-
2
-
-
56649111845
-
The NLM Indexing Initiative's Medical Text Indexer
-
Aronson A.R., Mork J.G., Gay C.W., Humphrey S.M., and Rogers W.J. The NLM Indexing Initiative's Medical Text Indexer. Medinfo (2004) 268-272
-
(2004)
Medinfo
, pp. 268-272
-
-
Aronson, A.R.1
Mork, J.G.2
Gay, C.W.3
Humphrey, S.M.4
Rogers, W.J.5
-
3
-
-
0031958629
-
An experiment comparing lexical and statistical methods for extracting MeSH terms from clinical free text
-
Cooper G.F., and Miller R.A. An experiment comparing lexical and statistical methods for extracting MeSH terms from clinical free text. J Am Med Inform Assoc 5 (1998) 62-75
-
(1998)
J Am Med Inform Assoc
, vol.5
, pp. 62-75
-
-
Cooper, G.F.1
Miller, R.A.2
-
5
-
-
0035755281
-
Automatic MeSH term assignment and quality assessment
-
Kim W., Aronson A.R., and Wilbur W.J. Automatic MeSH term assignment and quality assessment. Proc AMIA Symp (2001) 319-323
-
(2001)
Proc AMIA Symp
, pp. 319-323
-
-
Kim, W.1
Aronson, A.R.2
Wilbur, W.J.3
-
6
-
-
39049189512
-
A strategy for assigning new concepts in the MEDLINE database
-
Kim W., and Wilbur W.J. A strategy for assigning new concepts in the MEDLINE database. AMIA 2005 Symp Proc (2005) 395-399
-
(2005)
AMIA 2005 Symp Proc
, pp. 395-399
-
-
Kim, W.1
Wilbur, W.J.2
-
8
-
-
33645107704
-
Automatic assignment of biomedical categories: Toward a generic approach
-
Ruch P. Automatic assignment of biomedical categories: Toward a generic approach. Bioinformatics 22 (2006) 658-664
-
(2006)
Bioinformatics
, vol.22
, pp. 658-664
-
-
Ruch, P.1
-
9
-
-
0031334221
-
Selection of relevant features and examples in machine learning
-
Blum A.L., and Langley P. Selection of relevant features and examples in machine learning. Art Intell 97 (1997) 245-271
-
(1997)
Art Intell
, vol.97
, pp. 245-271
-
-
Blum, A.L.1
Langley, P.2
-
11
-
-
34147093886
-
Scaling-up support vector machines using boosting algorithm
-
IEEE Computer Society, Los Alamitos, CA Accessed May 22, 2008
-
th International Conference on Pattern Recognition, Barcelona, Spain, September 3-8, 2000 (2000), IEEE Computer Society, Los Alamitos, CA 2219-2222. http://doi.ieeecomputersociety.org/10.1109/ICPR.2000.906052. Accessed May 22, 2008
-
(2000)
th International Conference on Pattern Recognition, Barcelona, Spain, September 3-8, 2000
, pp. 2219-2222
-
-
Pavlov, D.1
Mao, J.2
Dom, B.3
-
12
-
-
2942555397
-
Training Support vector machines using adaptive clustering
-
Berry M., Dayal U., Kamath C., and Skillicorn D. (Eds), Society for Industrial and Applied Mathematics, Philadelphia, PA
-
th SIAM International Conference on Data Mining, Lake Buena Vista, Florida, April 22-24, 2004 (2004), Society for Industrial and Applied Mathematics, Philadelphia, PA 126-137
-
(2004)
th SIAM International Conference on Data Mining, Lake Buena Vista, Florida, April 22-24, 2004
, pp. 126-137
-
-
Boley, D.1
Cao, D.2
-
14
-
-
85124125604
-
-
Eleventh International Conference on Machine Learning, New Brunswick, New Jersey, July 10-13, 1994. Cohen W.W., and Hirsh H. (Eds), Morgan Kaufmann Publishers, San Francisco, CA
-
Lewis D.D., and Catlett J. Heterogeneous uncertainty sampling for supervised learning. Eleventh International Conference on Machine Learning, New Brunswick, New Jersey, July 10-13, 1994. In: Cohen W.W., and Hirsh H. (Eds) (1994), Morgan Kaufmann Publishers, San Francisco, CA 148-156
-
(1994)
