-
1
-
-
84970003497
-
Reduction of p-hydroxymandelic acid with stannous salt
-
U.S.
-
Mitchell A, Bailey T. Reduction of p-hydroxymandelic acid with stannous salt. 1983; U.S. Patent No. 4393235.
-
(1983)
-
-
Mitchell, A.1
Bailey, T.2
-
2
-
-
0037455376
-
A chemical adaptor system designed to link a tumor-targeting device with a prodrug and an enzymatic trigger
-
Gopin A, Pessah N, Shamis M, Rader C, Shabat D. A chemical adaptor system designed to link a tumor-targeting device with a prodrug and an enzymatic trigger. Angew Chem Int Ed. 2003;42(3):327-32.
-
(2003)
Angew Chem Int Ed
, vol.42
, Issue.3
, pp. 327-332
-
-
Gopin, A.1
Pessah, N.2
Shamis, M.3
Rader, C.4
Shabat, D.5
-
3
-
-
0035843375
-
Synthesis of polyhydroxylated aromatic mandelic acid amides and their antioxidative potential
-
Ley JP, Bertram HJ. Synthesis of polyhydroxylated aromatic mandelic acid amides and their antioxidative potential. Tetr Asym. 2001;57(7):1277-82.
-
(2001)
Tetr Asym.
, vol.57
, Issue.7
, pp. 1277-1282
-
-
Ley, J.P.1
Bertram, H.J.2
-
4
-
-
84878423950
-
Oxidative decarboxylation of mandelic acid derivative by recombinant Escherichia coli: a novel method of ethyl vanillin synthesis
-
Pan XX, Li JJ, Wang MG, He WS, Jia CS, Zhang XM, Feng B, Li DL, Zeng Z. Oxidative decarboxylation of mandelic acid derivative by recombinant Escherichia coli: a novel method of ethyl vanillin synthesis. Biotechnol Lett. 2013;35(6):921-7.
-
(2013)
Biotechnol Lett
, vol.35
, Issue.6
, pp. 921-927
-
-
Pan, X.X.1
Li, J.J.2
Wang, M.G.3
He, W.S.4
Jia, C.S.5
Zhang, X.M.6
Feng, B.7
Li, D.L.8
Zeng, Z.9
-
5
-
-
0027135611
-
Synthesis of optically active 4-hydroxymandelic acid and derivatives via regio-and stereoselective Friedel-Crafts alkylation
-
Bigi F, Sartori G, Maggi R, Cantarelli E, Galaverna G. Synthesis of optically active 4-hydroxymandelic acid and derivatives via regio-and stereoselective Friedel-Crafts alkylation. Tetr Asym. 1993;4(12):2411-4.
-
(1993)
Tetr Asym.
, vol.4
, Issue.12
, pp. 2411-2414
-
-
Bigi, F.1
Sartori, G.2
Maggi, R.3
Cantarelli, E.4
Galaverna, G.5
-
6
-
-
0034523992
-
Biosynthesis of l-p-hydroxyphenylglycine, a non-proteinogenic amino acid constituent of peptide antibiotics
-
Hubbard BK, Thomas MG, Walsh CT. Biosynthesis of l-p-hydroxyphenylglycine, a non-proteinogenic amino acid constituent of peptide antibiotics. Chem Biol. 2000;7(12):931-42.
-
(2000)
Chem Biol
, vol.7
, Issue.12
, pp. 931-942
-
-
Hubbard, B.K.1
Thomas, M.G.2
Walsh, C.T.3
-
7
-
-
0034616852
-
Biosynthesis of the vancomycin group of antibiotics: involvement of an unusual dioxygenase in the pathway to (S)-4-hydroxyphenylglycine
-
Choroba OW, Williams DH, Spencer JB. Biosynthesis of the vancomycin group of antibiotics: involvement of an unusual dioxygenase in the pathway to (S)-4-hydroxyphenylglycine. J Am Chem Soc. 2000;122(22):5389-90.
