 로고    scopus 로고
    • Enhancement in membrane performances of a commercial polyamide reverse osmosis membrane via surface coating of polydopamine followed by the grafting of polyethylenimine
    • Li H., Peng L., Luo Y., Yu P. Enhancement in membrane performances of a commercial polyamide reverse osmosis membrane via surface coating of polydopamine followed by the grafting of polyethylenimine. RSC Adv. 2015, 5:98566-98575.
    • (2015) RSC Adv. , vol.5 , pp. 98566-98575
    • Li, H.1    Peng, L.2    Luo, Y.3    Yu, P.4
  • 105
    • 84926395761 scopus 로고    scopus 로고
    • Surface modification of SWRO membranes using hydroxyl poly(oxyethylene) methacrylate and zwitterionic carboxylated polyethyleneimine
    • Choi H., Jung Y., Han S., Tak T., Kwon Y.N. Surface modification of SWRO membranes using hydroxyl poly(oxyethylene) methacrylate and zwitterionic carboxylated polyethyleneimine. J. Membr. Sci. 2015, 486:97-105.
    • (2015) J. Membr. Sci. , vol.486 , pp. 97-105
    • Choi, H.1    Jung, Y.2    Han, S.3    Tak, T.4    Kwon, Y.N.5
  • 106
    • 84872328669 scopus 로고    scopus 로고
    • Preparation and modification of thin film PA membranes with improved antifouling property using acrylic acid and UV irradiation
    • Mansourpanah Y., Habili E.M. Preparation and modification of thin film PA membranes with improved antifouling property using acrylic acid and UV irradiation. J. Membr. Sci. 2013, 430:158-166.
    • (2013) J. Membr. Sci. , vol.430 , pp. 158-166
    • Mansourpanah, Y.1    Habili, E.M.2
  • 107
    • 84862778614 scopus 로고    scopus 로고
    • Surface modification of seawater reverse osmosis (SWRO) membrane using methyl methacrylate-hydroxy poly (oxyethylene) methacrylate (MMA-HPOEM) comb-polymer and its performance
    • Choi H., Park J., Tak T., Kwon Y.N. Surface modification of seawater reverse osmosis (SWRO) membrane using methyl methacrylate-hydroxy poly (oxyethylene) methacrylate (MMA-HPOEM) comb-polymer and its performance. Desalination 2012, 291:1-7.
    • (2012) Desalination , vol.291 , pp. 1-7
    • Choi, H.1    Park, J.2    Tak, T.3    Kwon, Y.N.4
  • 108
    • 84860572739 scopus 로고    scopus 로고
    • Click poly (ethylene glycol) multilayers on RO membranes: fouling reduction and membrane characterization
    • Wang C., Such G.K., Widjaya A., Lomas H., Stevens G., Caruso F., Kentish S.E. Click poly (ethylene glycol) multilayers on RO membranes: fouling reduction and membrane characterization. J. Membr. Sci. 2012, 409:9-15.
    • (2012) J. Membr. Sci. , vol.409 , pp. 9-15
    • Wang, C.1    Such, G.K.2    Widjaya, A.3    Lomas, H.4    Stevens, G.5    Caruso, F.6    Kentish, S.E.7
  • 111
    • 84893941406 scopus 로고    scopus 로고
    • Graphene oxide membranes for ionic and molecular sieving
    • Mi B. Graphene oxide membranes for ionic and molecular sieving. Science 2014, 343:740-742.
    • (2014) Science , vol.343 , pp. 740-742
    • Mi, B.1
  • 113
    • 84938125654 scopus 로고    scopus 로고
    • Antimicrobial properties of graphene oxide nanosheets: why size matters
    • Perreault F., Faria A.F., Nejati S., Elimelech M. Antimicrobial properties of graphene oxide nanosheets: why size matters. ACS Nano 2015, 9:7226-7236.
