-
1
-
-
84937627029
-
-
(in preparation)
-
Aponte E., Raman S.S., Sengupta B., Penny W.D., Stephan K.E., Heinzle J. mpdcm: A toolbox for Massively Parallel Dynamic Causal Modeling 2015, (in preparation).
-
(2015)
mpdcm: A toolbox for Massively Parallel Dynamic Causal Modeling
-
-
Aponte, E.1
Raman, S.S.2
Sengupta, B.3
Penny, W.D.4
Stephan, K.E.5
Heinzle, J.6
-
2
-
-
77950347409
-
A view of cloud computing
-
Armbrust M., Fox A., Griffith R., Joseph A.D., Katz R., Konwinski A., Lee G., Patterson D., Rabkin A., Stoica I., Zaharia M. A view of cloud computing. Commun. ACM 2010, 53(4):50-58.
-
(2010)
Commun. ACM
, vol.53
, Issue.4
, pp. 50-58
-
-
Armbrust, M.1
Fox, A.2
Griffith, R.3
Joseph, A.D.4
Katz, R.5
Konwinski, A.6
Lee, G.7
Patterson, D.8
Rabkin, A.9
Stoica, I.10
Zaharia, M.11
-
3
-
-
79151477311
-
Dynamical systems identification using Gaussian process models with incorporated local models
-
Ažman K., Kocijan J. Dynamical systems identification using Gaussian process models with incorporated local models. Eng. Appl. Artif. Intell. 2011, 24(2):398-408.
-
(2011)
Eng. Appl. Artif. Intell.
, vol.24
, Issue.2
, pp. 398-408
-
-
Ažman, K.1
Kocijan, J.2
-
4
-
-
34548295327
-
Learning the value of information in an uncertain world
-
Behrens T.E., Woolrich M.W., Walton M.E., Rushworth M.F. Learning the value of information in an uncertain world. Nat. Neurosci. 2007, 10(9):1214-1221.
-
(2007)
Nat. Neurosci.
, vol.10
, Issue.9
, pp. 1214-1221
-
-
Behrens, T.E.1
Woolrich, M.W.2
Walton, M.E.3
Rushworth, M.F.4
-
7
-
-
0043096621
-
Assessing convergence of Markov chain Monte Carlo algorithms
-
Brooks S.P., Roberts G.O. Assessing convergence of Markov chain Monte Carlo algorithms. Stat. Comput. 1998, 8:319-335.
-
(1998)
Stat. Comput.
, vol.8
, pp. 319-335
-
-
Brooks, S.P.1
Roberts, G.O.2
-
8
-
-
69449098014
-
Estimating Bayes factors via thermodynamic integration and population MCMC
-
Calderhead B., Girolami M. Estimating Bayes factors via thermodynamic integration and population MCMC. Comput. Stat. Data Anal. 2009, 53(12):4028-4045.
-
(2009)
Comput. Stat. Data Anal.
, vol.53
, Issue.12
, pp. 4028-4045
-
-
Calderhead, B.1
Girolami, M.2
-
9
-
-
44649093248
-
Dynamic causal modelling of induced responses
-
Chen C.C., Kiebel S.J., Friston K.J. Dynamic causal modelling of induced responses. NeuroImage 2008, 41(4):1293-1312.
-
(2008)
NeuroImage
, vol.41
, Issue.4
, pp. 1293-1312
-
-
Chen, C.C.1
Kiebel, S.J.2
Friston, K.J.3
-
10
-
-
35148901069
-
A Metropolis-Hastings algorithm for dynamic causal models
-
Chumbley J.R., Friston K.J., Fearn T., Kiebel S.J. A Metropolis-Hastings algorithm for dynamic causal models. NeuroImage 2007, 38(3):478-487.
-
(2007)
NeuroImage
, vol.38
, Issue.3
, pp. 478-487
-
-
Chumbley, J.R.1
Friston, K.J.2
Fearn, T.3
Kiebel, S.J.4
-
11
-
-
40049086223
-
BOLD responses reflecting dopaminergic signals in the human ventral tegmental area
-
D'Ardenne K., McClure S.M., Nystrom L.E., Cohen J.D. BOLD responses reflecting dopaminergic signals in the human ventral tegmental area. Science 2008, 319(5867):1264-1267.