-
(2000)
J Am Chem Soc
, vol.122
, Issue.22
, pp. 5389-5390
-
-
Choroba, O.W.1
Williams, D.H.2
Spencer, J.B.3
-
8
-
-
84865281539
-
Rational, combinatorial, and genomic approaches for engineering l-tyrosine production in Escherichia coli
-
Santos CNS, Xiao WH, Stephanopoulos G. Rational, combinatorial, and genomic approaches for engineering l-tyrosine production in Escherichia coli. Proc Natl Acad Sci USA. 2012;109(34):13538-43.
-
(2012)
Proc Natl Acad Sci USA
, vol.109
, Issue.34
, pp. 13538-13543
-
-
Santos, C.N.S.1
Xiao, W.H.2
Stephanopoulos, G.3
-
9
-
-
84874376569
-
Bioconversion of p-coumaric acid to p-hydroxystyrene using phenolic acid decarboxylase from B. amyloliquefaciens in biphasic reaction system
-
Jung DH, Choi W, Choi KY, Jung E, Yun H, Kazlauskas RJ, Kim BG. Bioconversion of p-coumaric acid to p-hydroxystyrene using phenolic acid decarboxylase from B. amyloliquefaciens in biphasic reaction system. Appl Microbiol Biotechnol. 2013;97(4):1501-11.
-
(2013)
Appl Microbiol Biotechnol
, vol.97
, Issue.4
, pp. 1501-1511
-
-
Jung, D.H.1
Choi, W.2
Choi, K.Y.3
Jung, E.4
Yun, H.5
Kazlauskas, R.J.6
Kim, B.G.7
-
10
-
-
84899747343
-
Metabolic engineering of Escherichia coli for the production of phenol from glucose
-
Kim B, Park H, Na D, Lee SY. Metabolic engineering of Escherichia coli for the production of phenol from glucose. Biotechnol J. 2013;9(5):621-9.
-
(2013)
Biotechnol J
, vol.9
, Issue.5
, pp. 621-629
-
-
Kim, B.1
Park, H.2
Na, D.3
Lee, S.Y.4
-
11
-
-
84937459775
-
Engineered biosynthesis of natural products in heterologous hosts
-
Luo Y, Li BZ, Liu D, Zhang L, Chen Y, Jia B, Zeng BX, Zhao H, Yuan YJ. Engineered biosynthesis of natural products in heterologous hosts. Chem Soc Rev. 2015;44:5265-90.
-
(2015)
Chem Soc Rev
, vol.44
, pp. 5265-5290
-
-
Luo, Y.1
Li, B.Z.2
Liu, D.3
Zhang, L.4
Chen, Y.5
Jia, B.6
Zeng, B.X.7
Zhao, H.8
Yuan, Y.J.9
-
12
-
-
80855132889
-
Metabolic engineering of Escherichia coli for improving L-3,4-dihydroxyphenylalanine (L-DOPA) synthesis from glucose
-
Munoz AJ, Hernandez CG, De AR, Martinez A, Bolivar F, Gosset G. Metabolic engineering of Escherichia coli for improving L-3,4-dihydroxyphenylalanine (L-DOPA) synthesis from glucose. J Ind Microbiol Biotechnol. 2011;38(11):1845-52.
-
(2011)
J Ind Microbiol Biotechnol
, vol.38
, Issue.11
, pp. 1845-1852
-
-
Munoz, A.J.1
Hernandez, C.G.2
De, A.R.3
Martinez, A.4
Bolivar, F.5
Gosset, G.6
-
13
-
-
84880677911
-
Metabolic engineering of Escherichia coli for production of salvianic acid A via an artificial biosynthetic pathway
-
Yao Y-F, Wang C-S, Qiao J, Zhao G-R. Metabolic engineering of Escherichia coli for production of salvianic acid A via an artificial biosynthetic pathway. Metab Eng. 2013;19:79-87.
