메뉴 건너뛰기




Volumn 538, Issue , 2016, Pages 587-597

Hydrograph estimation with fuzzy chain model

Author keywords

Clark; Fuzzy; Hydrograph; Peak discharge; SCS; Snyder

Indexed keywords

CHAINS; FUZZY SYSTEMS; MEAN SQUARE ERROR; SCANDIUM; SOIL CONSERVATION;

EID: 84965140695     PISSN: 00221694     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jhydrol.2016.04.057     Document Type: Article
Times cited : (19)

References (52)
  • 2
    • 27544481825 scopus 로고    scopus 로고
    • Hybrid model for derivation of synthetic unit hydrograph
    • Bhunya P.K., et al. Hybrid model for derivation of synthetic unit hydrograph. J. Hydrol. Eng. 2005, 10(6):458-467.
    • (2005) J. Hydrol. Eng. , vol.10 , Issue.6 , pp. 458-467
    • Bhunya, P.K.1
  • 3
    • 0003408682 scopus 로고
    • A generalized streamflow simulation system-Conceptual modeling for digital computers.
    • Department of Water Resources, State of California and National Weather Service
    • Burnash, R.J.C., Ferral R.L., McGuire, R.A., 1973. A generalized streamflow simulation system-Conceptual modeling for digital computers. Technical Report of the Joint Federal-State River Forecast Center, Department of Water Resources, State of California and National Weather Service, 204 pp.
    • (1973) Technical Report of the Joint Federal-State River Forecast Center , pp. 204
    • Burnash, R.J.C.1    Ferral, R.L.2    McGuire, R.A.3
  • 4
    • 34249807919 scopus 로고    scopus 로고
    • Fuzzy logic-based rainfall-runoff modelling using soil moisture measurements to represent system state
    • Casper M., Gemmar P., Gronz O., Johst M., Stüber M. Fuzzy logic-based rainfall-runoff modelling using soil moisture measurements to represent system state. Hydrol. Sci. J. 2007, 52(3):478-490.
    • (2007) Hydrol. Sci. J. , vol.52 , Issue.3 , pp. 478-490
    • Casper, M.1    Gemmar, P.2    Gronz, O.3    Johst, M.4    Stüber, M.5
  • 5
    • 84960464430 scopus 로고    scopus 로고
    • A nonlinear spatio-temporal lumping of radar rainfall for modelling multi-step-ahead inflow forecasts by data-driven techniques
    • Chang F.J., Tsai M.T. A nonlinear spatio-temporal lumping of radar rainfall for modelling multi-step-ahead inflow forecasts by data-driven techniques. J. Hydrol. 2016, 535:256-269.
    • (2016) J. Hydrol. , vol.535 , pp. 256-269
    • Chang, F.J.1    Tsai, M.T.2
  • 6
    • 84887517081 scopus 로고    scopus 로고
    • A systematical water allocation scheme for drought mitigation
    • Chang F.J., Wang K.W. A systematical water allocation scheme for drought mitigation. J. Hydrol. 2013, 507:124-133.
    • (2013) J. Hydrol. , vol.507 , pp. 124-133
    • Chang, F.J.1    Wang, K.W.2
  • 7
    • 27544472438 scopus 로고    scopus 로고
    • Comparison of several flood forecasting models in Yangtze River
    • Chau K.W., Wu C.L., Li Y.S. Comparison of several flood forecasting models in Yangtze River. J. Hydrol. Eng. 2005, 10(6).
    • (2005) J. Hydrol. Eng. , vol.10 , Issue.6
    • Chau, K.W.1    Wu, C.L.2    Li, Y.S.3
  • 8
    • 84892898539 scopus 로고    scopus 로고
    • Determination of Clark's unit hydrograph parameters for watersheds
    • Che D., Nangare M., Mays L. Determination of Clark's unit hydrograph parameters for watersheds. J. Hydrol. Eng. 2014, 19(2):384-387.
    • (2014) J. Hydrol. Eng. , vol.19 , Issue.2 , pp. 384-387
    • Che, D.1    Nangare, M.2    Mays, L.3
  • 9
