메뉴 건너뛰기




Volumn 118, Issue , 2015, Pages 133-145

Inversion of hierarchical Bayesian models using Gaussian processes

Author keywords

Bayesian inference; Dynamic causal modelling; Gaussian processes; Global optimisation; Hierarchical models; MCMC

Indexed keywords

ARTICLE; BAYES THEOREM; DIGITAL FILTERING; DYNAMIC CAUSAL MODELING; FUNCTIONAL MAGNETIC RESONANCE IMAGING; GAUSSIAN PROCESS OPTIMIZATION; HIERARCHICAL BAYESIAN MODEL; HIERARCHICAL GAUSSIAN FILTER; MARKOV CHAIN MONTE CARLO METHOD; MATHEMATICAL COMPUTING; MONTE CARLO METHOD; NEUROIMAGING; PRIORITY JOURNAL; ALGORITHM; BIOLOGICAL MODEL; BRAIN; BRAIN MAPPING; COMPUTER SIMULATION; HUMAN; NORMAL DISTRIBUTION; NUCLEAR MAGNETIC RESONANCE IMAGING; PHYSIOLOGY; PROCEDURES;

EID: 84937566220     PISSN: 10538119     EISSN: 10959572     Source Type: Journal    
DOI: 10.1016/j.neuroimage.2015.05.084     Document Type: Article
Times cited : (10)

