-
1
-
-
84929625248
-
An overview of the BioASQ large-scale biomedical semantic indexing and question answering competition
-
G. Tsatsaronis, G. Balikas, P. Malakasiotis, I. Partalas, M. Zschunke, M. R. Alvers, D. Weissenborn, A. Krithara, S. Petridis, D. Polychronopoulos et al., "An overview of the BioASQ large-scale biomedical semantic indexing and question answering competition," BMC bioinformatics, vol. 16, no. 1, p. 138, 2015.
-
(2015)
BMC Bioinformatics
, vol.16
, Issue.1
, pp. 138
-
-
Tsatsaronis, G.1
Balikas, G.2
Malakasiotis, P.3
Partalas, I.4
Zschunke, M.5
Alvers, M.R.6
Weissenborn, D.7
Krithara, A.8
Petridis, S.9
Polychronopoulos, D.10
-
2
-
-
84927931564
-
Context-driven automatic subgraph creation for literature-based discovery
-
D. Cameron, R. Kavuluru, T. C. Rindflesch, A. P. Sheth, K. Thirunarayan, and O. Bodenreider, "Context-driven automatic subgraph creation for literature-based discovery," Journal of biomedical informatics, vol. 54, pp. 141-157, 2015.
-
(2015)
Journal of Biomedical Informatics
, vol.54
, pp. 141-157
-
-
Cameron, D.1
Kavuluru, R.2
Rindflesch, T.C.3
Sheth, A.P.4
Thirunarayan, K.5
Bodenreider, O.6
-
3
-
-
85027947329
-
Leveraging output term co-occurrence frequencies and latent associations in predicting medical subject headings
-
R. Kavuluru and Y. Lu, "Leveraging output term co-occurrence frequencies and latent associations in predicting medical subject headings," Data & Knowledge Engineering, vol. 94, no. Part B, pp. 189-201, 2014.
-
(2014)
Data & Knowledge Engineering
, vol.94
, pp. 189-201
-
-
Kavuluru, R.1
Lu, Y.2
-
4
-
-
84865237508
-
Statistical topic models for multi-label document classification
-
T. N. Rubin, A. Chambers, P. Smyth, and M. Steyvers, "Statistical topic models for multi-label document classification," Machine Learning, vol. 88, no. 1-2, pp. 157-208, 2012.
-
(2012)
Machine Learning
, vol.88
, Issue.1-2
, pp. 157-208
-
-
Rubin, T.N.1
Chambers, A.2
Smyth, P.3
Steyvers, M.4
-
5
-
-
56649111845
-
The NLM indexing initiative's medical text indexer
-
A. Aronson, J. Mork, C. Gay, S. Humphrey, and W. Rogers, "The NLM indexing initiative's medical text indexer," in Proceedings of MEDINFO, 2004, pp. 268-272.
-
(2004)
Proceedings of MEDINFO
, pp. 268-272
-
-
Aronson, A.1
Mork, J.2
Gay, C.3
Humphrey, S.4
Rogers, W.5
-
6
-
-
84884919794
-
Unsupervised medical subject heading assignment using output label co-occurrence statistics and semantic predications
-
ser. NLDB. Springer
-
R. Kavuluru and Z. He, "Unsupervised medical subject heading assignment using output label co-occurrence statistics and semantic predications," in Natural Language Processing and Information Systems, ser. NLDB. Springer, 2013, pp. 176-188.
-
(2013)
Natural Language Processing and Information Systems
, pp. 176-188
-
-
Kavuluru, R.1
He, Z.2
-
7
-
-
80053244362
-
Recommending MeSH terms for annotating biomedical articles
-
M. Huang, A. Névéol, and Z. Lu, "Recommending MeSH terms for annotating biomedical articles," Journal of the American Medical Informatics Association, vol. 18, no. 5, pp. 660-667, 2011.
