메뉴 건너뛰기




Volumn 128, Issue , 2016, Pages 413-431

Bayesian model reduction and empirical Bayes for group (DCM) studies

Author keywords

Bayesian model reduction; Classification; Dynamic causal modelling; Empirical Bayes; Fixed effects; Hierarchical modelling; Random effects

Indexed keywords

ACCURACY; ARTICLE; BAYES THEOREM; BAYESIAN MODEL REDUCTION; CLASSIFICATION; ELECTROENCEPHALOGRAM; HUMAN; MISMATCH NEGATIVITY; NONLINEAR SYSTEM; PARAMETRIC TEST; PREDICTION; PRIORITY JOURNAL; SCHIZOPHRENIA; SIMULATION; BIOLOGICAL MODEL;

EID: 84960801280     PISSN: 10538119     EISSN: 10959572     Source Type: Journal    
DOI: 10.1016/j.neuroimage.2015.11.015     Document Type: Article
Times cited : (447)

References (28)
  • 3
    • 84949161149 scopus 로고
    • Stein's estimation rule and its competitors-an empirical Bayes approach
    • Efron B., Morris C. Stein's estimation rule and its competitors-an empirical Bayes approach. J. Am. Stat. Assoc. 1973, 68:117-130.
    • (1973) J. Am. Stat. Assoc. , vol.68 , pp. 117-130
    • Efron, B.1    Morris, C.2
  • 4
  • 5
    • 57149113922 scopus 로고    scopus 로고
    • Hierarchical models in the brain
    • Friston K. Hierarchical models in the brain. PLoS Comput. Biol. 2008, 4(11).
    • (2008) PLoS Comput. Biol. , vol.4 , Issue.11
    • Friston, K.1
  • 6
    • 79957502813 scopus 로고    scopus 로고
    • Post hoc Bayesian model selection
    • Friston K., Penny W. Post hoc Bayesian model selection. NeuroImage 2011, 56(4):2089-2099.
    • (2011) NeuroImage , vol.56 , Issue.4 , pp. 2089-2099
    • Friston, K.1    Penny, W.2
  • 10
    • 65649088304 scopus 로고    scopus 로고
    • Dynamic causal modeling of the response to frequency deviants
    • Garrido M.I., Kilner J.M., Kiebel S.J., Friston K.J. Dynamic causal modeling of the response to frequency deviants. J. Neurophysiol. 2009, 101(5):2620-2631.
    • (2009) J. Neurophysiol. , vol.101 , Issue.5 , pp. 2620-2631
    • Garrido, M.I.1    Kilner, J.M.2    Kiebel, S.J.3    Friston, K.J.4
  • 12
    • 80052029170 scopus 로고
    • Approximate Bayesian inference in conditionally independent hierarchical models (parametric empirical Bayes models)
    • Kass R.E., Steffey D. Approximate Bayesian inference in conditionally independent hierarchical models (parametric empirical Bayes models). J. Am. Stat. Assoc. 1989, 407:717-726.
    • (1989) J. Am. Stat. Assoc. , vol.407 , pp. 717-726
    • Kass, R.E.1    Steffey, D.2
  • 13
    • 34248176808 scopus 로고    scopus 로고
    • Dynamic causal modelling of evoked responses: the role of intrinsic connections
    • Kiebel S.J., Garrido M.I., Friston K.J. Dynamic causal modelling of evoked responses: the role of intrinsic connections. NeuroImage 2007, 36(2):332-345.
    • (2007) NeuroImage , vol.36 , Issue.2 , pp. 332-345
    • Kiebel, S.J.1    Garrido, M.I.2    Friston, K.J.3
  • 14
    • 77950526043 scopus 로고    scopus 로고
    • A dynamic causal model study of neuronal population dynamics
    • Marreiros A.C., Kiebel S.J., Friston K.J. A dynamic causal model study of neuronal population dynamics. NeuroImage 2010, 51:91-101.
    • (2010) NeuroImage , vol.51 , pp. 91-101
    • Marreiros, A.C.1    Kiebel, S.J.2    Friston, K.J.3
  • 15
    • 0002913686 scopus 로고
    • A bridge between nonlinear time-series models and nonlinear stochastic dynamical systems: a local linearization approach
    • Ozaki T. A bridge between nonlinear time-series models and nonlinear stochastic dynamical systems: a local linearization approach. Stat. Sin. 1992, 2:113-135.
    • (1992) Stat. Sin. , vol.2 , pp. 113-135
    • Ozaki, T.1
  • 20
    • 84861330795 scopus 로고    scopus 로고
    • Post-hoc selection of dynamic causal models
    • Rosa M.J., Friston K., Penny W. Post-hoc selection of dynamic causal models. J. Neurosci. Methods 2012, 208(1):66-78.
    • (2012) J. Neurosci. Methods , vol.208 , Issue.1 , pp. 66-78
    • Rosa, M.J.1    Friston, K.2    Penny, W.3
  • 21
    • 0033556862 scopus 로고    scopus 로고
    • A unifying review of linear gaussian models
    • Roweis S., Ghahramani Z. A unifying review of linear gaussian models. Neural Comput. 1999, 11(2):305-345.
    • (1999) Neural Comput. , vol.11 , Issue.2 , pp. 305-345
    • Roweis, S.1    Ghahramani, Z.2
  • 23
    • 84940870400 scopus 로고    scopus 로고
    • Gradient-based MCMC samplers for dynamic causal modelling
    • Sengupta B., Friston K.J., Penny W.D. Gradient-based MCMC samplers for dynamic causal modelling. NeuroImage 2016, 125:1107-1118.
    • (2016) NeuroImage , vol.125 , pp. 1107-1118
    • Sengupta, B.1    Friston, K.J.2    Penny, W.D.3
  • 26
    • 0001224048 scopus 로고    scopus 로고
    • Sparse Bayesian learning and the relevance vector machine
    • Tipping M. Sparse Bayesian learning and the relevance vector machine. J. Mach. Learn. Res. 2001, 1:211-244.
    • (2001) J. Mach. Learn. Res. , vol.1 , pp. 211-244
    • Tipping, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.