-
(2013)
Metab Eng
, vol.19
, pp. 79-87
-
-
Yao, Y.-F.1
Wang, C.-S.2
Qiao, J.3
Zhao, G.-R.4
-
14
-
-
84876676603
-
Engineering E. coli for caffeic acid biosynthesis from renewable sugars
-
Zhang HR, Stephanopoulos G. Engineering E. coli for caffeic acid biosynthesis from renewable sugars. Appl Microbiol Biotechnol. 2013;97(8):3333-41.
-
(2013)
Appl Microbiol Biotechnol
, vol.97
, Issue.8
, pp. 3333-3341
-
-
Zhang, H.R.1
Stephanopoulos, G.2
-
15
-
-
84947614984
-
Modularization of genetic elements promotes synthetic metabolic engineering
-
Qi H, Li BZ, Zhang WQ, Liu D, Yuan YJ. Modularization of genetic elements promotes synthetic metabolic engineering. Biotechnol Adv. 2015;33(7):1412-9.
-
(2015)
Biotechnol Adv
, vol.33
, Issue.7
, pp. 1412-1419
-
-
Qi, H.1
Li, B.Z.2
Zhang, W.Q.3
Liu, D.4
Yuan, Y.J.5
-
16
-
-
0034612342
-
One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products
-
Datsenko KA, Wanner BL. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci USA. 2000;97(12):6640-5.
-
(2000)
Proc Natl Acad Sci USA
, vol.97
, Issue.12
, pp. 6640-6645
-
-
Datsenko, K.A.1
Wanner, B.L.2
-
17
-
-
84893771955
-
4-Hydroxyphenylpyruvate dioxygenase and hydroxymandelate synthase: exemplars of the α-keto acid dependent oxygenases
-
Moran GR. 4-Hydroxyphenylpyruvate dioxygenase and hydroxymandelate synthase: exemplars of the α-keto acid dependent oxygenases. Arch Biochem Biophys. 2014;544:58-68.
-
(2014)
Arch Biochem Biophys
, vol.544
, pp. 58-68
-
-
Moran, G.R.1
-
18
-
-
33646519683
-
Metabolic engineering of the E. colil-phenylalanine pathway for the production of d-phenylglycine (d-Phg)
-
Muller U, Van AF, Gunsior M, Orf S, Kremer S, Schipper D, Wagemans A, Townsend CA, Sonke T, Bovenberg R, Wubbolts M. Metabolic engineering of the E. coli l-phenylalanine pathway for the production of d-phenylglycine (d-Phg). Metab Eng. 2006;8(3):196-208.
-
(2006)
Metab Eng
, vol.8
, Issue.3
, pp. 196-208
-
-
Muller, U.1
Van, A.F.2
Gunsior, M.3
Orf, S.4
Kremer, S.5
Schipper, D.6
Wagemans, A.7
Townsend, C.A.8
Sonke, T.9
Bovenberg, R.10
Wubbolts, M.11
-
19
-
-
80052688691
-
Metabolic engineering of the l-phenylalanine pathway in Escherichia coli for the production of S-or R-mandelic acid
-
Sun Z, Ning Y, Liu L, Liu Y, Sun B, Jiang W, Yang C, Yang S. Metabolic engineering of the l-phenylalanine pathway in Escherichia coli for the production of S-or R-mandelic acid. Microb Cell Fact. 2011;10(1):71.
-
(2011)
Microb Cell Fact
, vol.10
, Issue.1
, pp. 71
-
-
Sun, Z.1
Ning, Y.2
Liu, L.3
Liu, Y.4
Sun, B.5
Jiang, W.6
Yang, C.7
Yang, S.8
-
20
-
-
84904465016
-
Heterologous pathway for the production of l-phenylglycine from glucose by E. coli
-
Liu SP, Liu RX, El-Rotail AA, Ding ZY, Gu ZH, Zhang L, Shi GY. Heterologous pathway for the production of l-phenylglycine from glucose by E. coli. J Biotechnol. 2014;186:91-7.