-
(2011)
Journal of the American Medical Informatics Association
, vol.18
, Issue.5
, pp. 660-667
-
-
Huang, M.1
Névéol, A.2
Lu, Z.3
-
8
-
-
85008250432
-
A one-size-fits-all indexing method does not exist: Automatic selection based on meta-learning
-
A. Jimeno-Yepes, J. G. Mork, D. Demner-Fushman, and A. R. Aronson, "A one-size-fits-all indexing method does not exist: Automatic selection based on meta-learning," Journal of Computing Science and Engineering, vol. 6, no. 2, pp. 151-160, 2012.
-
(2012)
Journal of Computing Science and Engineering
, vol.6
, Issue.2
, pp. 151-160
-
-
Jimeno-Yepes, A.1
Mork, J.G.2
Demner-Fushman, D.3
Aronson, A.R.4
-
9
-
-
39049188374
-
The effect of feature representation on medline document classification
-
American Medical Informatics Association
-
M. Yetisgen-Yildiz and W. Pratt, "The effect of feature representation on medline document classification," in Proceedings of AMIA Symposium, vol. 2005. American Medical Informatics Association, 2005, pp. 849-853.
-
(2005)
Proceedings of AMIA Symposium
, vol.2005
, pp. 849-853
-
-
Yetisgen-Yildiz, M.1
Pratt, W.2
-
10
-
-
45849122150
-
Optimal training sets for Bayesian prediction of MeSH assignment
-
S. Sohn, W. Kim, D. C. Comeau, and W. J. Wilbur, "Optimal training sets for bayesian prediction of MeSH assignment," Journal of the American Medical Informatics Association, vol. 15, no. 4, pp. 546-553, 2008.
-
(2008)
Journal of the American Medical Informatics Association
, vol.15
, Issue.4
, pp. 546-553
-
-
Sohn, S.1
Kim, W.2
Comeau, D.C.3
Wilbur, W.J.4
-
11
-
-
84963539426
-
The fudan-uiuc participation in the BioASQ challenge task 2a: The antinomyra system
-
K. Liu, J. Wu, S. Peng, C. Zhai, and S. Zhu, "The fudan-uiuc participation in the BioASQ challenge task 2a: The antinomyra system," Proceedings of Question Answering Lab at the Conference and Labs of the Evaluation Forum (CLEF), 2014.
-
(2014)
Proceedings of Question Answering Lab at the Conference and Labs of the Evaluation Forum CLEF
-
-
Liu, K.1
Wu, J.2
Peng, S.3
Zhai, C.4
Zhu, S.5
-
12
-
-
80555140075
-
Scikit-learn: Machine learning in Python
-
F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, "Scikit-learn: Machine learning in Python," Journal of Machine Learning Research, vol. 12, pp. 2825-2830, 2011.
-
(2011)
Journal of Machine Learning Research
, vol.12
, pp. 2825-2830
-
-
Pedregosa, F.1
Varoquaux, G.2
Gramfort, A.3
Michel, V.4
Thirion, B.5
Grisel, O.6
Blondel, M.7
Prettenhofer, P.8
Weiss, R.9
Dubourg, V.10
Vanderplas, J.11
Passos, A.12
Cournapeau, D.13
Brucher, M.14
Perrot, M.15
Duchesnay, E.16
-
14
-
-
34848845892
-
An empirical study of tokenization strategies for biomedical information retrieval
-
J. Jiang and C. Zhai, "An empirical study of tokenization strategies for biomedical information retrieval," Information Retrieval, vol. 10, no. 4-5, pp. 341-363, 2007.
-
(2007)
Information Retrieval
, vol.10
, Issue.4-5
, pp. 341-363
-
-
Jiang, J.1
Zhai, C.2
-
16
-
-
38549166666
-
Pubmed related articles: A probabilistic topicbased model for content similarity
-
J. Lin and W. J. Wilbur, "Pubmed related articles: a probabilistic topicbased model for content similarity," BMC Bioinformatics, vol. 8, no. 1, p. 423, 2007.
-
(2007)
BMC Bioinformatics
, vol.8
, Issue.1
, pp. 423
-
-
Lin, J.1
Wilbur, W.J.2
-
17
-
-
69249119464
-
Learning to rank for information retrieval
-
T.-Y. Liu, "Learning to rank for information retrieval," Foundations and Trends in Information Retrieval, vol. 3, no. 3, pp. 225-331, 2009.