    • 84876858632 scopus 로고    scopus 로고
    • Typhoon event-based evolutionary fuzzy inference model for flood stage forecasting
    • Chen C.S., Jhong Y.D., Wu T.Y., Chen S.T. Typhoon event-based evolutionary fuzzy inference model for flood stage forecasting. J. Hydrol. 2013, 490:134-143.
    • (2013) J. Hydrol. , vol.490 , pp. 134-143
    • Chen, C.S.1    Jhong, Y.D.2    Wu, T.Y.3    Chen, S.T.4
  • 10
    • 0000463206 scopus 로고
    • Storage and the unit hydrograph
    • Clark C.O. Storage and the unit hydrograph. Trans. ASCE 1945, 110:1419-1488.
    • (1945) Trans. ASCE , vol.110 , pp. 1419-1488
    • Clark, C.O.1
  • 11
    • 71349088571 scopus 로고    scopus 로고
    • The practical research on flood forecasting based on artificial neural networks
    • Feng L.H., Lu J. The practical research on flood forecasting based on artificial neural networks. Expert Syst. Appl. 2010, 37(4):2974-2977.
    • (2010) Expert Syst. Appl. , vol.37 , Issue.4 , pp. 2974-2977
    • Feng, L.H.1    Lu, J.2
  • 12
    • 33748897088 scopus 로고
    • Theoretical frequency curves
    • Foster H.A. Theoretical frequency curves. ASCE Trans. 1924, 87:142-203.
    • (1924) ASCE Trans. , vol.87 , pp. 142-203
    • Foster, H.A.1
  • 13
    • 0011188482 scopus 로고
    • Flood flows
    • Fuller W.E. Flood flows. ASCE Trans. 1914, 77:567-617.
    • (1914) ASCE Trans. , vol.77 , pp. 567-617
    • Fuller, W.E.1
  • 14
    • 84907881954 scopus 로고    scopus 로고
    • Review of methods used to estimate catchment response time for the purpose of peak discharge estimation
    • Gericke O.J., Smithers J.C. Review of methods used to estimate catchment response time for the purpose of peak discharge estimation. Hydrol. Sci. J. 2014, 59(11):1935-1971.
    • (2014) Hydrol. Sci. J. , vol.59 , Issue.11 , pp. 1935-1971
    • Gericke, O.J.1    Smithers, J.C.2
  • 15
    • 84908168059 scopus 로고    scopus 로고
    • Solar irradiation estimations and comparisons by ANFIS, Angström-Prescott and dependency models
    • Güçlü Y.S., Yeleğen M.Ö., Dabanli I., Şişman E. Solar irradiation estimations and comparisons by ANFIS, Angström-Prescott and dependency models. Sol. Energy 2014, 109:118-124.
    • (2014) Sol. Energy , vol.109 , pp. 118-124
    • Güçlü, Y.S.1    Yeleğen, M.Ö.2    Dabanli, I.3    Şişman, E.4
  • 16
    • 0000981019 scopus 로고
    • The return period of flood flows
    • Gumbel E.J. The return period of flood flows. Ann. Math. Stat. 1941, 12:163-190.
    • (1941) Ann. Math. Stat. , vol.12 , pp. 163-190
    • Gumbel, E.J.1
  • 17
    • 84965153074 scopus 로고
    • Discussion of 'The probable variations in yearly runoffas determined from a study of California streams' by L. Standish Hall
    • Hazen A. Discussion of 'The probable variations in yearly runoffas determined from a study of California streams' by L. Standish Hall. ASCE Trans. 1921, 84:214-222.
    • (1921) ASCE Trans. , vol.84 , pp. 214-222
    • Hazen, A.1
  • 19
    • 0026925677 scopus 로고
    • Self-learning fuzzy controller based on temporal back-propagation
    • Jang J.S.R. Self-learning fuzzy controller based on temporal back-propagation. IEEE Trans. Neural Networks 1992, 3(5):714-723.
    • (1992) IEEE Trans. Neural Networks , vol.3 , Issue.5 , pp. 714-723
    • Jang, J.S.R.1
  • 20
    • 84876743128 scopus 로고    scopus 로고
    • Soft computing-based workable flood forecasting model for Ayeyarwady River Basin of Myanmar