    • (2015) ACS Nano , vol.9 , pp. 7226-7236
    • Perreault, F.1    Faria, A.F.2    Nejati, S.3    Elimelech, M.4
  • 116
    • 78649527520 scopus 로고    scopus 로고
    • Graphene oxide as a chemically tunable platform for optical applications
    • Loh K.P., Bao Q., Eda G., Chhowalla M. Graphene oxide as a chemically tunable platform for optical applications. Nat. Chem. 2010, 2:1015-1024.
    • (2010) Nat. Chem. , vol.2 , pp. 1015-1024
    • Loh, K.P.1    Bao, Q.2    Eda, G.3    Chhowalla, M.4
  • 118
    • 84863011622 scopus 로고    scopus 로고
    • Unimpeded permeation of water through helium-leak-tight graphene-based membranes
    • Nair R.R., Wu H.A., Jayaram P.N., Grigorieva I.V., Geim A.K. Unimpeded permeation of water through helium-leak-tight graphene-based membranes. Science 2012, 335:442-444.
    • (2012) Science , vol.335 , pp. 442-444
    • Nair, R.R.1    Wu, H.A.2    Jayaram, P.N.3    Grigorieva, I.V.4    Geim, A.K.5
  • 119
    • 84876257810 scopus 로고    scopus 로고
    • Ultrathin graphene nanofiltration membrane for water purification
    • Han Y., Xu Z., Gao C. Ultrathin graphene nanofiltration membrane for water purification. Adv. Funct. Mater. 2013, 23:3693-3700.
    • (2013) Adv. Funct. Mater. , vol.23 , pp. 3693-3700
    • Han, Y.1    Xu, Z.2    Gao, C.3
  • 121
    • 84907991086 scopus 로고    scopus 로고
    • Molecular interactions driving the layer-by-layer assembly of multilayers
    • Borges J., Mano J.F. Molecular interactions driving the layer-by-layer assembly of multilayers. Chem. Rev. 2014, 114:8883-8942.
    • (2014) Chem. Rev. , vol.114 , pp. 8883-8942
    • Borges, J.1    Mano, J.F.2
  • 122
    • 83855160981 scopus 로고    scopus 로고
    • Covalent binding of single-walled carbon nanotubes to polyamide membranes for antimicrobial surface properties
    • Tiraferri A., Vecitis C.D., Elimelech M. Covalent binding of single-walled carbon nanotubes to polyamide membranes for antimicrobial surface properties. ACS Appl. Mater. Interfaces 2011, 3:2869-2877.
    • (2011) ACS Appl. Mater. Interfaces , vol.3 , pp. 2869-2877
    • Tiraferri, A.1    Vecitis, C.D.2    Elimelech, M.3
  • 123
    • 84890444207 scopus 로고    scopus 로고
    • Layer-by-layer assembly of graphene oxide nanosheets on polyamide membranes for durable reverse-osmosis applications
    • Choi W., Choi J., Bang J., Lee J.H. Layer-by-layer assembly of graphene oxide nanosheets on polyamide membranes for durable reverse-osmosis applications. ACS Appl. Mater. Interfaces 2013, 5:12510-12519.
    • (2013) ACS Appl. Mater. Interfaces , vol.5 , pp. 12510-12519
    • Choi, W.1    Choi, J.2    Bang, J.3    Lee, J.H.4
  • 124
    • 84922978491 scopus 로고    scopus 로고
    • Improving the fouling resistance of brackish water membranes via surface modification with graphene oxide functionalized chitosan
    • Hegab H.M., Wimalasiri Y., Ginic-Markovic M., Zou L. Improving the fouling resistance of brackish water membranes via surface modification with graphene oxide functionalized chitosan. Desalination 2015, 365:99-107.
    • (2015) Desalination , vol.365 , pp. 99-107
    • Hegab, H.M.1    Wimalasiri, Y.2    Ginic-Markovic, M.3    Zou, L.4
  • 125
    • 84969263382 scopus 로고    scopus 로고
    • Thin-film composite polyamide membranes functionalized with biocidal graphene oxide nanosheets
    • Perreault F., Tousley M.E., Elimelech M. Thin-film composite polyamide membranes functionalized with biocidal graphene oxide nanosheets. Environ. Sci. Technol. Lett. 2014, 1:71-76.