References (57)
  • 3
    • 79151477311 scopus 로고    scopus 로고
    • Dynamical systems identification using Gaussian process models with incorporated local models
    • Ažman K., Kocijan J. Dynamical systems identification using Gaussian process models with incorporated local models. Eng. Appl. Artif. Intell. 2011, 24(2):398-408.
    • (2011) Eng. Appl. Artif. Intell. , vol.24 , Issue.2 , pp. 398-408
    • Ažman, K.1    Kocijan, J.2
  • 7
    • 0043096621 scopus 로고    scopus 로고
    • Assessing convergence of Markov chain Monte Carlo algorithms
    • Brooks S.P., Roberts G.O. Assessing convergence of Markov chain Monte Carlo algorithms. Stat. Comput. 1998, 8:319-335.
    • (1998) Stat. Comput. , vol.8 , pp. 319-335
    • Brooks, S.P.1    Roberts, G.O.2
  • 8
    • 69449098014 scopus 로고    scopus 로고
    • Estimating Bayes factors via thermodynamic integration and population MCMC
    • Calderhead B., Girolami M. Estimating Bayes factors via thermodynamic integration and population MCMC. Comput. Stat. Data Anal. 2009, 53(12):4028-4045.
    • (2009) Comput. Stat. Data Anal. , vol.53 , Issue.12 , pp. 4028-4045
    • Calderhead, B.1    Girolami, M.2
  • 9
    • 44649093248 scopus 로고    scopus 로고
    • Dynamic causal modelling of induced responses
    • Chen C.C., Kiebel S.J., Friston K.J. Dynamic causal modelling of induced responses. NeuroImage 2008, 41(4):1293-1312.
    • (2008) NeuroImage , vol.41 , Issue.4 , pp. 1293-1312
    • Chen, C.C.1    Kiebel, S.J.2    Friston, K.J.3
  • 10
    • 35148901069 scopus 로고    scopus 로고
    • A Metropolis-Hastings algorithm for dynamic causal models
    • Chumbley J.R., Friston K.J., Fearn T., Kiebel S.J. A Metropolis-Hastings algorithm for dynamic causal models. NeuroImage 2007, 38(3):478-487.
    • (2007) NeuroImage , vol.38 , Issue.3 , pp. 478-487
    • Chumbley, J.R.1    Friston, K.J.2    Fearn, T.3    Kiebel, S.J.4
  • 11
    • 40049086223 scopus 로고    scopus 로고
    • BOLD responses reflecting dopaminergic signals in the human ventral tegmental area
    • D'Ardenne K., McClure S.M., Nystrom L.E., Cohen J.D. BOLD responses reflecting dopaminergic signals in the human ventral tegmental area. Science 2008, 319(5867):1264-1267.
    • (2008) Science , vol.319 , Issue.5867 , pp. 1264-1267
    • D'Ardenne, K.1    McClure, S.M.2    Nystrom, L.E.3    Cohen, J.D.4
  • 12
    • 80051748187 scopus 로고    scopus 로고
    • Dynamic causal modelling: a critical review of the biophysical and statistical foundations
    • Daunizeau J., David O., Stephan K.E. Dynamic causal modelling: a critical review of the biophysical and statistical foundations. NeuroImage 2011, 58(2):312-322.
    • (2011) NeuroImage , vol.58 , Issue.2 , pp. 312-322
    • Daunizeau, J.1    David, O.2    Stephan, K.E.3
  • 13
    • 84896717406 scopus 로고    scopus 로고
    • VBA: a probabilistic treatment of nonlinear models for neurobiological and behavioural data
    • Daunizeau J., Adam V., Rigoux L. VBA: a probabilistic treatment of nonlinear models for neurobiological and behavioural data. PLoS Comput. Biol. 2014, 10(1):e1003441.
    • (2014) PLoS Comput. Biol. , vol.10 , Issue.1 , pp. e1003441
    • Daunizeau, J.1    Adam, V.2    Rigoux, L.3
  • 18
    • 77954195285 scopus 로고    scopus 로고
    • Computational and dynamic models in neuroimaging
    • Friston K.J., Dolan R.J. Computational and dynamic models in neuroimaging. NeuroImage 2010, 52(3):752-765.
    • (2010) NeuroImage , vol.52 , Issue.3 , pp. 752-765
    • Friston, K.J.1    Dolan, R.J.2
  • 19
    • 0033778839 scopus 로고    scopus 로고
    • Nonlinear responses in fMRI: the balloon model, Volterra kernels, and other hemodynamics
    • Friston K.J., Mechelli A., Turner R., Price C.J. Nonlinear responses in fMRI: the balloon model, Volterra kernels, and other hemodynamics. NeuroImage 2000, 12:466-477.
    • (2000) NeuroImage , vol.12 , pp. 466-477
    • Friston, K.J.1    Mechelli, A.2    Turner, R.3    Price, C.J.4
  • 20
  • 22
    • 79957534677 scopus 로고    scopus 로고
    • Model-based approaches to neuroimaging: combining reinforcement learning theory with fMRI data
    • Glascher J.P., O'Doherty J.P. Model-based approaches to neuroimaging: combining reinforcement learning theory with fMRI data. Wiley Interdiscip. Rev. Cogn. Sci. 2010, 1(4):501-510.
