메뉴 건너뛰기




Volumn 257, Issue , 2016, Pages 7-16

Mpdcm: A toolbox for massively parallel dynamic causal modeling

Author keywords

Bayesian model comparison; Dynamic causal modeling; GPU; Markov chain Monte Carlo; Model evidence; Model inversion; Parallel tempering; Thermodynamic integration

Indexed keywords

ACCURACY; ALGORITHM; ARTICLE; BOLD SIGNAL; CAUSAL MODELING; COMPUTER PROGRAM; INTEGRATION; MASSIVELY PARALLEL DYNAMIC CAUSAL MODELING; PRIORITY JOURNAL; SAMPLING; SIMULATION; STORAGE; THERMODYNAMICS; ACCESS TO INFORMATION; BAYES THEOREM; BIOLOGICAL MODEL; BLOOD; BRAIN; BRAIN CIRCULATION; BRAIN MAPPING; COMPARATIVE STUDY; COMPUTER GRAPHICS; COMPUTER SIMULATION; NUCLEAR MAGNETIC RESONANCE IMAGING; PHYSIOLOGY; PROCEDURES; SIGNAL PROCESSING; SOFTWARE; STATISTICAL MODEL;

EID: 84944392126     PISSN: 01650270     EISSN: 1872678X     Source Type: Journal    
DOI: 10.1016/j.jneumeth.2015.09.009     Document Type: Article
Times cited : (25)