-
(2008)
Science
, vol.319
, Issue.5867
, pp. 1264-1267
-
-
D'Ardenne, K.1
McClure, S.M.2
Nystrom, L.E.3
Cohen, J.D.4
-
12
-
-
80051748187
-
Dynamic causal modelling: a critical review of the biophysical and statistical foundations
-
Daunizeau J., David O., Stephan K.E. Dynamic causal modelling: a critical review of the biophysical and statistical foundations. NeuroImage 2011, 58(2):312-322.
-
(2011)
NeuroImage
, vol.58
, Issue.2
, pp. 312-322
-
-
Daunizeau, J.1
David, O.2
Stephan, K.E.3
-
13
-
-
84896717406
-
VBA: a probabilistic treatment of nonlinear models for neurobiological and behavioural data
-
Daunizeau J., Adam V., Rigoux L. VBA: a probabilistic treatment of nonlinear models for neurobiological and behavioural data. PLoS Comput. Biol. 2014, 10(1):e1003441.
-
(2014)
PLoS Comput. Biol.
, vol.10
, Issue.1
, pp. e1003441
-
-
Daunizeau, J.1
Adam, V.2
Rigoux, L.3
-
14
-
-
33646145937
-
Dynamic causal modeling of evoked responses in EEG and MEG
-
David O., Kiebel S.J., Harrison L.M., Mattout J., Kilner J.M., Friston K.J. Dynamic causal modeling of evoked responses in EEG and MEG. NeuroImage 2006, 30(4):1255-1272.
-
(2006)
NeuroImage
, vol.30
, Issue.4
, pp. 1255-1272
-
-
David, O.1
Kiebel, S.J.2
Harrison, L.M.3
Mattout, J.4
Kilner, J.M.5
Friston, K.J.6
-
15
-
-
84907587191
-
Inferring on the intentions of others by hierarchical Bayesian learning
-
Diaconescu A.D., Mathys C., Weber L.A.E., Daunizeau J., Kasper L., Lomakina E.I., Fehr E., Stephan K.E. Inferring on the intentions of others by hierarchical Bayesian learning. PLoS Comput. Biol. 2014, 10(9):e1003810.
-
(2014)
PLoS Comput. Biol.
, vol.10
, Issue.9
, pp. e1003810
-
-
Diaconescu, A.D.1
Mathys, C.2
Weber, L.A.E.3
Daunizeau, J.4
Kasper, L.5
Lomakina, E.I.6
Fehr, E.7
Stephan, K.E.8
-
18
-
-
77954195285
-
Computational and dynamic models in neuroimaging
-
Friston K.J., Dolan R.J. Computational and dynamic models in neuroimaging. NeuroImage 2010, 52(3):752-765.
-
(2010)
NeuroImage
, vol.52
, Issue.3
, pp. 752-765
-
-
Friston, K.J.1
Dolan, R.J.2
-
19
-
-
0033778839
-
Nonlinear responses in fMRI: the balloon model, Volterra kernels, and other hemodynamics
-
Friston K.J., Mechelli A., Turner R., Price C.J. Nonlinear responses in fMRI: the balloon model, Volterra kernels, and other hemodynamics. NeuroImage 2000, 12:466-477.
-
(2000)
NeuroImage
, vol.12
, pp. 466-477
-
-
Friston, K.J.1
Mechelli, A.2
Turner, R.3
Price, C.J.4
-
21
-
-
33751115761
-
Variational free energy and the Laplace approximation
-
Friston K.J., Mattout J., Trujillo-Barreto N., Ashburner J., Penny W. Variational free energy and the Laplace approximation. NeuroImage 2007, 34(1):220-234.
-
(2007)
NeuroImage
, vol.34
, Issue.1
, pp. 220-234
-
-
Friston, K.J.1
Mattout, J.2
Trujillo-Barreto, N.3
Ashburner, J.4
Penny, W.5
-
22
-
-
79957534677
-
Model-based approaches to neuroimaging: combining reinforcement learning theory with fMRI data
-
Glascher J.P., O'Doherty J.P. Model-based approaches to neuroimaging: combining reinforcement learning theory with fMRI data. Wiley Interdiscip. Rev. Cogn. Sci. 2010, 1(4):501-510.
-
(2010)
Wiley Interdiscip. Rev. Cogn. Sci.
, vol.1
, Issue.4
, pp. 501-510
-
-
Glascher, J.P.1
O'Doherty, J.P.2
-
23
-
-
84885760889
-
Hierarchical prediction errors in midbrain and basal forebrain during sensory learning
-
Iglesias S., Mathys C., Brodersen K.H., Kasper L., Piccirelli M., den Ouden H.E., Stephan K.E. Hierarchical prediction errors in midbrain and basal forebrain during sensory learning. Neuron 2013, 80(2):519-530.