Heterogeneous uncertainty sampling for supervised learning
, pp. 148-156
-
-
Lewis, D.D.1
Catlett, J.2
-
15
-
-
85013879626
-
-
th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, Dublin, Ireland, July 3-6, 1994, Springer-Verlag, New York, NY
-
th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, Dublin, Ireland, July 3-6, 1994 (1994), Springer-Verlag, New York, NY 3-12
-
(1994)
A sequential algorithm for training text classifiers
, pp. 3-12
-
-
Lewis, D.D.1
Gale, W.A.2
-
16
-
-
0031209604
-
Selective sampling using the query by committee algorithm
-
Freund Y., Seung H., Shamir E., and Tishby N. Selective sampling using the query by committee algorithm. Mach Learn 28 (1997) 133-168
-
(1997)
Mach Learn
, vol.28
, pp. 133-168
-
-
Freund, Y.1
Seung, H.2
Shamir, E.3
Tishby, N.4
-
17
-
-
0026981853
-
-
Fifth Annual Workshop on Computational Learning Theory, Pittsburgh, Pennsylvania, July 27-29, 1992, ACM Press, New York, NY Accessed May 22, 2008
-
Seung H.S., Opper M., and Sompolinsky H. Query by committee. Fifth Annual Workshop on Computational Learning Theory, Pittsburgh, Pennsylvania, July 27-29, 1992 (1992), ACM Press, New York, NY 287-294. http://doi.acm.org/10.1145/130385.130417 Accessed May 22, 2008
-
(1992)
Query by committee
, pp. 287-294
-
-
Seung, H.S.1
Opper, M.2
Sompolinsky, H.3
-
18
-
-
0042868698
-
Support vector machine active learning with applications to text classification
-
Tong S., and Koller D. Support vector machine active learning with applications to text classification. J Mach Learn Res 2 (2001) 45-66
-
(2001)
J Mach Learn Res
, vol.2
, pp. 45-66
-
-
Tong, S.1
Koller, D.2
-
19
-
-
0442319140
-
Toward optimal active learning through sampling estimation of error reduction
-
Brodley C.E., and Danyluk A.P. (Eds), Morgan Kaufmann Publishers, San Francisco, CA
-
Roy N., and McCallum A. Toward optimal active learning through sampling estimation of error reduction. In: Brodley C.E., and Danyluk A.P. (Eds). Eighteenth International Conference on Machine Learning, Williamstown, MA, June 28-July 01, 2001 (2001), Morgan Kaufmann Publishers, San Francisco, CA
-
(2001)
Eighteenth International Conference on Machine Learning, Williamstown, MA, June 28-July 01, 2001
-
-
Roy, N.1
McCallum, A.2
-
20
-
-
25444522689
-
Fast kernel classifiers with online and active learning
-
Bordes A., Ertekin S., Weston J., and Bottou L. Fast kernel classifiers with online and active learning. J Mach Learn Res 6 (2005) 1579-1619
-
(2005)
J Mach Learn Res
, vol.6
, pp. 1579-1619
-
-
Bordes, A.1
Ertekin, S.2
Weston, J.3
Bottou, L.4
-
23
-
-
0034575784
-
Boosting naive Bayesian learning on a large subset of MEDLINE
-
American Medical Informatics Association, Los Angeles, CA
-
Wilbur W.J. Boosting naive Bayesian learning on a large subset of MEDLINE. American Medical Informatics 2000 Annual Symposium; 2000 (2000), American Medical Informatics Association, Los Angeles, CA 918-922
-
(2000)
American Medical Informatics 2000 Annual Symposium; 2000
, pp. 918-922
-
-
Wilbur, W.J.1
-
24
-
-
33845536164
-
The class imbalance problem: A systematic study
-
Japkowicz N., and Stephen S. The class imbalance problem: A systematic study. Intell Data Anal 6 (2002) 429-450
-
(2002)
Intell Data Anal
, vol.6
, pp. 429-450
-
-
Japkowicz, N.1
Stephen, S.2
-
25
-
-
0002106691
-
MetaCost: A general method for making classifiers cost-sensitive
-
ACM Press, New York, NY
-