    • (2010) Wiley Interdiscip. Rev. Cogn. Sci. , vol.1 , Issue.4 , pp. 501-510
    • Glascher, J.P.1    O'Doherty, J.P.2
  • 24
    • 0000561424 scopus 로고    scopus 로고
    • Efficient global optimization of expensive black-box functions
    • Jones D.R., Schonlau M., Welch W.J. Efficient global optimization of expensive black-box functions. J. Glob. Optim. 1998, 13(4):455-492.
    • (1998) J. Glob. Optim. , vol.13 , Issue.4 , pp. 455-492
    • Jones, D.R.1    Schonlau, M.2    Welch, W.J.3
  • 26
    • 34248176808 scopus 로고    scopus 로고
    • Dynamic causal modelling of evoked responses: the role of intrinsic connections
    • Kiebel S.J., Garrido M.I., Friston K.J. Dynamic causal modelling of evoked responses: the role of intrinsic connections. NeuroImage 2007, 36(2):332-345.
    • (2007) NeuroImage , vol.36 , Issue.2 , pp. 332-345
    • Kiebel, S.J.1    Garrido, M.I.2    Friston, K.J.3
  • 27
    • 41549146576 scopus 로고    scopus 로고
    • Near-optimal sensor placements in Gaussian processes: theory, efficient algorithms and empirical studies
    • Krause A., Singh A., Guestrin C. Near-optimal sensor placements in Gaussian processes: theory, efficient algorithms and empirical studies. J. Mach. Learn. Res. 2008, 9:235-284.
    • (2008) J. Mach. Learn. Res. , vol.9 , pp. 235-284
    • Krause, A.1    Singh, A.2    Guestrin, C.3
  • 28
    • 0000455229 scopus 로고
    • A statistical approach to some basic mine valuation problems on the Witwatersrand
    • Krige D. A statistical approach to some basic mine valuation problems on the Witwatersrand. J. Chem. Metall. Min. Soc. S. Afr. 1951, 52(6):119-139.
    • (1951) J. Chem. Metall. Min. Soc. S. Afr. , vol.52 , Issue.6 , pp. 119-139
    • Krige, D.1
  • 29
    • 0037266164 scopus 로고    scopus 로고
    • Population Markov chain Monte Carlo
    • Laskey K.B., Myers J.W. Population Markov chain Monte Carlo. Mach. Learn. 2003, 50(1-2):175-196.
    • (2003) Mach. Learn. , vol.50 , Issue.1-2 , pp. 175-196
    • Laskey, K.B.1    Myers, J.W.2
  • 31
    • 71849092693 scopus 로고    scopus 로고
    • Quantitative prediction of subjective pain intensity from whole-brain fMRI data using Gaussian processes
    • Marquand A., Howard M., Brammer M., Chu C., Coen S., Mourão-Miranda J. Quantitative prediction of subjective pain intensity from whole-brain fMRI data using Gaussian processes. NeuroImage 2010, 49(3):2178-2189. 10.1016/j.neuroimage.2009.10.072.
    • (2010) NeuroImage , vol.49 , Issue.3 , pp. 2178-2189
    • Marquand, A.1    Howard, M.2    Brammer, M.3    Chu, C.4    Coen, S.5    Mourão-Miranda, J.6
  • 32
    • 77950526043 scopus 로고    scopus 로고
    • A dynamic causal model study of neuronal population dynamics
    • Marreiros A.C., Kiebel S.J., Friston K.J. A dynamic causal model study of neuronal population dynamics. NeuroImage 2010, 51(1):91-101.
    • (2010) NeuroImage , vol.51 , Issue.1 , pp. 91-101
    • Marreiros, A.C.1    Kiebel, S.J.2    Friston, K.J.3
  • 35
  • 36
    • 0342813049 scopus 로고
    • The application of Bayesian methods for seeking the extremum
    • Mockus J., Tiesis V., Zilinskas A. The application of Bayesian methods for seeking the extremum. Towards Glob. Optimisation 1978, 2:117-129.
    • (1978) Towards Glob. Optimisation , vol.2 , pp. 117-129
    • Mockus, J.1    Tiesis, V.2    Zilinskas, A.3
  • 38
    • 84857077961 scopus 로고    scopus 로고
    • Pattern recognition and functional neuroimaging help to discriminate healthy adolescents at risk for mood disorders from low risk adolescents
    • Mourão-Miranda J., Oliveira L., Ladouceur C.D., Marquand A., Brammer M., Birmaher B., Phillips M.L. Pattern recognition and functional neuroimaging help to discriminate healthy adolescents at risk for mood disorders from low risk adolescents. PLoS One 2012, 7(2).
    • (2012) PLoS One , vol.7 , Issue.2
    • Mourão-Miranda, J.1    Oliveira, L.2    Ladouceur, C.D.3    Marquand, A.4    Brammer, M.5    Birmaher, B.6    Phillips, M.L.7
  • 40
    • 0037987978 scopus 로고    scopus 로고
    • Temporal difference models and reward-related learning in the human brain