    • (2014) Environ. Sci. Technol. Lett. , vol.1 , pp. 71-76
    • Perreault, F.1    Tousley, M.E.2    Elimelech, M.3
  • 126
    • 84922899674 scopus 로고    scopus 로고
    • On the origin of the stability of graphene oxide membranes in water
    • Yeh C.N., Raidongia K., Shao J., Yang Q.H., Huang J. On the origin of the stability of graphene oxide membranes in water. Nat. Chem. 2015, 7:166-170.
    • (2015) Nat. Chem. , vol.7 , pp. 166-170
    • Yeh, C.N.1    Raidongia, K.2    Shao, J.3    Yang, Q.H.4    Huang, J.5
  • 127
    • 84929614452 scopus 로고    scopus 로고
    • A review on polyamide thin film nanocomposite (TFN) membranes: history, applications, challenges and approaches
    • Lau W.J., Gray S., Matsuura T., Emadzadeh D., Paul Chen J., Ismail A.F. A review on polyamide thin film nanocomposite (TFN) membranes: history, applications, challenges and approaches. Water Res. 2015, 80:306-324.
    • (2015) Water Res. , vol.80 , pp. 306-324
    • Lau, W.J.1    Gray, S.2    Matsuura, T.3    Emadzadeh, D.4    Paul Chen, J.5    Ismail, A.F.6
  • 128
    • 84916608493 scopus 로고    scopus 로고
    • Thin film composite membrane - recent development and future potential
    • Ismail A.F., Padaki M., Hilal N., Matsuura T., Lau W.J. Thin film composite membrane - recent development and future potential. Desalination 2015, 356:140-148.
    • (2015) Desalination , vol.356 , pp. 140-148
    • Ismail, A.F.1    Padaki, M.2    Hilal, N.3    Matsuura, T.4    Lau, W.J.5
  • 129
    • 84961290374 scopus 로고    scopus 로고
    • Recent applications of nanomaterials in water desalination: a critical review and future opportunities
    • Daer S., Kharraz J., Giwa A., Hasan S.W. Recent applications of nanomaterials in water desalination: a critical review and future opportunities. Desalination 2015, 367:37-48.
    • (2015) Desalination , vol.367 , pp. 37-48
    • Daer, S.1    Kharraz, J.2    Giwa, A.3    Hasan, S.W.4
  • 130
    • 84928393569 scopus 로고    scopus 로고
    • Review: is interplay between nanomaterial and membrane technology the way forward for desalination?
    • Goh P.S., Ismail A.F. Review: is interplay between nanomaterial and membrane technology the way forward for desalination?. J. Chem. Technol. Biotechnol. 2015, 90:971-980.
    • (2015) J. Chem. Technol. Biotechnol. , vol.90 , pp. 971-980
    • Goh, P.S.1    Ismail, A.F.2
  • 131
    • 84870938900 scopus 로고    scopus 로고
    • Preparation of monodispersed spherical mesoporous nanosilica-polyamide thin film composite reverse osmosis membranes via interfacial polymerization
    • Bao M., Zhu G., Wang L., Wang M., Gao C. Preparation of monodispersed spherical mesoporous nanosilica-polyamide thin film composite reverse osmosis membranes via interfacial polymerization. Desalination 2013, 309:261-266.
    • (2013) Desalination , vol.309 , pp. 261-266
    • Bao, M.1    Zhu, G.2    Wang, L.3    Wang, M.4    Gao, C.5
  • 132
    • 84856786775 scopus 로고    scopus 로고
    • Synthesis and characterization of alumina nano-particles polyamide membrane with enhanced flux rejection performance
    • Saleh T.A., Gupta V.K. Synthesis and characterization of alumina nano-particles polyamide membrane with enhanced flux rejection performance. Sep. Purif. Technol. 2012, 89:245-251.