-
(2009)
Foundations and Trends in Information Retrieval
, vol.3
, Issue.3
, pp. 225-331
-
-
Liu, T.-Y.1
-
18
-
-
77953628309
-
Adapting boosting for information retrieval measures
-
Q. Wu, C. J. Burges, K. M. Svore, and J. Gao, "Adapting boosting for information retrieval measures," Information Retrieval, vol. 13, no. 3, pp. 254-270, 2010.
-
(2010)
Information Retrieval
, vol.13
, Issue.3
, pp. 254-270
-
-
Wu, Q.1
Burges, C.J.2
Svore, K.M.3
Gao, J.4
-
19
-
-
74549208546
-
Expected reciprocal rank for graded relevance
-
ACM
-
O. Chapelle, D. Metlzer, Y. Zhang, and P. Grinspan, "Expected reciprocal rank for graded relevance," in Proceedings of the 18th ACM conference on Information and knowledge management. ACM, 2009, pp. 621-630.
-
(2009)
Proceedings of the 18th ACM Conference on Information and Knowledge Management
, pp. 621-630
-
-
Chapelle, O.1
Metlzer, D.2
Zhang, Y.3
Grinspan, P.4
-
21
-
-
79951752250
-
Large scale multi-label classification via metalabeler
-
ACM
-
L. Tang, S. Rajan, and V. K. Narayanan, "Large scale multi-label classification via metalabeler," in Proceedings of the 18th international conference on World wide web. ACM, 2009, pp. 211-220.
-
(2009)
Proceedings of the 18th International Conference on World Wide Web
, pp. 211-220
-
-
Tang, L.1
Rajan, S.2
Narayanan, V.K.3
-
22
-
-
67049088703
-
Multi-label classification using ensembles of pruned sets
-
dec.
-
J. Read, B. Pfahringer, and G. Holmes, "Multi-label classification using ensembles of pruned sets," in Data Mining, 2008. ICDM '08. Eighth IEEE International Conference on, dec. 2008, pp. 995 -1000.
-
(2008)
Data Mining, 2008. ICDM '08. Eighth IEEE International Conference on
, pp. 995-1000
-
-
Read, J.1
Pfahringer, B.2
Holmes, G.3
-
23
-
-
50949133669
-
Liblinear: A library for large linear classification
-
R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin, "Liblinear: A library for large linear classification," Journal of Machine Learning Research, vol. 9, pp. 1871-1874, 2008.
-
(2008)
Journal of Machine Learning Research
, vol.9
, pp. 1871-1874
-
-
Fan, R.-E.1
Chang, K.-W.2
Hsieh, C.-J.3
Wang, X.-R.4
Lin, C.-J.5
-
24
-
-
65649092976
-
Biopython: Freely available python tools for computational molecular biology and bioinformatics
-
P. J. Cock, T. Antao, J. T. Chang, B. A. Chapman, C. J. Cox, A. Dalke, I. Friedberg, T. Hamelryck, F. Kauff, B. Wilczynski et al., "Biopython: freely available python tools for computational molecular biology and bioinformatics," Bioinformatics, vol. 25, no. 11, pp. 1422-1423, 2009.
-
(2009)
Bioinformatics
, vol.25
, Issue.11
, pp. 1422-1423
-
-
Cock, P.J.1
Antao, T.2
Chang, J.T.3
Chapman, B.A.4
Cox, C.J.5
Dalke, A.6
Friedberg, I.7
Hamelryck, T.8
Kauff, F.9
Wilczynski, B.10
-
26
-
-
83155175374
-
Classifier chains for multi-label classification
-
J. Read, B. Pfahringer, G. Holmes, and E. Frank, "Classifier chains for multi-label classification," Machine Learning, vol. 85, no. 3, pp. 335-359, 2011.
-
(2011)
Machine Learning
, vol.85
, Issue.3
, pp. 335-359
-
-
Read, J.1
Pfahringer, B.2
Holmes, G.3
Frank, E.4
|