-
(2014)
J Biotechnol
, vol.186
, pp. 91-97
-
-
Liu, S.P.1
Liu, R.X.2
El-Rotail, A.A.3
Ding, Z.Y.4
Gu, Z.H.5
Zhang, L.6
Shi, G.Y.7
-
21
-
-
84908134524
-
Engineering Escherichia coli to overproduce aromatic amino acids and derived compounds
-
Rodriguez A, Martínez JA, Flores N, Escalante A, Gosset G, Bolivar F. Engineering Escherichia coli to overproduce aromatic amino acids and derived compounds. Microb Cell Fact. 2014;13(1):126.
-
(2014)
Microb Cell Fact
, vol.13
, Issue.1
, pp. 126
-
-
Rodriguez, A.1
Martínez, J.A.2
Flores, N.3
Escalante, A.4
Gosset, G.5
Bolivar, F.6
-
22
-
-
24644515752
-
Tuning genetic control through promoter engineering
-
Alper H, Fischer C, Nevoigt E, Stephanopoulos G. Tuning genetic control through promoter engineering. Proc Natl Acad Sci USA. 2005;102(36):12678-83.
-
(2005)
Proc Natl Acad Sci USA
, vol.102
, Issue.36
, pp. 12678-12683
-
-
Alper, H.1
Fischer, C.2
Nevoigt, E.3
Stephanopoulos, G.4
-
23
-
-
84861963767
-
Genome-scale promoter engineering by coselection MAGE
-
Wang HH, Kim H, Cong L, Jeong J, Bang D, Church GM. Genome-scale promoter engineering by coselection MAGE. Nat Methods. 2012;9(6):591-3.
-
(2012)
Nat Methods
, vol.9
, Issue.6
, pp. 591-593
-
-
Wang, H.H.1
Kim, H.2
Cong, L.3
Jeong, J.4
Bang, D.5
Church, G.M.6
-
24
-
-
77957329119
-
Isoprenoid pathway optimization for taxol precursor overproduction in Escherichia coli
-
Ajikumar PK, Xiao WH, Tyo KE, Wang Y, Simeon F, Leonard E, Mucha O, Phon TH, Pfeifer B, Stephanopoulos G. Isoprenoid pathway optimization for taxol precursor overproduction in Escherichia coli. Science. 2010;330(70):70-4.
-
(2010)
Science
, vol.330
, Issue.70
, pp. 70-74
-
-
Ajikumar, P.K.1
Xiao, W.H.2
Tyo, K.E.3
Wang, Y.4
Simeon, F.5
Leonard, E.6
Mucha, O.7
Phon, T.H.8
Pfeifer, B.9
Stephanopoulos, G.10
-
25
-
-
33747666218
-
Overview of bacterial expression systems for heterologous protein production: from molecular and biochemical fundamentals to commercial systems
-
Terpe K. Overview of bacterial expression systems for heterologous protein production: from molecular and biochemical fundamentals to commercial systems. Appl Microbiol Biotechnol. 2006;72(2):211-22.
-
(2006)
Appl Microbiol Biotechnol
, vol.72
, Issue.2
, pp. 211-222
-
-
Terpe, K.1
-
26
-
-
84875078664
-
A comparative analysis of the properties of regulated promoter systems commonly used for recombinant gene expression in Escherichia coli
-
Balzer S, Kucharova V, Megerle J, Lale R, Brautaset T, Valla S. A comparative analysis of the properties of regulated promoter systems commonly used for recombinant gene expression in Escherichia coli. Microb Cell Fact. 2013;12(1):26.
