메뉴 건너뛰기




Volumn 269, Issue , 2016, Pages 6-20

A hierarchical model for integrating unsupervised generative embedding and empirical Bayes

Author keywords

Clustering; DCM; Dynamic causal modelling; Markov chain Monte Carlo sampling; MCMC; Mixture model; Psychiatric spectrum diseases; Schizophrenia

Indexed keywords

ADULT; ARTICLE; BAYES THEOREM; BOLD SIGNAL; BRAIN REGION; CLINICAL ARTICLE; COMPARATIVE STUDY; CONTROLLED STUDY; DSM-IV; DYNAMIC CAUSAL MODEL; ELECTROENCEPHALOGRAM; EMBEDDING; FACE VALIDITY; FEMALE; FUNCTIONAL MAGNETIC RESONANCE IMAGING; HEMODYNAMICS; HUMAN; MALE; MARKOV CHAIN; MENTAL PATIENT; MODEL; MONTE CARLO METHOD; NEUROIMAGING; POPULATION STRUCTURE; PRIORITY JOURNAL; SCHIZOPHRENIA; TASK PERFORMANCE; UNSUPERVISED MACHINE LEARNING; WORKING MEMORY; BIOLOGICAL MODEL; BRAIN; CLASSIFICATION; CLUSTER ANALYSIS; COMPUTER SIMULATION; DIAGNOSTIC IMAGING; NUCLEAR MAGNETIC RESONANCE IMAGING; PATHOPHYSIOLOGY; PROCEDURES; REPRODUCIBILITY; SOFTWARE; STATISTICAL MODEL; VALIDATION STUDY;

EID: 84968725273     PISSN: 01650270     EISSN: 1872678X     Source Type: Journal    
DOI: 10.1016/j.jneumeth.2016.04.022     Document Type: Article
Times cited : (17)

References (67)
  • 2
    • 84944392126 scopus 로고    scopus 로고
    • Mpdcm: a toolbox for massively parallel dynamic causal modeling
    • Aponte E.A., Raman S., Sengupta B., Penny W.D., Stephan K.E., Heinzle J. mpdcm: a toolbox for massively parallel dynamic causal modeling. J. Neurosci. Methods 2016, 257(January):7-16. ISSN 0165-0270. 10.1016/j.jneumeth.2015.09.009.
    • (2016) J. Neurosci. Methods , vol.257 , Issue.JANUARY , pp. 7-16
    • Aponte, E.A.1    Raman, S.2    Sengupta, B.3    Penny, W.D.4    Stephan, K.E.5    Heinzle, J.6
  • 3
    • 84898713756 scopus 로고    scopus 로고
    • Classification of schizophrenia patients based on resting-state functional network connectivity
    • Arbabshirani M.R., Kiehl K.A., Pearlson G.D., Calhoun V.D. Classification of schizophrenia patients based on resting-state functional network connectivity. Front. Neurosci. 2013, 7:133. 10.3389/fnins.2013.00133.
    • (2013) Front. Neurosci. , vol.7 , pp. 133
    • Arbabshirani, M.R.1    Kiehl, K.A.2    Pearlson, G.D.3    Calhoun, V.D.4
  • 6
    • 0031809018 scopus 로고    scopus 로고
    • Dynamics of blood flow and oxygenation changes during brain activation: the balloon model
    • Buxton R., Wong E., Frank L. Dynamics of blood flow and oxygenation changes during brain activation: the balloon model. Magn. Reson. Med. 1998, 39:855-864.
    • (1998) Magn. Reson. Med. , vol.39 , pp. 855-864
    • Buxton, R.1    Wong, E.2    Frank, L.3
  • 8
    • 35148901069 scopus 로고    scopus 로고
    • A Metropolis-Hastings algorithm for dynamic causal models
    • Chumbley J.R., Friston K.J., Fearn T., Kiebel S.J. A Metropolis-Hastings algorithm for dynamic causal models. NeuroImage 2007, 38:478-487. 10.1016/j.neuroimage.2007.07.028.