    • (2012) Sep. Purif. Technol. , vol.89 , pp. 245-251
    • Saleh, T.A.1    Gupta, V.K.2
  • 133
    • 0037212504 scopus 로고    scopus 로고
    • 2 nanoparticle self-assembled aromatic polyamide thin-film-composite (TFC) membrane as an approach to solve biofouling problem
    • 2 nanoparticle self-assembled aromatic polyamide thin-film-composite (TFC) membrane as an approach to solve biofouling problem. J. Membr. Sci. 2003, 211:157-165.
    • (2003) J. Membr. Sci. , vol.211 , pp. 157-165
    • Kim, S.H.1    Kwak, S.Y.2    Sohn, B.H.3    Park, T.H.4
  • 136
    • 84896867576 scopus 로고    scopus 로고
    • High-performance reverse osmosis CNT/polyamide nanocomposite membrane by controlled interfacial interactions
    • Kim H.J., Choi K., Baek Y., Kim D.G., Shim J., Yoon J., Lee J.C. High-performance reverse osmosis CNT/polyamide nanocomposite membrane by controlled interfacial interactions. ACS Appl. Mater. Interfaces 2014, 6:2819-2829.
    • (2014) ACS Appl. Mater. Interfaces , vol.6 , pp. 2819-2829
    • Kim, H.J.1    Choi, K.2    Baek, Y.3    Kim, D.G.4    Shim, J.5    Yoon, J.6    Lee, J.C.7
  • 137
    • 84904991766 scopus 로고    scopus 로고
    • An aggregation-mediated assembly of graphene oxide on amine-functionalized poly (glycidyl methacrylate) microspheres for core-shell structures with controlled electrical conductivity
    • Kim S., Yoo J.B., Yi G.R., Lee Y., Choi H.R., Koo J.C., Oh J.S., Nam J.D. An aggregation-mediated assembly of graphene oxide on amine-functionalized poly (glycidyl methacrylate) microspheres for core-shell structures with controlled electrical conductivity. J. Mater. Chem. C 2014, 2:6462-6466.
    • (2014) J. Mater. Chem. C , vol.2 , pp. 6462-6466
    • Kim, S.1    Yoo, J.B.2    Yi, G.R.3    Lee, Y.4    Choi, H.R.5    Koo, J.C.6    Oh, J.S.7    Nam, J.D.8
  • 139
    • 84923012388 scopus 로고    scopus 로고
    • Polymer-matrix nanocomposite membranes for water treatment
    • Yin J., Deng B. Polymer-matrix nanocomposite membranes for water treatment. J. Membr. Sci. 2015, 479:256-275.
    • (2015) J. Membr. Sci. , vol.479 , pp. 256-275
    • Yin, J.1    Deng, B.2
  • 140
    • 84932602268 scopus 로고    scopus 로고
    • Preparation of graphene oxide modified polyamide thin film composite membranes with improved hydrophilicity for natural organic matter removal
    • Xia S., Yao L., Zhao Y., Li N., Zheng Y. Preparation of graphene oxide modified polyamide thin film composite membranes with improved hydrophilicity for natural organic matter removal. Chem. Eng. J. 2015, 280:720-727.
    • (2015) Chem. Eng. J. , vol.280 , pp. 720-727
    • Xia, S.1    Yao, L.2    Zhao, Y.3    Li, N.4    Zheng, Y.5
  • 141
    • 84947256697 scopus 로고    scopus 로고
    • Graphene oxide (GO) enhanced polyamide (PA) thin-film nanocomposite (TFN) membrane for water purification
    • Yin J., Zhu G., Deng B. Graphene oxide (GO) enhanced polyamide (PA) thin-film nanocomposite (TFN) membrane for water purification. Desalination 2016, 379:93-101.
    • (2016) Desalination , vol.379 , pp. 93-101
    • Yin, J.1    Zhu, G.2    Deng, B.3
  • 142
    • 84925012779 scopus 로고    scopus 로고
    • Graphene oxide-embedded thin-film composite reverse osmosis membrane with high flux, anti-biofouling, and chlorine resistance
    • Chae H.R., Lee J., Lee C.H., Kim I.C., Park P.K. Graphene oxide-embedded thin-film composite reverse osmosis membrane with high flux, anti-biofouling, and chlorine resistance. J. Membr. Sci. 2015, 483:128-135.