-
(2013)
Microb Cell Fact
, vol.12
, Issue.1
, pp. 26
-
-
Balzer, S.1
Kucharova, V.2
Megerle, J.3
Lale, R.4
Brautaset, T.5
Valla, S.6
-
27
-
-
79958224739
-
High-yield resveratrol production in engineered Escherichia coli
-
Lim CG, Fowler ZL, Hueller T, Schaffer S, Koffas MA. High-yield resveratrol production in engineered Escherichia coli. Appl Environ Microbiol. 2011;77(10):3451-60.
-
(2011)
Appl Environ Microbiol
, vol.77
, Issue.10
, pp. 3451-3460
-
-
Lim, C.G.1
Fowler, Z.L.2
Hueller, T.3
Schaffer, S.4
Koffas, M.A.5
-
28
-
-
84908134524
-
Engineering Escherichia coli to overproduce aromatic amino acids and derived compounds
-
Rodriguez A, Martinez J, Flores N, Escalante A, Gosset G, Bolivar F. Engineering Escherichia coli to overproduce aromatic amino acids and derived compounds. Microb Cell Fact. 2014;13(1):126.
-
(2014)
Microb Cell Fact
, vol.13
, Issue.1
, pp. 126
-
-
Rodriguez, A.1
Martinez, J.2
Flores, N.3
Escalante, A.4
Gosset, G.5
Bolivar, F.6
-
29
-
-
84921340441
-
Model-driven discovery of underground metabolic functions in Escherichia coli
-
Guzman GI, Utrilla J, Nurk S, Brunk E, Monk JM, Ebrahim A, Palsson BO, Feist AM. Model-driven discovery of underground metabolic functions in Escherichia coli. Proc Natl Acad Sci USA. 2015;112(3):929-34.
-
(2015)
Proc Natl Acad Sci USA
, vol.112
, Issue.3
, pp. 929-934
-
-
Guzman, G.I.1
Utrilla, J.2
Nurk, S.3
Brunk, E.4
Monk, J.M.5
Ebrahim, A.6
Palsson, B.O.7
Feist, A.M.8
-
30
-
-
0344258317
-
Enhanced conversion rate of l-phenylalanine by coupling reactions of aminotransferases and phosphoenolpyruvate carboxykinase in Escherichia coli K-12
-
Chao YP, Lai ZJ, Chen P, Chern JT. Enhanced conversion rate of l-phenylalanine by coupling reactions of aminotransferases and phosphoenolpyruvate carboxykinase in Escherichia coli K-12. Biotechnol Prog. 1999;15(3):453-8.
-
(1999)
Biotechnol Prog
, vol.15
, Issue.3
, pp. 453-458
-
-
Chao, Y.P.1
Lai, Z.J.2
Chen, P.3
Chern, J.T.4
-
31
-
-
84958894686
-
Combination of phenylpyruvic acid (PPA) pathway engineering and molecular engineering of l-amino acid deaminase improves PPA production with an Escherichia coli whole-cell biocatalyst
-
Hou Y, Hossain GS, Li J, Shin H, Du G, Liu L. Combination of phenylpyruvic acid (PPA) pathway engineering and molecular engineering of l-amino acid deaminase improves PPA production with an Escherichia coli whole-cell biocatalyst. Appl Microbiol Biotechnol. 2016;100(5):2183-91.
-
(2016)
Appl Microbiol Biotechnol
, vol.100
, Issue.5
, pp. 2183-2191
-
-
Hou, Y.1
Hossain, G.S.2
Li, J.3
Shin, H.4
Du, G.5
Liu, L.6
-
32
-
-
84933074087
-
Engineering Escherichia coli for renewable benzyl alcohol production
-
Pugh S, McKenna R, Halloum I, Nielsen DR. Engineering Escherichia coli for renewable benzyl alcohol production. Metab Eng Commun. 2015;2:39-45.
-
(2015)
Metab Eng Commun.