References (45)
  • 1
    • 1342309210 scopus 로고    scopus 로고
    • Parallel Metropolis coupled Markov chain Monte Carlo for Bayesian phylogenetic inference
    • Altekar G., Dwarkadas S., Huelsenbeck J.P., Ronquist F. Parallel Metropolis coupled Markov chain Monte Carlo for Bayesian phylogenetic inference. Bioinformatics 2004, 20(Feb (3)):407-415.
    • (2004) Bioinformatics , vol.20 , Issue.FEB 3 , pp. 407-415
    • Altekar, G.1    Dwarkadas, S.2    Huelsenbeck, J.P.3    Ronquist, F.4
  • 2
    • 84968466592 scopus 로고
    • A modification of the Runge-Kutta fourth-order method
    • Blum E.K. A modification of the Runge-Kutta fourth-order method. Math Comput 1962, 16(78):176-187.
    • (1962) Math Comput , vol.16 , Issue.78 , pp. 176-187
    • Blum, E.K.1
  • 4
    • 0031809018 scopus 로고    scopus 로고
    • Dynamics of blood flow and oxygenation changes during brain activation: the balloon model
    • Buxton R.B., Wong E.C., Frank L.R. Dynamics of blood flow and oxygenation changes during brain activation: the balloon model. Magn Reson Med 1998, 39(6):855-864.
    • (1998) Magn Reson Med , vol.39 , Issue.6 , pp. 855-864
    • Buxton, R.B.1    Wong, E.C.2    Frank, L.R.3
  • 5
    • 45249130262 scopus 로고
    • A 3 (2) pair of Runge-Kutta formulas
    • Bogacki P., Shampine L.F. A 3 (2) pair of Runge-Kutta formulas. Appl Math Lett 1989, 2(4):321-325.
    • (1989) Appl Math Lett , vol.2 , Issue.4 , pp. 321-325
    • Bogacki, P.1    Shampine, L.F.2
  • 6
    • 84918544067 scopus 로고    scopus 로고
    • A general construction for parallelizing Metropolis-Hastings algorithms
    • Calderhead B. A general construction for parallelizing Metropolis-Hastings algorithms. Proc Natl Acad Sci USA 2014, 111(Dec (49)):17408-17413.
    • (2014) Proc Natl Acad Sci USA , vol.111 , Issue.DEC 49 , pp. 17408-17413
    • Calderhead, B.1
  • 7
    • 69449098014 scopus 로고    scopus 로고
    • Estimating Bayes factors via thermodynamic integration and population MCMC
    • Calderhead B., Girolami M. Estimating Bayes factors via thermodynamic integration and population MCMC. Comput Stat Data Anal 2009, 53(12):4028-4045.
    • (2009) Comput Stat Data Anal , vol.53 , Issue.12 , pp. 4028-4045
    • Calderhead, B.1    Girolami, M.2
  • 8
    • 35148901069 scopus 로고    scopus 로고
    • A Metropolis-Hastings algorithm for dynamic causal models
    • Chumbley J.R., Friston K.J., Fearn T., Kiebel S.J. A Metropolis-Hastings algorithm for dynamic causal models. Neuroimage 2007, 38(Nov (3)):478-487.
    • (2007) Neuroimage , vol.38 , Issue.NOV 3 , pp. 478-487
    • Chumbley, J.R.1    Friston, K.J.2    Fearn, T.3    Kiebel, S.J.4
  • 9
    • 84881108777 scopus 로고    scopus 로고
    • Medical image processing on the GPU-past, present and future
    • Eklund A., Dufort P., Forsberg D., LaConte S.M. Medical image processing on the GPU-past, present and future. Med Image Anal 2013, 17(Dec (8)):1073-1094.
    • (2013) Med Image Anal , vol.17 , Issue.DEC 8 , pp. 1073-1094
    • Eklund, A.1    Dufort, P.2    Forsberg, D.3    LaConte, S.M.4
  • 10
    • 84896984583 scopus 로고    scopus 로고
    • BROCCOLI: software for fast fMRI analysis on many-core CPUs and GPUs
    • Eklund A., Dufort P., Villani M., Laconte S. BROCCOLI: software for fast fMRI analysis on many-core CPUs and GPUs. Front Neuroinform 2014, 8:8-24.
    • (2014) Front Neuroinform , vol.8 , pp. 8-24
    • Eklund, A.1    Dufort, P.2    Villani, M.3    Laconte, S.4
  • 12
    • 0036334947 scopus 로고    scopus 로고
    • Bayesian estimation of dynamical systems: an application to fMRI
    • Friston K.J. Bayesian estimation of dynamical systems: an application to fMRI. Neuroimage 2002, 16(Jun (2)):513-530.
    • (2002) Neuroimage , vol.16 , Issue.JUN 2 , pp. 513-530
    • Friston, K.J.1
  • 13
    • 0041924877 scopus 로고    scopus 로고
    • Dynamic causal modelling
    • Friston K.J., Harrison L., Penny W. Dynamic causal modelling. Neuroimage 2003, 19(Aug (4)):1273-1302.
    • (2003) Neuroimage , vol.19 , Issue.AUG 4 , pp. 1273-1302
    • Friston, K.J.1    Harrison, L.2    Penny, W.3
  • 14
    • 84856244538 scopus 로고    scopus 로고
    • Cudabayesreg: parallel implementation of a Bayesian multilevel model for fmri data analysis
    • (10)
    • Ferreira da Silva A.R. Cudabayesreg: parallel implementation of a Bayesian multilevel model for fmri data analysis. J Stat Softw 2011, 44(4):1-24. (10).
    • (2011) J Stat Softw , vol.44 , Issue.4 , pp. 1-24