    • (2015) J. Membr. Sci. , vol.483 , pp. 128-135
    • Chae, H.R.1    Lee, J.2    Lee, C.H.3    Kim, I.C.4    Park, P.K.5
  • 143
    • 84923241403 scopus 로고    scopus 로고
    • Promoted water transport across graphene oxide-poly(amide) thin film composite membranes and their antibacterial activity
    • He L., Dumée L.F., Feng C., Velleman L., Reis R., She F., Gao W., Kong L. Promoted water transport across graphene oxide-poly(amide) thin film composite membranes and their antibacterial activity. Desalination 2015, 365:126-135.
    • (2015) Desalination , vol.365 , pp. 126-135
    • He, L.1    Dumée, L.F.2    Feng, C.3    Velleman, L.4    Reis, R.5    She, F.6    Gao, W.7    Kong, L.8
  • 144
    • 84959336817 scopus 로고    scopus 로고
    • Thin film composite membranes embedded with graphene oxide for water desalination
    • Ali M.E.A., Wang L., Wang X., Feng X. Thin film composite membranes embedded with graphene oxide for water desalination. Desalination 2016, 386:67-76.
    • (2016) Desalination , vol.386 , pp. 67-76
    • Ali, M.E.A.1    Wang, L.2    Wang, X.3    Feng, X.4
  • 145
    • 84880789069 scopus 로고    scopus 로고
    • Role of NaA zeolites in the interfacial polymerization process towards a polyamide nanocomposite reverse osmosis membrane
    • Huang H., Qu X., Dong H., Zhang L., Chen H. Role of NaA zeolites in the interfacial polymerization process towards a polyamide nanocomposite reverse osmosis membrane. RSC Adv. 2013, 3:8203-8207.
    • (2013) RSC Adv. , vol.3 , pp. 8203-8207
    • Huang, H.1    Qu, X.2    Dong, H.3    Zhang, L.4    Chen, H.5
  • 146
    • 55549127508 scopus 로고    scopus 로고
    • Interfacial polycondensation-modeling of kinetics and film properties
    • Dhumal S.S., Wagh S.J., Suresh A.K. Interfacial polycondensation-modeling of kinetics and film properties. J. Membr. Sci. 2008, 325:758-771.
    • (2008) J. Membr. Sci. , vol.325 , pp. 758-771
    • Dhumal, S.S.1    Wagh, S.J.2    Suresh, A.K.3
  • 147
    • 84861827630 scopus 로고    scopus 로고
    • Visualization of the formation of interfacially polymerized film by an optical contact angle measuring device
    • Yuan F., Wang Z., Yu X., Wei Z., Li S., Wang J., Wang S. Visualization of the formation of interfacially polymerized film by an optical contact angle measuring device. J. Phys. Chem. C 2012, 116:11496-11506.
    • (2012) J. Phys. Chem. C , vol.116 , pp. 11496-11506
    • Yuan, F.1    Wang, Z.2    Yu, X.3    Wei, Z.4    Li, S.5    Wang, J.6    Wang, S.7
  • 148
    • 84911860617 scopus 로고    scopus 로고
    • Linear interfacial polymerization: theory and simulations with dissipative particle dynamics
    • Berezkin A.V., Kudryavtsev Y.V. Linear interfacial polymerization: theory and simulations with dissipative particle dynamics. J. Chem. Phys. 2014, 141:194906.
    • (2014) J. Chem. Phys. , vol.141 , pp. 194906
    • Berezkin, A.V.1    Kudryavtsev, Y.V.2
  • 149
    • 84911191479 scopus 로고    scopus 로고
    • The porous structure of the fully-aromatic polyamide film in reverse osmosis membranes
    • Yan H., Miao X., Xu J., Pan G., Zhang Y., Shi Y., Guo M., Liu Y. The porous structure of the fully-aromatic polyamide film in reverse osmosis membranes. J. Membr. Sci. 2015, 475:504-510.