    • (2007) NeuroImage , vol.38 , pp. 478-487
    • Chumbley, J.R.1    Friston, K.J.2    Fearn, T.3    Kiebel, S.J.4
  • 10
    • 84877626914 scopus 로고    scopus 로고
    • Toward the future of psychiatric diagnosis: the seven pillars of rDoC
    • Cuthbert B., Insel T. Toward the future of psychiatric diagnosis: the seven pillars of rDoC. BMC Med. 2013, 11:126. 10.1186/1741-7015-11-126.
    • (2013) BMC Med. , vol.11 , pp. 126
    • Cuthbert, B.1    Insel, T.2
  • 11
    • 84896717406 scopus 로고    scopus 로고
    • VBA: a probabilistic treatment of nonlinear models for neurobiological and behavioural data
    • Daunizeau J., Adam V., Rigoux L. VBA: a probabilistic treatment of nonlinear models for neurobiological and behavioural data. PLoS Comput. Biol. 2014, 10:e1003441. 10.1371/journal.pcbi.1003441.
    • (2014) PLoS Comput. Biol. , vol.10 , pp. e1003441
    • Daunizeau, J.1    Adam, V.2    Rigoux, L.3
  • 12
    • 80051748187 scopus 로고    scopus 로고
    • Dynamic causal modelling: a critical review of the biophysical and statistical foundations
    • Daunizeau J., David O., Stephan K.E. Dynamic causal modelling: a critical review of the biophysical and statistical foundations. NeuroImage 2011, 58(2):312-322. 10.1016/j.neuroimage.2009.11.062.
    • (2011) NeuroImage , vol.58 , Issue.2 , pp. 312-322
    • Daunizeau, J.1    David, O.2    Stephan, K.E.3
  • 16
    • 84855960354 scopus 로고    scopus 로고
    • Reduced prefrontal-parietal effective connectivity and working memory deficits in schizophrenia
    • Deserno L., Sterzer P., Wüstenberg T., Heinz A., Schlagenhauf F. Reduced prefrontal-parietal effective connectivity and working memory deficits in schizophrenia. J. Neurosci. 2012, 32:12-20.
    • (2012) J. Neurosci. , vol.32 , pp. 12-20
    • Deserno, L.1    Sterzer, P.2    Wüstenberg, T.3    Heinz, A.4    Schlagenhauf, F.5
  • 18
    • 40049086223 scopus 로고    scopus 로고
    • BOLD responses reflecting dopaminergic signals in the human ventral tegmental area
    • D'Ardenne K., McClure S.M., Nystrom L.E., Cohen J.D. BOLD responses reflecting dopaminergic signals in the human ventral tegmental area. Science 2008, 319:1264-1267. 10.1126/science.1150605.
    • (2008) Science , vol.319 , pp. 1264-1267
    • D'Ardenne, K.1    McClure, S.M.2    Nystrom, L.E.3    Cohen, J.D.4
  • 19
    • 84877092317 scopus 로고    scopus 로고
    • Combining classification with fMRI-derived complex network measures for potential neurodiagnostics
    • Fekete T., Wilf M., Rubin D., Edelman S., Malach R., Mujica-Parodi L.R. Combining classification with fMRI-derived complex network measures for potential neurodiagnostics. PLoS One 2013, 8(5):e62867. 10.1371/journal.pone.0062867.
    • (2013) PLoS One , vol.8 , Issue.5 , pp. e62867
    • Fekete, T.1    Wilf, M.2    Rubin, D.3    Edelman, S.4    Malach, R.5    Mujica-Parodi, L.R.6
  • 20
    • 0036334947 scopus 로고    scopus 로고
    • Bayesian estimation of dynamical systems: an application to fMRI
    • Friston K. Bayesian estimation of dynamical systems: an application to fMRI. NeuroImage 2002, 16:513-530. 10.1006/nimg.2001.1044.