-
(2013)
Neuron
, vol.80
, Issue.2
, pp. 519-530
-
-
Iglesias, S.1
Mathys, C.2
Brodersen, K.H.3
Kasper, L.4
Piccirelli, M.5
den Ouden, H.E.6
Stephan, K.E.7
-
24
-
-
0000561424
-
Efficient global optimization of expensive black-box functions
-
Jones D.R., Schonlau M., Welch W.J. Efficient global optimization of expensive black-box functions. J. Glob. Optim. 1998, 13(4):455-492.
-
(1998)
J. Glob. Optim.
, vol.13
, Issue.4
, pp. 455-492
-
-
Jones, D.R.1
Schonlau, M.2
Welch, W.J.3
-
26
-
-
34248176808
-
Dynamic causal modelling of evoked responses: the role of intrinsic connections
-
Kiebel S.J., Garrido M.I., Friston K.J. Dynamic causal modelling of evoked responses: the role of intrinsic connections. NeuroImage 2007, 36(2):332-345.
-
(2007)
NeuroImage
, vol.36
, Issue.2
, pp. 332-345
-
-
Kiebel, S.J.1
Garrido, M.I.2
Friston, K.J.3
-
27
-
-
41549146576
-
Near-optimal sensor placements in Gaussian processes: theory, efficient algorithms and empirical studies
-
Krause A., Singh A., Guestrin C. Near-optimal sensor placements in Gaussian processes: theory, efficient algorithms and empirical studies. J. Mach. Learn. Res. 2008, 9:235-284.
-
(2008)
J. Mach. Learn. Res.
, vol.9
, pp. 235-284
-
-
Krause, A.1
Singh, A.2
Guestrin, C.3
-
28
-
-
0000455229
-
A statistical approach to some basic mine valuation problems on the Witwatersrand
-
Krige D. A statistical approach to some basic mine valuation problems on the Witwatersrand. J. Chem. Metall. Min. Soc. S. Afr. 1951, 52(6):119-139.
-
(1951)
J. Chem. Metall. Min. Soc. S. Afr.
, vol.52
, Issue.6
, pp. 119-139
-
-
Krige, D.1
-
29
-
-
0037266164
-
Population Markov chain Monte Carlo
-
Laskey K.B., Myers J.W. Population Markov chain Monte Carlo. Mach. Learn. 2003, 50(1-2):175-196.
-
(2003)
Mach. Learn.
, vol.50
, Issue.1-2
, pp. 175-196
-
-
Laskey, K.B.1
Myers, J.W.2
-
31
-
-
71849092693
-
Quantitative prediction of subjective pain intensity from whole-brain fMRI data using Gaussian processes
-
Marquand A., Howard M., Brammer M., Chu C., Coen S., Mourão-Miranda J. Quantitative prediction of subjective pain intensity from whole-brain fMRI data using Gaussian processes. NeuroImage 2010, 49(3):2178-2189. 10.1016/j.neuroimage.2009.10.072.
-
(2010)
NeuroImage
, vol.49
, Issue.3
, pp. 2178-2189
-
-
Marquand, A.1
Howard, M.2
Brammer, M.3
Chu, C.4
Coen, S.5
Mourão-Miranda, J.6
-
32
-
-
77950526043
-
A dynamic causal model study of neuronal population dynamics
-
Marreiros A.C., Kiebel S.J., Friston K.J. A dynamic causal model study of neuronal population dynamics. NeuroImage 2010, 51(1):91-101.
-
(2010)
NeuroImage
, vol.51
, Issue.1
, pp. 91-101
-
-
Marreiros, A.C.1
Kiebel, S.J.2
Friston, K.J.3
-
33
-
-
82955235655
-
A Bayesian foundation for individual learning under uncertainty
-
Mathys C., Daunizeau J., Friston K.J., Stephan K.E. A Bayesian foundation for individual learning under uncertainty. Front. Hum. Neurosci. 2011, 5:39.
-
(2011)
Front. Hum. Neurosci.