    • (2015) J. Membr. Sci. , vol.475 , pp. 504-510
    • Yan, H.1    Miao, X.2    Xu, J.3    Pan, G.4    Zhang, Y.5    Shi, Y.6    Guo, M.7    Liu, Y.8
  • 150
    • 84954107439 scopus 로고    scopus 로고
    • 3D visualization of the internal nanostructure of polyamide thin films in RO membranes
    • Pacheco F., Sougrat R., Reinhard M., Leckie J.O., Pinnau I. 3D visualization of the internal nanostructure of polyamide thin films in RO membranes. J. Membr. Sci. 2016, 501:33-44.
    • (2016) J. Membr. Sci. , vol.501 , pp. 33-44
    • Pacheco, F.1    Sougrat, R.2    Reinhard, M.3    Leckie, J.O.4    Pinnau, I.5
  • 151
    • 73649090722 scopus 로고    scopus 로고
    • Simulation of thin film membranes formed by interfacial polymerization
    • Oizerovich-Honig R., Raim V., Srebnik S. Simulation of thin film membranes formed by interfacial polymerization. Langmuir 2010, 26:299-306.
    • (2010) Langmuir , vol.26 , pp. 299-306
    • Oizerovich-Honig, R.1    Raim, V.2    Srebnik, S.3
  • 152
    • 41949130987 scopus 로고    scopus 로고
    • Molecular simulation of polyamide synthesis by interfacial polymerization
    • Nadler R., Srebnik S. Molecular simulation of polyamide synthesis by interfacial polymerization. J. Membr. Sci. 2008, 315:100-105.
    • (2008) J. Membr. Sci. , vol.315 , pp. 100-105
    • Nadler, R.1    Srebnik, S.2
  • 153
    • 14844334913 scopus 로고    scopus 로고
    • Kinetics of film formation by interfacial polycondensation
    • Freger V. Kinetics of film formation by interfacial polycondensation. Langmuir 2005, 21:1884-1894.
    • (2005) Langmuir , vol.21 , pp. 1884-1894
    • Freger, V.1
  • 154
    • 84874261896 scopus 로고    scopus 로고
    • A comprehensive kinetic model of free-radical-mediated interfacial polymerization
    • Shenoy R., Bowman C.N. A comprehensive kinetic model of free-radical-mediated interfacial polymerization. Macromol. Theory Simul. 2013, 22:115-126.
    • (2013) Macromol. Theory Simul. , vol.22 , pp. 115-126
    • Shenoy, R.1    Bowman, C.N.2
  • 155
    • 15244342627 scopus 로고    scopus 로고
    • Mechanisms of structure and performance controlled thin film composite membrane formation via interfacial polymerization process
    • Song Y., Sun P., Henry L.L., Sun B. Mechanisms of structure and performance controlled thin film composite membrane formation via interfacial polymerization process. J. Membr. Sci. 2005, 251:67-79.
    • (2005) J. Membr. Sci. , vol.251 , pp. 67-79
    • Song, Y.1    Sun, P.2    Henry, L.L.3    Sun, B.4
  • 156
    • 79956039782 scopus 로고    scopus 로고
    • Depth heterogeneity of fully aromatic polyamide active layers in reverse osmosis and nanofiltration membranes
    • Coronell O., Mariñas B.J., Cahill D.G. Depth heterogeneity of fully aromatic polyamide active layers in reverse osmosis and nanofiltration membranes. Environ. Sci. Technol. 2011, 45:4513-4520.
    • (2011) Environ. Sci. Technol. , vol.45 , pp. 4513-4520
    • Coronell, O.1    Mariñas, B.J.2    Cahill, D.G.3
  • 157
    • 84939135825 scopus 로고    scopus 로고
    • Elements provide a clue: nanoscale characterization of thin-film composite polyamide membranes
    • Lu X., Nejati S., Choo Y., Osuji C.O., Ma J., Elimelech M. Elements provide a clue: nanoscale characterization of thin-film composite polyamide membranes. ACS Appl. Mater. Interfaces 2015, 7:16917-16922.