    • (2002) NeuroImage , vol.16 , pp. 513-530
    • Friston, K.1
  • 22
    • 0041924877 scopus 로고    scopus 로고
    • Dynamic causal modelling
    • Friston K., Harrison L., Penny W. Dynamic causal modelling. NeuroImage 2003, 19:1273-1302. 10.1016/S1053-8119(03)00202-7.
    • (2003) NeuroImage , vol.19 , pp. 1273-1302
    • Friston, K.1    Harrison, L.2    Penny, W.3
  • 24
    • 0033778839 scopus 로고    scopus 로고
    • Nonlinear responses in fMRI: the balloon model Volterra kernels, and other hemodynamics
    • Friston K.J., Mechelli A., Turner R., Price C.J. Nonlinear responses in fMRI: the balloon model Volterra kernels, and other hemodynamics. NeuroImage 2000, 12:466-477. 10.1006/nimg.2000.0630.
    • (2000) NeuroImage , vol.12 , pp. 466-477
    • Friston, K.J.1    Mechelli, A.2    Turner, R.3    Price, C.J.4
  • 27
    • 0000736067 scopus 로고    scopus 로고
    • Simulating normalizing constants: from importance sampling to bridge sampling to path sampling
    • Gelman A., Meng X.-L. Simulating normalizing constants: from importance sampling to bridge sampling to path sampling. Stat. Sci. 1998, 13:163-185. 10.1214/ss/1028905934.
    • (1998) Stat. Sci. , vol.13 , pp. 163-185
    • Gelman, A.1    Meng, X.-L.2
  • 28
    • 0001032163 scopus 로고
    • Evaluating the accuracy of sampling-based approaches to calculating posterior moments
    • Oxford University Press, Oxford
    • Geweke J. Evaluating the accuracy of sampling-based approaches to calculating posterior moments. Bayesian Statistics 4 1992, 169-193. Oxford University Press, Oxford.
    • (1992) Bayesian Statistics 4 , pp. 169-193
    • Geweke, J.1
  • 29
    • 84857000430 scopus 로고    scopus 로고
    • Using Support Vector Machine to identify imaging biomarkers of neurological and psychiatric disease: a critical review
    • Orrù G., Pettersson-Yeo W., Marquand A.F., Sartori G., Mechelli A. Using Support Vector Machine to identify imaging biomarkers of neurological and psychiatric disease: a critical review. Neurosci. Biobehav. Rev. 2012, 36(April (4)):1140-1152. 10.1016/j.neubiorev.2012.01.004.
    • (2012) Neurosci. Biobehav. Rev. , vol.36 , Issue.APRIL 4 , pp. 1140-1152
    • Orrù, G.1    Pettersson-Yeo, W.2    Marquand, A.F.3    Sartori, G.4    Mechelli, A.5
  • 32
    • 84870064521 scopus 로고    scopus 로고
    • Why has it taken so long for biological psychiatry to develop clinical tests and what to do about it?
    • Kapur S., Phillips A., Insel T. Why has it taken so long for biological psychiatry to develop clinical tests and what to do about it?. Mol. Psychiatry 2012, 17:1174-1179.
    • (2012) Mol. Psychiatry , vol.17 , pp. 1174-1179
    • Kapur, S.1    Phillips, A.2    Insel, T.3
  • 35
    • 84897126113 scopus 로고    scopus 로고
    • Psychiatric disorders: diagnosis to therapy
    • Krystal J.H., State M.W. Psychiatric disorders: diagnosis to therapy. Cell 2014, 157:201-214. 10.1016/j.cell.2014.02.042.
    • (2014) Cell , vol.157 , pp. 201-214
    • Krystal, J.H.1    State, M.W.2
  • 36
    • 77249084595 scopus 로고    scopus 로고
    • Discovering structure in the space of fMRI selectivity profiles
    • Lashkari D., Vul E., Kanwisher N., Golland P. Discovering structure in the space of fMRI selectivity profiles. NeuroImage 2010, 50:1085-1098. 10.1016/j.neuroimage.2009.12.106.