    • Kar A., Winn L., Lohani A., Goel N. Soft computing-based workable flood forecasting model for Ayeyarwady River Basin of Myanmar. J. Hydrol. Eng. 2012, 17(7):807-822.
    • (2012) J. Hydrol. Eng. , vol.17 , Issue.7 , pp. 807-822
    • Kar, A.1    Winn, L.2    Lohani, A.3    Goel, N.4
  • 21
    • 0000769964 scopus 로고
    • Time of concentration of small agricultural watersheds
    • The original source for the Kirpich equation
    • Kirpich Z.P. Time of concentration of small agricultural watersheds. Civ. Eng. 1940, 10(6):362. The original source for the Kirpich equation.
    • (1940) Civ. Eng. , vol.10 , Issue.6 , pp. 362
    • Kirpich, Z.P.1
  • 22
    • 77950859733 scopus 로고    scopus 로고
    • A method for estimating flash flood peak discharge in a poorly gauged basin: case study for the 13-14 January 1994 flood, Giofyros basin, Crete
    • Koutroulis A.G., Tsanis I.K. A method for estimating flash flood peak discharge in a poorly gauged basin: case study for the 13-14 January 1994 flood, Giofyros basin, Crete. J. Hydrol. 2010, 385:150-164.
    • (2010) J. Hydrol. , vol.385 , pp. 150-164
    • Koutroulis, A.G.1    Tsanis, I.K.2
  • 23
    • 0002530632 scopus 로고
    • The relation between the rainfall and the discharge of sewers in populous districts
    • Kuichling E. The relation between the rainfall and the discharge of sewers in populous districts. Trans. Am. Soc. Civ. Eng. 1889, 20:1-56.
    • (1889) Trans. Am. Soc. Civ. Eng. , vol.20 , pp. 1-56
    • Kuichling, E.1
  • 24
    • 84890090280 scopus 로고    scopus 로고
    • Improving real time flood forecasting using fuzzy inference system
    • Lohani A.K., Goel N., Bhatia K. Improving real time flood forecasting using fuzzy inference system. J. Hydrol. 2014, 509:25-41.
    • (2014) J. Hydrol. , vol.509 , pp. 25-41
    • Lohani, A.K.1    Goel, N.2    Bhatia, K.3
  • 25
    • 0016368711 scopus 로고
    • Application of fuzzy algorithms for simple dynamic plant
    • Mamdani E.H. Application of fuzzy algorithms for simple dynamic plant. Proc. IEEE 1974, 121(12):1585-1588.
    • (1974) Proc. IEEE , vol.121 , Issue.12 , pp. 1585-1588
    • Mamdani, E.H.1
  • 26
    • 66249107437 scopus 로고    scopus 로고
    • Flood forecasting using ANN, Neuro-Fuzzy, and Neuro-GA models
    • Mukerji A., Chatterjee C., Raghuwanshi N.S. Flood forecasting using ANN, Neuro-Fuzzy, and Neuro-GA models. J. Hydrol. Eng. 2009, 14(6).
    • (2009) J. Hydrol. Eng. , vol.14 , Issue.6
    • Mukerji, A.1    Chatterjee, C.2    Raghuwanshi, N.S.3
  • 27
    • 84954358235 scopus 로고    scopus 로고
    • Flash flood warning based on rainfall thresholds and soil moisture conditions: an assessment for gauged and ungauged basins
    • Norbiato D., Borga M., Degli Esposti S., Gaume E., Anquetin S. Flash flood warning based on rainfall thresholds and soil moisture conditions: an assessment for gauged and ungauged basins. J. Hydrol. 2008, 362:274-290.
    • (2008) J. Hydrol. , vol.362 , pp. 274-290
    • Norbiato, D.1    Borga, M.2    Degli Esposti, S.3    Gaume, E.4    Anquetin, S.5
  • 28
    • 84891657945 scopus 로고
    • On the relation of the freshwater floods of rivers to the areas and physical features of their basins and on a method of classifying rivers and streams with reference to the magnitude of their floods