    • (2015) ACS Appl. Mater. Interfaces , vol.7 , pp. 16917-16922
    • Lu, X.1    Nejati, S.2    Choo, Y.3    Osuji, C.O.4    Ma, J.5    Elimelech, M.6
  • 158
    • 84918834659 scopus 로고    scopus 로고
    • Visualization and characterization of interfacial polymerization layer formation
    • Zhang Y., Benes N.E., Lammertink R.G.H. Visualization and characterization of interfacial polymerization layer formation. Lab Chip 2015, 15:575-580.
    • (2015) Lab Chip , vol.15 , pp. 575-580
    • Zhang, Y.1    Benes, N.E.2    Lammertink, R.G.H.3
  • 159
    • 0023385068 scopus 로고
    • Structure-performance relationships of composite membranes: porous support densification
    • Bartels C.R., Kreuz K.L., Wachtel A. Structure-performance relationships of composite membranes: porous support densification. J. Membr. Sci. 1987, 32:291-312.
    • (1987) J. Membr. Sci. , vol.32 , pp. 291-312
    • Bartels, C.R.1    Kreuz, K.L.2    Wachtel, A.3
  • 161
    • 84898072648 scopus 로고    scopus 로고
    • Deswelling of ultrathin molecular layer-by-layer polyamide water desalination membranes
    • Chan E.P. Deswelling of ultrathin molecular layer-by-layer polyamide water desalination membranes. Soft Matter 2014, 10:2949-2954.
    • (2014) Soft Matter , vol.10 , pp. 2949-2954
    • Chan, E.P.1
  • 163
    • 84885635862 scopus 로고    scopus 로고
    • Swelling of ultrathin molecular layer-by-layer polyamide water desalination membranes
    • Chan E.P., Young A.P., Lee J.H., Stafford C.M. Swelling of ultrathin molecular layer-by-layer polyamide water desalination membranes. J. Polym. Sci. B Polym. Phys. 2013, 51:1647-1655.
    • (2013) J. Polym. Sci. B Polym. Phys. , vol.51 , pp. 1647-1655
    • Chan, E.P.1    Young, A.P.2    Lee, J.H.3    Stafford, C.M.4
  • 165
    • 84946415482 scopus 로고    scopus 로고
    • Tailoring interlayer structure of molecular layer-by-layer assembled polyamide membranes for high separation performance
    • Gu J.E., Lee J.S., Park S.H., Kim I.T., Chan E.P., Kwon Y.N., Lee J.H. Tailoring interlayer structure of molecular layer-by-layer assembled polyamide membranes for high separation performance. Appl. Surf. Sci. 2015, 356:659-667.
    • (2015) Appl. Surf. Sci. , vol.356 , pp. 659-667
    • Gu, J.E.1    Lee, J.S.2    Park, S.H.3    Kim, I.T.4    Chan, E.P.5    Kwon, Y.N.6    Lee, J.H.7
  • 166
    • 84938675725 scopus 로고    scopus 로고
    • Isotropic macroporous polyethersulfone membranes as competitive supports for high performance polyamide desalination membranes
    • ElSherbiny I.M.A., Ghannam R., Khalil A.S.G., Ulbricht M. Isotropic macroporous polyethersulfone membranes as competitive supports for high performance polyamide desalination membranes. J. Membr. Sci. 2015, 493:782-793.
    • (2015) J. Membr. Sci. , vol.493 , pp. 782-793
    • ElSherbiny, I.M.A.1    Ghannam, R.2    Khalil, A.S.G.3    Ulbricht, M.4
  • 167
    • 84971224225 scopus 로고    scopus 로고
    • Effects of polysulfone (PSf) support layer on the performance of thin-film composite (TFC) membranes
    • Deng B. Effects of polysulfone (PSf) support layer on the performance of thin-film composite (TFC) membranes. J. Chem. Proc. Eng. 2014, 1:1-8.
    • (2014) J. Chem. Proc. Eng. , vol.1 , pp. 1-8
    • Deng, B.1
  • 168
    • 83255194043 scopus 로고    scopus 로고
    • Effect of lag time in interfacial polymerization on polyamide composite membrane with different hydrophilic sub layers
    • Fathizadeh M., Aroujalian A., Raisi A. Effect of lag time in interfacial polymerization on polyamide composite membrane with different hydrophilic sub layers. Desalination 2012, 284:32-41.