    • (2010) NeuroImage , vol.50 , pp. 1085-1098
    • Lashkari, D.1    Vul, E.2    Kanwisher, N.3    Golland, P.4
  • 37
    • 33646144858 scopus 로고    scopus 로고
    • Large-scale neural models and dynamic causal modelling
    • Lee L., Friston K., Horwitz B. Large-scale neural models and dynamic causal modelling. NeuroImage 2006, 30(4):1243-1254. 10.1016/j.neuroimage.2005.11.007.
    • (2006) NeuroImage , vol.30 , Issue.4 , pp. 1243-1254
    • Lee, L.1    Friston, K.2    Horwitz, B.3
  • 38
    • 0034147039 scopus 로고    scopus 로고
    • Bayesian inference for finite mixtures of generalized linear models with random effects
    • Lenk P., DeSarbo W. Bayesian inference for finite mixtures of generalized linear models with random effects. Psychometrika 2000, 65:93-119.
    • (2000) Psychometrika , vol.65 , pp. 93-119
    • Lenk, P.1    DeSarbo, W.2
  • 42
    • 77950032550 scopus 로고    scopus 로고
    • Markov chain sampling methods for Dirichlet process mixture models
    • Neal R.M. Markov chain sampling methods for Dirichlet process mixture models. J. Comput. Graph. Stat. 2000, 9:249-265.
    • (2000) J. Comput. Graph. Stat. , vol.9 , pp. 249-265
    • Neal, R.M.1
  • 43
    • 84877752825 scopus 로고    scopus 로고
    • A nonparametric Bayesian model for multiple clustering with overlapping feature views
    • arxiv:/JMLR.org
    • Niu D., Dy J.G., Ghahramani Z. A nonparametric Bayesian model for multiple clustering with overlapping feature views. JMLR Proceedings 2012, 814-822. arxiv:/JMLR.org.
    • (2012) JMLR Proceedings , pp. 814-822
    • Niu, D.1    Dy, J.G.2    Ghahramani, Z.3
  • 44
    • 0037987978 scopus 로고    scopus 로고
    • Temporal difference models and reward-related learning in the human brain
    • O'Doherty J.P., Dayan P., Friston K., Critchley H., Dolan R.J. Temporal difference models and reward-related learning in the human brain. Neuron 2003, 38:329-337. 10.1016/s0896-6273(03)00169-7.
    • (2003) Neuron , vol.38 , pp. 329-337
    • O'Doherty, J.P.1    Dayan, P.2    Friston, K.3    Critchley, H.4    Dolan, R.J.5
  • 45
    • 84887997021 scopus 로고    scopus 로고
    • Gender differences in episodic memory and visual working memory including the effects of age
    • Pauls F., Petermann F., Lepach A.C. Gender differences in episodic memory and visual working memory including the effects of age. Memory 2013, 21:857-874. 10.1080/09658211.2013.765892.
    • (2013) Memory , vol.21 , pp. 857-874
    • Pauls, F.1    Petermann, F.2    Lepach, A.C.3
  • 46
    • 36248955396 scopus 로고    scopus 로고
    • Music analysis using hidden Markov mixture models
    • Qi Y., Paisley J.W., Carin L. Music analysis using hidden Markov mixture models. IEEE Trans. Signal Process. 2007, 55:5209-5224.
    • (2007) IEEE Trans. Signal Process. , vol.55 , pp. 5209-5224
    • Qi, Y.1    Paisley, J.W.2    Carin, L.3
  • 47
    • 84968885571 scopus 로고    scopus 로고
    • Will Penny and Klaas Enno Stephan Thermodynamic integration for dynamic causal models. (in preparation)
    • Raman, Sudhir, Aponte, Eduardo A., Heinzle, Jakob, Sengupta, Biswa. Will Penny and Klaas Enno Stephan Thermodynamic integration for dynamic causal models. (in preparation).