, vol.2
, pp. 39-45
-
-
Pugh, S.1
McKenna, R.2
Halloum, I.3
Nielsen, D.R.4
-
33
-
-
84948743989
-
Organic solvent pretreatment of lignocellulosic biomass for biofuels and biochemicals: a review
-
Zhang K, Pei Z, Wang D. Organic solvent pretreatment of lignocellulosic biomass for biofuels and biochemicals: a review. Bioresour Technol. 2016;199:21-33.
-
(2016)
Bioresour Technol
, vol.199
, pp. 21-33
-
-
Zhang, K.1
Pei, Z.2
Wang, D.3
-
34
-
-
84904757630
-
The transport and mediation mechanisms of the common sugars in Escherichia coli
-
Luo Y, Zhang T, Wu H. The transport and mediation mechanisms of the common sugars in Escherichia coli. Biotechnol Adv. 2014;32(5):905-19.
-
(2014)
Biotechnol Adv
, vol.32
, Issue.5
, pp. 905-919
-
-
Luo, Y.1
Zhang, T.2
Wu, H.3
-
35
-
-
33845626641
-
How phosphotransferase system-related protein phosphorylation regulates carbohydrate metabolism in bacteria
-
Deutscher J, Francke C, Postma PW. How phosphotransferase system-related protein phosphorylation regulates carbohydrate metabolism in bacteria. Microbiol Mol Biol Rev. 2006;70(4):939-1031.
-
(2006)
Microbiol Mol Biol Rev
, vol.70
, Issue.4
, pp. 939-1031
-
-
Deutscher, J.1
Francke, C.2
Postma, P.W.3
-
36
-
-
84930936873
-
Metabolic engineering of Escherichia coli for the production of 3-aminopropionic acid
-
Song CW, Lee J, Ko YS, Lee SY. Metabolic engineering of Escherichia coli for the production of 3-aminopropionic acid. Metab Eng. 2015;30:121-9.
-
(2015)
Metab Eng
, vol.30
, pp. 121-129
-
-
Song, C.W.1
Lee, J.2
Ko, Y.S.3
Lee, S.Y.4
-
37
-
-
84939815278
-
Comparison of individual component deletions in a glucose specific phosphotransferase system revealed their different applications
-
Liang Q, Zhang F, Li Y, Zhang X, Li J, Yang P, Qi Q. Comparison of individual component deletions in a glucose specific phosphotransferase system revealed their different applications. Sci Rep. 2015;5:13200.
-
(2015)
Sci Rep.
, vol.5
, pp. 13200
-
-
Liang, Q.1
Zhang, F.2
Li, Y.3
Zhang, X.4
Li, J.5
Yang, P.6
Qi, Q.7
-
38
-
-
0034911540
-
Use of catabolite repression mutants for fermentation of sugar mixtures to ethanol
-
Nichols N, Dien B, Bothast R. Use of catabolite repression mutants for fermentation of sugar mixtures to ethanol. Appl Microbiol Biotechnol. 2001;56:120-5.
-
(2001)
Appl Microbiol Biotechnol
, vol.56
, pp. 120-125
-
-
Nichols, N.1
Dien, B.2
Bothast, R.3
-
39
-
-
84931264120
-
G-H Kim, Lee SK. Simultaneous utilization of glucose and xylose via novel mechanisms in engineered Escherichia coli
-
Kim SM, Choi BY, Ryu YS, Jung SH, Park JM. G-H Kim, Lee SK. Simultaneous utilization of glucose and xylose via novel mechanisms in engineered Escherichia coli. Metab Eng. 2015;30:141-8.
-
(2015)
Metab Eng
, vol.30
, pp. 141-148
-
-
Kim, S.M.1
Choi, B.Y.2
Ryu, Y.S.3
Jung, S.H.4
Park, J.M.5
-
40
-
-
26844512919
-
Improvement of Escherichia coli production strains by modification of the phosphoenolpyruvate:sugar phosphotransferase system
-
Gosset G. Improvement of Escherichia coli production strains by modification of the phosphoenolpyruvate:sugar phosphotransferase system. Microb Cell Fact. 2005;4:14.