    • (2012) Desalination , vol.284 , pp. 32-41
    • Fathizadeh, M.1    Aroujalian, A.2    Raisi, A.3
  • 169
    • 67349241681 scopus 로고    scopus 로고
    • Impacts of support membrane structure and chemistry on polyamide-polysulfone interfacial composite membranes
    • Ghosh A.K., Hoek E.M.V. Impacts of support membrane structure and chemistry on polyamide-polysulfone interfacial composite membranes. J. Membr. Sci. 2009, 336:140-148.
    • (2009) J. Membr. Sci. , vol.336 , pp. 140-148
    • Ghosh, A.K.1    Hoek, E.M.V.2
  • 170
    • 84870759441 scopus 로고    scopus 로고
    • Separation performance and interfacial properties of nanocomposite reverse osmosis membranes
    • Pendergast M.M., Ghosh A.K., Hoek E.M.V. Separation performance and interfacial properties of nanocomposite reverse osmosis membranes. Desalination 2013, 308:180-185.
    • (2013) Desalination , vol.308 , pp. 180-185
    • Pendergast, M.M.1    Ghosh, A.K.2    Hoek, E.M.V.3
  • 171
    • 84892996969 scopus 로고    scopus 로고
    • Synthesis, characterization and surface modification of PES hollow fiber membrane support with polydopamine and thin film composite for energy generation
    • Ingole P.G., Choi W., Kim K.H., Park C.H., Choi W.K., Lee H.K. Synthesis, characterization and surface modification of PES hollow fiber membrane support with polydopamine and thin film composite for energy generation. Chem. Eng. J. 2014, 243:137-146.
    • (2014) Chem. Eng. J. , vol.243 , pp. 137-146
    • Ingole, P.G.1    Choi, W.2    Kim, K.H.3    Park, C.H.4    Choi, W.K.5    Lee, H.K.6
  • 172
    • 84862802592 scopus 로고    scopus 로고
    • Development of nanosilver and multi-walled carbon nanotubes thin-film nanocomposite membrane for enhanced water treatment
    • Kim E.S., Hwang G., Gamal El-Din M., Liu Y. Development of nanosilver and multi-walled carbon nanotubes thin-film nanocomposite membrane for enhanced water treatment. J. Membr. Sci. 2012, 394-395:37-48.
    • (2012) J. Membr. Sci. , pp. 37-48
    • Kim, E.S.1    Hwang, G.2    Gamal El-Din, M.3    Liu, Y.4
  • 173
    • 84946430214 scopus 로고    scopus 로고
    • A facile route to enhance the water flux of thin-film composite reverse osmosis membrane: incorporating thickness-controlled graphene oxide in highly porous support layer
    • Lee J., Jang J.H., Chae H.R., Lee S.H., Lee C.H., Park P.K., Won Y.J., Kim I.C. A facile route to enhance the water flux of thin-film composite reverse osmosis membrane: incorporating thickness-controlled graphene oxide in highly porous support layer. J. Mater. Chem. A 2015, 3:22053-22060.
    • (2015) J. Mater. Chem. A , vol.3 , pp. 22053-22060
    • Lee, J.1    Jang, J.H.2    Chae, H.R.3    Lee, S.H.4    Lee, C.H.5    Park, P.K.6    Won, Y.J.7    Kim, I.C.8
  • 174
    • 77951036544 scopus 로고    scopus 로고
    • Effect of chemisorption on the interfacial bonding characteristics of graphene-polymer composites
    • Lv C., Xue Q., Xia D., Ma M., Xie J., Chen H. Effect of chemisorption on the interfacial bonding characteristics of graphene-polymer composites. J. Phys. Chem. C 2010, 114:6588-6594.
    • (2010) J. Phys. Chem. C , vol.114 , pp. 6588-6594
    • Lv, C.1    Xue, Q.2    Xia, D.3    Ma, M.4    Xie, J.5    Chen, H.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.