, vol.5
, pp. 39
-
-
Mathys, C.1
Daunizeau, J.2
Friston, K.J.3
Stephan, K.E.4
-
34
-
-
84945907317
-
Uncertainty in perception and the Hierarchical Gaussian Filter
-
Mathys C.D., Lomakina E.I., Daunizeau J., Iglesias S., Brodersen K.H., Friston K.J., Stephan K.E. Uncertainty in perception and the Hierarchical Gaussian Filter. Front. Hum. Neurosci. 2014, 8:825. 10.3389/fnhum.2014.00825.
-
(2014)
Front. Hum. Neurosci.
, vol.8
, pp. 825
-
-
Mathys, C.D.1
Lomakina, E.I.2
Daunizeau, J.3
Iglesias, S.4
Brodersen, K.H.5
Friston, K.J.6
Stephan, K.E.7
-
37
-
-
57649230841
-
Dynamic causal models of steady-state responses
-
Moran R.J., Stephan K.E., Seidenbecher T., Pape H.C., Dolan R.J., Friston K.J. Dynamic causal models of steady-state responses. NeuroImage 2009, 44(3):796-811.
-
(2009)
NeuroImage
, vol.44
, Issue.3
, pp. 796-811
-
-
Moran, R.J.1
Stephan, K.E.2
Seidenbecher, T.3
Pape, H.C.4
Dolan, R.J.5
Friston, K.J.6
-
38
-
-
84857077961
-
Pattern recognition and functional neuroimaging help to discriminate healthy adolescents at risk for mood disorders from low risk adolescents
-
Mourão-Miranda J., Oliveira L., Ladouceur C.D., Marquand A., Brammer M., Birmaher B., Phillips M.L. Pattern recognition and functional neuroimaging help to discriminate healthy adolescents at risk for mood disorders from low risk adolescents. PLoS One 2012, 7(2).
-
(2012)
PLoS One
, vol.7
, Issue.2
-
-
Mourão-Miranda, J.1
Oliveira, L.2
Ladouceur, C.D.3
Marquand, A.4
Brammer, M.5
Birmaher, B.6
Phillips, M.L.7
-
40
-
-
0037987978
-
Temporal difference models and reward-related learning in the human brain
-
O'Doherty J.P., Dayan P., Friston K., Critchley H., Dolan R.J. Temporal difference models and reward-related learning in the human brain. Neuron 2003, 38(2):329-337.
-
(2003)
Neuron
, vol.38
, Issue.2
, pp. 329-337
-
-
O'Doherty, J.P.1
Dayan, P.2
Friston, K.3
Critchley, H.4
Dolan, R.J.5
-
42
-
-
3042641165
-
Comparing dynamic causal models
-
Penny W.D., Stephan K.E., Mechelli A., Friston K.J. Comparing dynamic causal models. NeuroImage 2004, 22(3):1157-1172.
-
(2004)
NeuroImage
, vol.22
, Issue.3
, pp. 1157-1172
-
-
Penny, W.D.1
Stephan, K.E.2
Mechelli, A.3
Friston, K.J.4
-
43
-
-
40849106781
-
Human insula activation reflects risk prediction errors as well as risk
-
Preuschoff K., Quartz S.R., Bossaerts P. Human insula activation reflects risk prediction errors as well as risk. J. Neurosci. 2008, 28(11):2745-2752.
-
(2008)
J. Neurosci.
, vol.28
, Issue.11
, pp. 2745-2752
-
-
Preuschoff, K.1
Quartz, S.R.2
Bossaerts, P.3
-
44
-
-
84886288343
-
Baseline activity predicts working memory load of preceding task condition
-
Pyka M., Hahn T., Heider D., Krug A., Sommer J., Kircher T., Jansen A. Baseline activity predicts working memory load of preceding task condition. Hum. Brain Mapp. 2013, 34(11):3010-3022. 10.1002/hbm.22121.
-
(2013)
Hum. Brain Mapp.
, vol.34
, Issue.11
, pp. 3010-3022
-
-
Pyka, M.1
Hahn, T.2
Heider, D.3
Krug, A.4
Sommer, J.5
Kircher, T.6
Jansen, A.7
-
46
-
-
0002109138
-
A theory of Pavlovian conditioning: variations in the effectiveness of reinforcement and nonreinforcement
-
Appleton Century Crofts, New York, A.H. Black, W.F. Prokasy (Eds.)
-
Rescorla R.A., Wagner A.R. A theory of Pavlovian conditioning: variations in the effectiveness of reinforcement and nonreinforcement. Classical Conditioning II: Current Research and Theory 1972, 64-99. Appleton Century Crofts, New York. A.H. Black, W.F. Prokasy (Eds.).