    • Ferreira da Silva, A.R.1
  • 15
    • 0000736067 scopus 로고    scopus 로고
    • Simulating normalizing constants: from importance sampling to bridge sampling to path sampling
    • Gelman A., Meng X.L. Simulating normalizing constants: from importance sampling to bridge sampling to path sampling. Stat Sci 1998, 13(2):163-185.
    • (1998) Stat Sci , vol.13 , Issue.2 , pp. 163-185
    • Gelman, A.1    Meng, X.L.2
  • 17
    • 0026122066 scopus 로고
    • What every computer scientist should know about floating-point arithmetic
    • Goldberg D. What every computer scientist should know about floating-point arithmetic. ACM Comput Surv (CSUR) 1991, 23(1):5-48.
    • (1991) ACM Comput Surv (CSUR) , vol.23 , Issue.1 , pp. 5-48
    • Goldberg, D.1
  • 18
    • 84865266921 scopus 로고    scopus 로고
    • Parallel statistical computing for statistical inference
    • Guo G. Parallel statistical computing for statistical inference. J Stat Theory Pract 2012, 6(3):536-565.
    • (2012) J Stat Theory Pract , vol.6 , Issue.3 , pp. 536-565
    • Guo, G.1
  • 19
    • 84876920763 scopus 로고    scopus 로고
    • Accelerating fibre orientation estimation from diffusion weighted magnetic resonance imaging using GPUs
    • Hernandez M., Guerrero G.D., Cecilia J.M., Garcia J.M., Inuggi A., Jbabdi S., et al. Accelerating fibre orientation estimation from diffusion weighted magnetic resonance imaging using GPUs. PLoS ONE 2013, 8(4):e61892.
    • (2013) PLoS ONE , vol.8 , Issue.4 , pp. e61892
    • Hernandez, M.1    Guerrero, G.D.2    Cecilia, J.M.3    Garcia, J.M.4    Inuggi, A.5    Jbabdi, S.6
  • 20
    • 80053364902 scopus 로고    scopus 로고
    • Using parallel computation to improve independent Metropolis-Hastings based estimation
    • Jacob P., Robert C.P., Smith M.H. Using parallel computation to improve independent Metropolis-Hastings based estimation. J Comput Graph Stat 2011, 20(3):616-635.
    • (2011) J Comput Graph Stat , vol.20 , Issue.3 , pp. 616-635
    • Jacob, P.1    Robert, C.P.2    Smith, M.H.3
  • 21
    • 84924548399 scopus 로고    scopus 로고
    • GPU-based parallel group ICA for functional magnetic resonance data
    • Jing Y., Zeng W., Wang N., Ren T., Shi Y., Yin J., et al. GPU-based parallel group ICA for functional magnetic resonance data. Comput Methods Programs Biomed 2015, 119(Apr (1)):9-16.
    • (2015) Comput Methods Programs Biomed , vol.119 , Issue.APR 1 , pp. 9-16
    • Jing, Y.1    Zeng, W.2    Wang, N.3    Ren, T.4    Shi, Y.5    Yin, J.6
  • 23
    • 72449189678 scopus 로고    scopus 로고
    • Runge-Kutta's methods with minimum storage implementations
    • Ketchenson D.I. Runge-Kutta's methods with minimum storage implementations. J Comput Phys 2010, 229(5):1763-1773.
    • (2010) J Comput Phys , vol.229 , Issue.5 , pp. 1763-1773
    • Ketchenson, D.I.1
  • 24
    • 33646471468 scopus 로고
    • Statistical mechanics of fluid mixtures
    • Kirkwood J.G. Statistical mechanics of fluid mixtures. J Chem Phys 1935, 3(5):300-313.
    • (1935) J Chem Phys , vol.3 , Issue.5 , pp. 300-313
    • Kirkwood, J.G.1
  • 25
    • 0037266164 scopus 로고    scopus 로고
    • Population Markov chain Monte Carlo
    • Laskey K.B., Myers J.W. Population Markov chain Monte Carlo. Mach Learn 2003, 50(1-2):175-196.
    • (2003) Mach Learn , vol.50 , Issue.1-2 , pp. 175-196
    • Laskey, K.B.1    Myers, J.W.2
  • 26
    • 78751703946 scopus 로고    scopus 로고
    • On the utility of graphics cards to perform massively parallel simulation of advanced Monte Carlo methods
    • Lee A., Yau C., Giles M.B., Doucet A., Holmes C.C. On the utility of graphics cards to perform massively parallel simulation of advanced Monte Carlo methods. J Comput Graph Stat 2010, Dec (19)(4):769-789.
    • (2010) J Comput Graph Stat , vol.DEC 19 , Issue.4 , pp. 769-789
    • Lee, A.1    Yau, C.2    Giles, M.B.3    Doucet, A.4    Holmes, C.C.5
  • 27
    • 77954995885 scopus 로고    scopus 로고
    • Debunking the 100× GPU vs. CPU Myth: an evaluation of throughput computing on CPU and GPU
    • Lee V.W., Kim C., Chhugani J., Deisher M., Kim D., Nguyen A.D., et al. Debunking the 100× GPU vs. CPU Myth: an evaluation of throughput computing on CPU and GPU. SIGARCH Comput Archit News 2010, 38(Jun (3)):451-460.
    • (2010) SIGARCH Comput Archit News , vol.38 , Issue.JUN 3 , pp. 451-460
    • Lee, V.W.1    Kim, C.2    Chhugani, J.3    Deisher, M.4    Kim, D.5    Nguyen, A.D.6