Domingos P. MetaCost: A general method for making classifiers cost-sensitive. Proceedings of the Fifth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 1999. San Diego, CA, August 15-18, 1999 (1999), ACM Press, New York, NY 155-164
-
(1999)
Proceedings of the Fifth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 1999. San Diego, CA, August 15-18, 1999
, pp. 155-164
-
-
Domingos, P.1
-
26
-
-
33845772427
-
Learning when data sets are imbalanced and when costs are unequal and unknown
-
AAAI Press, Menlo Park, CA
-
Maloof M. Learning when data sets are imbalanced and when costs are unequal and unknown. Proceedings of the ICML-2003 Workshop: Learning with Imbalanced Data Sets II, August 21-24, 2003 (2003), AAAI Press, Menlo Park, CA 73-80
-
(2003)
Proceedings of the ICML-2003 Workshop: Learning with Imbalanced Data Sets II, August 21-24, 2003
, pp. 73-80
-
-
Maloof, M.1
-
27
-
-
8344227981
-
Using unsupervised learning to guide resampling in imbalanced data sets
-
Gatsby Computational Neuroscience Unit, London, UK
-
Nickerson A.S., Japkowicz N., and Milios E. Using unsupervised learning to guide resampling in imbalanced data sets. Proceedings of the Eighth International Workshop on AI and Statistics, January 4-7, 2001 (2001), Gatsby Computational Neuroscience Unit, London, UK 261-265
-
(2001)
Proceedings of the Eighth International Workshop on AI and Statistics, January 4-7, 2001
, pp. 261-265
-
-
Nickerson, A.S.1
Japkowicz, N.2
Milios, E.3
-
28
-
-
84957069091
-
Naive (Bayes) at forty: The independence assumption in information retrieval
-
Lewis D.D. Naive (Bayes) at forty: The independence assumption in information retrieval. ECML (1998) 4-15
-
(1998)
ECML
, pp. 4-15
-
-
Lewis, D.D.1
-
29
-
-
0001868572
-
Text categorization based on regularized linear classification methods
-
Zhang T., and Oles F.J. Text categorization based on regularized linear classification methods. Inf Retrieval 4 (2001) 5-31
-
(2001)
Inf Retrieval
, vol.4
, pp. 5-31
-
-
Zhang, T.1
Oles, F.J.2
-
30
-
-
0002551285
-
Feature selection for unbalanced class distribution and naive Bayes
-
Morgan Kaufmann, San Francisco, CA
-
Mladenic D., and Grobelnik M. Feature selection for unbalanced class distribution and naive Bayes. Sixteenth International Conference on Machine Learning, 1999 (1999), Morgan Kaufmann, San Francisco, CA 258-267
-
(1999)
Sixteenth International Conference on Machine Learning, 1999
, pp. 258-267
-
-
Mladenic, D.1
Grobelnik, M.2
-
32
-
-
44649122417
-
Issues in Mining Imbalanced Data Sets-A Review Paper
-
University of Cincinnatti, Cincinnatti, OH
-
Visa S., and Ralescu A. Issues in Mining Imbalanced Data Sets-A Review Paper. Proceedings of the Sixteen Midwest Artificial Intelligence and Cognitive Science Conference, April 16-17, 2005 (2005), University of Cincinnatti, Cincinnatti, OH 67-73
-
(2005)
Proceedings of the Sixteen Midwest Artificial Intelligence and Cognitive Science Conference, April 16-17, 2005
, pp. 67-73
-
-
Visa, S.1
Ralescu, A.2
-
34
-
-
31844437086
-
-
ACM Press, Bonn, Germany 545-52
-
Madsen R.E., Kauchak D., and Elkan C. Modeling word burstiness using the Dirichlet distribution. 22nd International Conference on Machine Learning, 2005 (2005), ACM Press, Bonn, Germany 545-52
-
(2005)
Modeling word burstiness using the Dirichlet distribution. 22nd International Conference on Machine Learning, 2005
-
-
Madsen, R.E.1
Kauchak, D.2
Elkan, C.3
|