    • Raman, S.1    Aponte, E.A.2    Heinzle, J.3    Sengupta, B.4
  • 52
    • 84908383608 scopus 로고    scopus 로고
    • Noninvasive brain-computer interface enables communication after brainstem stroke
    • 257re7
    • Sellers E.W., Ryan D.B., Hauser C.K. Noninvasive brain-computer interface enables communication after brainstem stroke. Sci. Transl. Med. 2014, 6:257re7. 10.1126/scitranslmed.3007801.
    • (2014) Sci. Transl. Med. , vol.6
    • Sellers, E.W.1    Ryan, D.B.2    Hauser, C.K.3
  • 53
    • 84937764183 scopus 로고    scopus 로고
    • Gradient-free MCMC methods for dynamic causal modelling
    • Sengupta B., Friston K.J., Penny W.D. Gradient-free MCMC methods for dynamic causal modelling. NeuroImage 2015, 112:375-381. 10.1016/j.neuroimage.2015.03.008.
    • (2015) NeuroImage , vol.112 , pp. 375-381
    • Sengupta, B.1    Friston, K.J.2    Penny, W.D.3
  • 54
    • 84885698356 scopus 로고    scopus 로고
    • Disorders and borders: psychiatric genetics and nosology
    • Smoller J.W. Disorders and borders: psychiatric genetics and nosology. Am. J. Med. Genet. B: Neuropsychiatr. Genet. 2013, 162:559-578. 10.1002/ajmg.b.32174.
    • (2013) Am. J. Med. Genet. B: Neuropsychiatr. Genet. , vol.162 , pp. 559-578
    • Smoller, J.W.1
  • 56
    • 84939559585 scopus 로고    scopus 로고
    • Translational perspectives for computational neuroimaging
    • Stephan K.E., Iglesias S., Heinzle J., Diaconescu A.O. Translational perspectives for computational neuroimaging. Neuron 2015, 87(August (4)):716-732. ISSN 0896-6273. 10.1016/j.neuron.2015.07.008.
    • (2015) Neuron , vol.87 , Issue.AUGUST 4 , pp. 716-732
    • Stephan, K.E.1    Iglesias, S.2    Heinzle, J.3    Diaconescu, A.O.4
  • 58
    • 84891334262 scopus 로고    scopus 로고
    • Computational approaches to psychiatry
    • Stephan K.E., Mathys C. Computational approaches to psychiatry. Curr. Opin. Neurobiol. 2014, 25:85-92. 10.1016/j.conb.2013.12.007.
    • (2014) Curr. Opin. Neurobiol. , vol.25 , pp. 85-92
    • Stephan, K.E.1    Mathys, C.2
  • 60
    • 84886646957 scopus 로고    scopus 로고
    • An integrative Bayesian modeling approach to imaging genetics
    • 2013-09-01T00:00:00
    • Stingo F.C., Guindani M., Vannucci M., Calhoun V.D. An integrative Bayesian modeling approach to imaging genetics. J. Am. Stat. Assoc. 2013, 108:876-891. 2013-09-01T00:00:00. 10.1080/01621459.2013.804409.
    • (2013) J. Am. Stat. Assoc. , vol.108 , pp. 876-891
    • Stingo, F.C.1    Guindani, M.2    Vannucci, M.3    Calhoun, V.D.4
  • 61
    • 34548457746 scopus 로고    scopus 로고
    • High level group analysis of fMRI data based on Dirichlet process mixture models
    • Lecture notes in computer science
    • Thirion B., Tucholka A., Keller M., Pinel P., Roche A., Mangin J.-F., Poline J.-B. High level group analysis of fMRI data based on Dirichlet process mixture models. Inf. Process. Med. Imaging 2007, 4584:482-494. Lecture notes in computer science. 10.1007/978-3-540-73273-0_40.