  • 29
    • 0442309554 scopus 로고    scopus 로고
    • The multiple-try method and local optimization in metropolis sampling
    • Liu J.S., Liang F., Wong W.H. The multiple-try method and local optimization in metropolis sampling. J Am Stat Assoc 2000, 95(449):121-134.
    • (2000) J Am Stat Assoc , vol.95 , Issue.449 , pp. 121-134
    • Liu, J.S.1    Liang, F.2    Wong, W.H.3
  • 31
    • 0002913686 scopus 로고
    • A bridge between nonlinear time series models and nonlinear stochastic dynamical systems: a local linearization approach
    • Ozaki T. A bridge between nonlinear time series models and nonlinear stochastic dynamical systems: a local linearization approach. Stat Sin 1992, 2(1):113-135.
    • (1992) Stat Sin , vol.2 , Issue.1 , pp. 113-135
    • Ozaki, T.1
  • 35
    • 34247141560 scopus 로고    scopus 로고
    • Estimating the integrated likelihood via posterior simulation using the harmonic mean identity
    • Oxford University Press, Oxford
    • Raftery A.E., Newton M.A., Satagopan J.M., Krivitsky P.N. Estimating the integrated likelihood via posterior simulation using the harmonic mean identity. Bayesian Statistics 2007, 8:1-45. Oxford University Press, Oxford.
    • (2007) Bayesian Statistics , vol.8 , pp. 1-45
    • Raftery, A.E.1    Newton, M.A.2    Satagopan, J.M.3    Krivitsky, P.N.4
  • 36
    • 84904092156 scopus 로고    scopus 로고
    • Efficient gradient computation for dynamical models
    • Sengupta B., Friston K.J., Penny W.D. Efficient gradient computation for dynamical models. Neuroimage 2014, 98(Sep):521-527.
    • (2014) Neuroimage , vol.98 , Issue.SEP , pp. 521-527
    • Sengupta, B.1    Friston, K.J.2    Penny, W.D.3
  • 37
    • 84937764183 scopus 로고    scopus 로고
    • Gradient-free MCMC methods for dynamic causal modelling
    • Sengupta B., Friston K.J., Penny W.D. Gradient-free MCMC methods for dynamic causal modelling. Neuroimage 2015, 112(May):375-381.
    • (2015) Neuroimage , vol.112 , Issue.MAY , pp. 375-381
    • Sengupta, B.1    Friston, K.J.2    Penny, W.D.3
  • 38
    • 84888875662 scopus 로고    scopus 로고
    • A survey of GPU-based medical image computing techniques
    • Shi L., Liu W., Zhang H., Xie Y., Wang D. A survey of GPU-based medical image computing techniques. Quant Imaging Med Surg 2012, 2(Sep (3)):188-206.
    • (2012) Quant Imaging Med Surg , vol.2 , Issue.SEP 3 , pp. 188-206
    • Shi, L.1    Liu, W.2    Zhang, H.3    Xie, Y.4    Wang, D.5
  • 39
    • 84944393757 scopus 로고    scopus 로고
    • A hierarchical model for unifying unsupervised generative embedding and empirical Bayes
    • unpublished results
    • S. Raman, L. Deserno, F. Schlagenhauf, K.E. Stephan. A hierarchical model for unifying unsupervised generative embedding and empirical Bayes, unpublished results.
    • Raman, S.1    Deserno, L.2    Schlagenhauf, F.3    Stephan, K.E.4
  • 42
    • 77955516707 scopus 로고    scopus 로고
    • Understanding GPU programming for statistical computation: studies in massively parallel massive mixtures
    • Suchard M.A., Wang Q., Chan C., Frelinger J., Cron A., West M. Understanding GPU programming for statistical computation: studies in massively parallel massive mixtures. J Comput Graph Stat 2010, 19(Jun (2)):419-438.
    • (2010) J Comput Graph Stat , vol.19 , Issue.JUN 2 , pp. 419-438
    • Suchard, M.A.1    Wang, Q.2    Chan, C.3    Frelinger, J.4    Cron, A.5    West, M.6
  • 43
    • 35949020425 scopus 로고
    • Replica Monte Carlo simulation of spin-glasses
    • Swendsen R., Wang J. Replica Monte Carlo simulation of spin-glasses. Phys Rev Lett 1986, 57(Nov):2607-2609.
    • (1986) Phys Rev Lett , vol.57 , Issue.NOV , pp. 2607-2609
    • Swendsen, R.1    Wang, J.2
  • 44
    • 84879479180 scopus 로고    scopus 로고
    • Accelerating computation of DCM for ERP in MATLAB by external function calls to the GPU
    • e66599
    • Wang W.J., Hsieh I.F., Chen C.C. Accelerating computation of DCM for ERP in MATLAB by external function calls to the GPU. PLoS ONE 2013, 8(6). e66599.
    • (2013) PLoS ONE , vol.8 , Issue.6
    • Wang, W.J.1    Hsieh, I.F.2    Chen, C.C.3
  • 45
    • 0002255298 scopus 로고
    • Low-storage Runge-Kutta schemes
    • Williamson J.H. Low-storage Runge-Kutta schemes. J Comput Phys 1980, 35(1):48-56.
    • (1980) J Comput Phys , vol.35 , Issue.1 , pp. 48-56
    • Williamson, J.H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.