    • O'Doherty J.P., Dayan P., Friston K., Critchley H., Dolan R.J. Temporal difference models and reward-related learning in the human brain. Neuron 2003, 38(2):329-337.
    • (2003) Neuron , vol.38 , Issue.2 , pp. 329-337
    • O'Doherty, J.P.1    Dayan, P.2    Friston, K.3    Critchley, H.4    Dolan, R.J.5
  • 43
    • 40849106781 scopus 로고    scopus 로고
    • Human insula activation reflects risk prediction errors as well as risk
    • Preuschoff K., Quartz S.R., Bossaerts P. Human insula activation reflects risk prediction errors as well as risk. J. Neurosci. 2008, 28(11):2745-2752.
    • (2008) J. Neurosci. , vol.28 , Issue.11 , pp. 2745-2752
    • Preuschoff, K.1    Quartz, S.R.2    Bossaerts, P.3
  • 44
    • 84886288343 scopus 로고    scopus 로고
    • Baseline activity predicts working memory load of preceding task condition
    • Pyka M., Hahn T., Heider D., Krug A., Sommer J., Kircher T., Jansen A. Baseline activity predicts working memory load of preceding task condition. Hum. Brain Mapp. 2013, 34(11):3010-3022. 10.1002/hbm.22121.
    • (2013) Hum. Brain Mapp. , vol.34 , Issue.11 , pp. 3010-3022
    • Pyka, M.1    Hahn, T.2    Heider, D.3    Krug, A.4    Sommer, J.5    Kircher, T.6    Jansen, A.7
  • 46
    • 0002109138 scopus 로고
    • A theory of Pavlovian conditioning: variations in the effectiveness of reinforcement and nonreinforcement
    • Appleton Century Crofts, New York, A.H. Black, W.F. Prokasy (Eds.)
    • Rescorla R.A., Wagner A.R. A theory of Pavlovian conditioning: variations in the effectiveness of reinforcement and nonreinforcement. Classical Conditioning II: Current Research and Theory 1972, 64-99. Appleton Century Crofts, New York. A.H. Black, W.F. Prokasy (Eds.).
    • (1972) Classical Conditioning II: Current Research and Theory , pp. 64-99
    • Rescorla, R.A.1    Wagner, A.R.2
  • 47
    • 79959796037 scopus 로고    scopus 로고
    • Using Gaussian-process regression for meta-analytic neuroimaging inference based on sparse observations
    • Salimi-Khorshidi G., Nichols T.E., Smith S.M., Woolrich M.W. Using Gaussian-process regression for meta-analytic neuroimaging inference based on sparse observations. IEEE Trans. Med. Imaging 2011, 30(7):1401-1416.
    • (2011) IEEE Trans. Med. Imaging , vol.30 , Issue.7 , pp. 1401-1416
    • Salimi-Khorshidi, G.1    Nichols, T.E.2    Smith, S.M.3    Woolrich, M.W.4
  • 48
    • 0030896968 scopus 로고    scopus 로고
    • A neural substrate of prediction and reward
    • Schultz W., Dayan P., Montague P.R. A neural substrate of prediction and reward. Science 1997, 275(5306):1593-1599.
    • (1997) Science , vol.275 , Issue.5306 , pp. 1593-1599
    • Schultz, W.1    Dayan, P.2    Montague, P.R.3
  • 49
    • 84870280634 scopus 로고    scopus 로고
    • Exploring an adaptive metropolis algorithm
    • Shaby B., Wells M.T. Exploring an adaptive metropolis algorithm. Technical Report 2010.
    • (2010) Technical Report
    • Shaby, B.1    Wells, M.T.2
  • 51
    • 84860236413 scopus 로고    scopus 로고
    • Information-theoretic regret bounds for Gaussian process optimization in the bandit setting
    • Srinivas N., Krause A., Kakade S.M., Seeger M. Information-theoretic regret bounds for Gaussian process optimization in the bandit setting. IEEE Trans. Inf. Theory 2012, 58(5):3250-3265. 10.1109/TIT.2011.2182033.
    • (2012) IEEE Trans. Inf. Theory , vol.58 , Issue.5 , pp. 3250-3265
    • Srinivas, N.1    Krause, A.2    Kakade, S.M.3    Seeger, M.4
  • 54
    • 35949020425 scopus 로고
    • Replica Monte Carlo simulation of spin-glasses
    • Swendsen R., Wang J. Replica Monte Carlo simulation of spin-glasses. Phys. Rev. Lett. 1986, 57:2607-2609.
    • (1986) Phys. Rev. Lett. , vol.57 , pp. 2607-2609
    • Swendsen, R.1    Wang, J.2
  • 57
    • 84879479180 scopus 로고    scopus 로고
    • Accelerating computation of DCM for ERP in MATLAB by external function calls to the GPU
    • Wang W.J., Hsieh I.F., Chen C.C. Accelerating computation of DCM for ERP in MATLAB by external function calls to the GPU. PLoS One 2013, 8(6):e66599.
    • (2013) PLoS One , vol.8 , Issue.6 , pp. e66599
    • Wang, W.J.1    Hsieh, I.F.2    Chen, C.C.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.