    • (2007) Inf. Process. Med. Imaging , vol.4584 , pp. 482-494
    • Thirion, B.1    Tucholka, A.2    Keller, M.3    Pinel, P.4    Roche, A.5    Mangin, J.-F.6    Poline, J.-B.7
  • 62
    • 34250765362 scopus 로고    scopus 로고
    • Discriminative cluster analysis
    • In: Machine Learning, Proceedings of the Twenty-Third International Conference (ICML 2006), Pittsburgh, Pennsylvania, USA, June 25-29, 2006
    • de la Torre, F., Kanade, T., 2006. Discriminative cluster analysis. In: Machine Learning, Proceedings of the Twenty-Third International Conference (ICML 2006), Pittsburgh, Pennsylvania, USA, June 25-29, 2006, pp. 241-248. doi:. http://10.1145/1143844.1143875.
    • (2006) , pp. 241-248
    • de la Torre, F.1    Kanade, T.2
  • 63
    • 84863785687 scopus 로고    scopus 로고
    • Whole brain resting state functional connectivity abnormalities in schizophrenia
    • Venkataraman A., Whitford T.J., Westin C.-F., Golland P., Kubicki M. Whole brain resting state functional connectivity abnormalities in schizophrenia. Schizophr. Res. 2012, 139(1-3):7-12. 10.1016/j.schres.2012.04.021.
    • (2012) Schizophr. Res. , vol.139 , Issue.1-3 , pp. 7-12
    • Venkataraman, A.1    Whitford, T.J.2    Westin, C.-F.3    Golland, P.4    Kubicki, M.5
  • 64
    • 84892399501 scopus 로고    scopus 로고
    • On the definition of signal-to-noise ratio and contrast-to-noise ratio for fMRI data
    • Welvaert M., Rosseel Y. On the definition of signal-to-noise ratio and contrast-to-noise ratio for fMRI data. PLoS One 2013, 8(11):e77089. 10.1371/journal.pone.0077089.
    • (2013) PLoS One , vol.8 , Issue.11 , pp. e77089
    • Welvaert, M.1    Rosseel, Y.2
  • 65
    • 84929597056 scopus 로고    scopus 로고
    • Model-based cognitive neuroscience approaches to computational psychiatry: clustering and classification
    • Wiecki T., Poland J., Frank M. Model-based cognitive neuroscience approaches to computational psychiatry: clustering and classification. Clin. Psychol. Sci. 2015, 3(3):378-399.
    • (2015) Clin. Psychol. Sci. , vol.3 , Issue.3 , pp. 378-399
    • Wiecki, T.1    Poland, J.2    Frank, M.3
  • 66
    • 84952637704 scopus 로고    scopus 로고
    • From estimating activation locality to predicting disorder: a review of pattern recognition for neuroimaging-based psychiatric diagnostics
    • Wolfers T., Buitelaar J.K., Beckmann C.F., Franke B., Marquand A.F. From estimating activation locality to predicting disorder: a review of pattern recognition for neuroimaging-based psychiatric diagnostics. Neurosci. Biobehav. Rev. 2015, ISSN 0149-7634. 10.1016/j.neubiorev.2015.08.001.
    • (2015) Neurosci. Biobehav. Rev.
    • Wolfers, T.1    Buitelaar, J.K.2    Beckmann, C.F.3    Franke, B.4    Marquand, A.F.5
  • 67
    • 11844293467 scopus 로고    scopus 로고
    • Mixture models with adaptive spatial regularization for segmentation with an application to fMRI data
    • Woolrich M.W., Behrens T.E.J., Beckmann C.F., Smith S.M. Mixture models with adaptive spatial regularization for segmentation with an application to fMRI data. IEEE Trans. Med. Imaging 2005, 24:1-11. 10.1109/TMI.2004.836545.
    • (2005) IEEE Trans. Med. Imaging , vol.24 , pp. 1-11
    • Woolrich, M.W.1    Behrens, T.E.J.2    Beckmann, C.F.3    Smith, S.M.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.