-
(2005)
Microb Cell Fact
, vol.4
, pp. 14
-
-
Gosset, G.1
-
41
-
-
84881230387
-
Systematic approach to engineer Escherichia coli pathways for co-utilization of a glucose-xylose mixture
-
Chiang CJ, Lee HM, Guo HJ, Wang ZW, Lin LJ, Chao YP. Systematic approach to engineer Escherichia coli pathways for co-utilization of a glucose-xylose mixture. J Agric Food Chem. 2013;61:7583-90.
-
(2013)
J Agric Food Chem
, vol.61
, pp. 7583-7590
-
-
Chiang, C.J.1
Lee, H.M.2
Guo, H.J.3
Wang, Z.W.4
Lin, L.J.5
Chao, Y.P.6
-
42
-
-
84899632399
-
Simultaneous uptake of lignocellulose-based monosaccharides by Escherichia coli
-
Jarmander J, Hallström BM, Larsson G. Simultaneous uptake of lignocellulose-based monosaccharides by Escherichia coli. Biotechnol Bioeng. 2014;111(6):1108-15.
-
(2014)
Biotechnol Bioeng
, vol.111
, Issue.6
, pp. 1108-1115
-
-
Jarmander, J.1
Hallström, B.M.2
Larsson, G.3
-
43
-
-
84928231166
-
Cultivation strategies for production of (R)-3-hydroxybutyric acid from simultaneous consumption of glucose, xylose and arabinose by Escherichia coli
-
Jarmander J, Belotserkovsky J, Sjöberg G, Guevara-Martínez M, Pérez-Zabaleta M, Quillaguamán J, Larsson G. Cultivation strategies for production of (R)-3-hydroxybutyric acid from simultaneous consumption of glucose, xylose and arabinose by Escherichia coli. Microb Cell Fact. 2015;14:51.
-
(2015)
Microb Cell Fact
, vol.14
, pp. 51
-
-
Jarmander, J.1
Belotserkovsky, J.2
Sjöberg, G.3
Guevara-Martínez, M.4
Pérez-Zabaleta, M.5
Quillaguamán, J.6
Larsson, G.7
-
44
-
-
84884962157
-
Novel approach to engineer strains for simultaneous sugar utilization
-
Gawand P, Hyland P, Ekins A, Martin VJJ, Mahadevan R. Novel approach to engineer strains for simultaneous sugar utilization. Metab Eng. 2013;20:63-72.
-
(2013)
Metab Eng
, vol.20
, pp. 63-72
-
-
Gawand, P.1
Hyland, P.2
Ekins, A.3
Martin, V.J.J.4
Mahadevan, R.5
-
45
-
-
84955276048
-
Evolved hexose transporter enhances xylose uptake and glucose/xylose co-utilization in Saccharomyces cerevisiae
-
ReiderApel A, Ouellet M, Szmidt-Middleton H, Keasling JD, Mukhopadhyay A. Evolved hexose transporter enhances xylose uptake and glucose/xylose co-utilization in Saccharomyces cerevisiae. Sci Rep. 2016;6:19512.
-
(2016)
Sci Rep.
, vol.6
, pp. 19512
-
-
ReiderApel, A.1
Ouellet, M.2
Szmidt-Middleton, H.3
Keasling, J.D.4
Mukhopadhyay, A.5
-
46
-
-
84955714285
-
Directed evolution of xylose specific transporters to facilitate glucose-xylose co-utilization
-
Wang M, Yu C, Zhao H. Directed evolution of xylose specific transporters to facilitate glucose-xylose co-utilization. Biotechnol Bioeng. 2016;113(3):484-91.
-
(2016)
Biotechnol Bioeng
, vol.113
, Issue.3
, pp. 484-491
-
-
Wang, M.1
Yu, C.2
Zhao, H.3
|