-
(1972)
Classical Conditioning II: Current Research and Theory
, pp. 64-99
-
-
Rescorla, R.A.1
Wagner, A.R.2
-
47
-
-
79959796037
-
Using Gaussian-process regression for meta-analytic neuroimaging inference based on sparse observations
-
Salimi-Khorshidi G., Nichols T.E., Smith S.M., Woolrich M.W. Using Gaussian-process regression for meta-analytic neuroimaging inference based on sparse observations. IEEE Trans. Med. Imaging 2011, 30(7):1401-1416.
-
(2011)
IEEE Trans. Med. Imaging
, vol.30
, Issue.7
, pp. 1401-1416
-
-
Salimi-Khorshidi, G.1
Nichols, T.E.2
Smith, S.M.3
Woolrich, M.W.4
-
48
-
-
0030896968
-
A neural substrate of prediction and reward
-
Schultz W., Dayan P., Montague P.R. A neural substrate of prediction and reward. Science 1997, 275(5306):1593-1599.
-
(1997)
Science
, vol.275
, Issue.5306
, pp. 1593-1599
-
-
Schultz, W.1
Dayan, P.2
Montague, P.R.3
-
49
-
-
84870280634
-
Exploring an adaptive metropolis algorithm
-
Shaby B., Wells M.T. Exploring an adaptive metropolis algorithm. Technical Report 2010.
-
(2010)
Technical Report
-
-
Shaby, B.1
Wells, M.T.2
-
51
-
-
84860236413
-
Information-theoretic regret bounds for Gaussian process optimization in the bandit setting
-
Srinivas N., Krause A., Kakade S.M., Seeger M. Information-theoretic regret bounds for Gaussian process optimization in the bandit setting. IEEE Trans. Inf. Theory 2012, 58(5):3250-3265. 10.1109/TIT.2011.2182033.
-
(2012)
IEEE Trans. Inf. Theory
, vol.58
, Issue.5
, pp. 3250-3265
-
-
Srinivas, N.1
Krause, A.2
Kakade, S.M.3
Seeger, M.4
-
52
-
-
35048820422
-
Comparing hemodynamic models with DCM
-
Stephan K.E., Weiskopf N., Drysdale P.M., Robinson P.A., Friston K.J. Comparing hemodynamic models with DCM. NeuroImage 2007, 38:387-401.
-
(2007)
NeuroImage
, vol.38
, pp. 387-401
-
-
Stephan, K.E.1
Weiskopf, N.2
Drysdale, P.M.3
Robinson, P.A.4
Friston, K.J.5
-
53
-
-
67349207353
-
Bayesian model selection for group studies
-
Stephan K.E., Penny W.D., Daunizeau J., Moran R.J., Friston K.J. Bayesian model selection for group studies. NeuroImage 2009, 46:1004-1017.
-
(2009)
NeuroImage
, vol.46
, pp. 1004-1017
-
-
Stephan, K.E.1
Penny, W.D.2
Daunizeau, J.3
Moran, R.J.4
Friston, K.J.5
-
54
-
-
35949020425
-
Replica Monte Carlo simulation of spin-glasses
-
Swendsen R., Wang J. Replica Monte Carlo simulation of spin-glasses. Phys. Rev. Lett. 1986, 57:2607-2609.
-
(1986)
Phys. Rev. Lett.
, vol.57
, pp. 2607-2609
-
-
Swendsen, R.1
Wang, J.2
-
55
-
-
84866684103
-
Weakly supervised structured output learning for semantic segmentation
-
IEEE, Rhode Island, USA
-
Vezhnevets A., Ferrari V., Buhmann J. Weakly supervised structured output learning for semantic segmentation. Computer Vision and Pattern Recognition (CVPR) 2012, 845-852. IEEE, Rhode Island, USA.
-
(2012)
Computer Vision and Pattern Recognition (CVPR)
, pp. 845-852
-
-
Vezhnevets, A.1
Ferrari, V.2
Buhmann, J.3
-
57
-
-
84879479180
-
Accelerating computation of DCM for ERP in MATLAB by external function calls to the GPU
-
Wang W.J., Hsieh I.F., Chen C.C. Accelerating computation of DCM for ERP in MATLAB by external function calls to the GPU. PLoS One 2013, 8(6):e66599.
-
(2013)
PLoS One
, vol.8
, Issue.6
, pp. e66599
-
-
Wang, W.J.1
Hsieh, I.F.2
Chen, C.C.3
|