    • O'Connell P.P.L. On the relation of the freshwater floods of rivers to the areas and physical features of their basins and on a method of classifying rivers and streams with reference to the magnitude of their floods. Minutes Proc. Inst. Civ. Eng. 1868, 27(1868):204-217.
    • (1868) Minutes Proc. Inst. Civ. Eng. , vol.27 , Issue.1868 , pp. 204-217
    • O'Connell, P.P.L.1
  • 31
    • 0029663691 scopus 로고    scopus 로고
    • Fuzzy learning decomposition for the scheduling of hydroelectric power systems
    • Saad M., Bigras P., Turgeon A., Duquette R. Fuzzy learning decomposition for the scheduling of hydroelectric power systems. Water Resour. Res. 1996, 32(1):179-186.
    • (1996) Water Resour. Res. , vol.32 , Issue.1 , pp. 179-186
    • Saad, M.1    Bigras, P.2    Turgeon, A.3    Duquette, R.4
  • 32
    • 33750010953 scopus 로고    scopus 로고
    • Nonlinear transformation of unit hydrograph
    • Saghafian B. Nonlinear transformation of unit hydrograph. J. Hydrol. 2006, 330:596-603.
    • (2006) J. Hydrol. , vol.330 , pp. 596-603
    • Saghafian, B.1
  • 33
    • 58749115999 scopus 로고    scopus 로고
    • Evolving neural network using real coded genetic algorithm for daily rainfall-runoff forecasting
    • Sedki A., Ouazar D., El Mazoudi E. Evolving neural network using real coded genetic algorithm for daily rainfall-runoff forecasting. Expert Syst. Appl. 2009, 36(1):4523-4527.
    • (2009) Expert Syst. Appl. , vol.36 , Issue.1 , pp. 4523-4527
    • Sedki, A.1    Ouazar, D.2    El Mazoudi, E.3
  • 34
    • 78449245647 scopus 로고    scopus 로고
    • Flood forecasting in regulated basins using the ensemble extended Kalman Filter with the storage function method
    • Shamir E., Lee B., Bae D., Georgakakos K.P. Flood forecasting in regulated basins using the ensemble extended Kalman Filter with the storage function method. J. Hydrol. Eng. 2010, 15(12).
    • (2010) J. Hydrol. Eng. , vol.15 , Issue.12
    • Shamir, E.1    Lee, B.2    Bae, D.3    Georgakakos, K.P.4
  • 35
    • 0001243354 scopus 로고
    • Streamflow from rainfall by the unit-graph method
    • Sherman L.K. Streamflow from rainfall by the unit-graph method. Eng. News Rec. 1932, 108:501-505.
    • (1932) Eng. News Rec. , vol.108 , pp. 501-505
    • Sherman, L.K.1
  • 37
    • 84896732011 scopus 로고    scopus 로고
    • A review of the Synthetic Unit Hydrograph: from the empirical UH to advanced geomorphological methods
    • Singh P.K., Mishra S.K., Jain M.K. A review of the Synthetic Unit Hydrograph: from the empirical UH to advanced geomorphological methods. Hydrol. Sci. J. 2013, 59(2):239-261.
    • (2013) Hydrol. Sci. J. , vol.59 , Issue.2 , pp. 239-261
    • Singh, P.K.1    Mishra, S.K.2    Jain, M.K.3
  • 43
    • 0021892282 scopus 로고
    • Fuzzy identification of systems and its applications to modeling and control
    • Takagi T., Sugeno M. Fuzzy identification of systems and its applications to modeling and control. IEEE Trans. Syst.: Man Cybern. 1985, 15(1):116-132.
    • (1985) IEEE Trans. Syst.: Man Cybern. , vol.15 , Issue.1 , pp. 116-132
    • Takagi, T.1    Sugeno, M.2
  • 44
    • 77955716349 scopus 로고    scopus 로고
    • A novel application of neuro-fuzzy computational technique in event-based rainfall-runoff modeling
    • Talei A., Chua L.H.C., Quek C. A novel application of neuro-fuzzy computational technique in event-based rainfall-runoff modeling. Expert Syst. Appl. 2010, 37:7456-7468.
    • (2010) Expert Syst. Appl. , vol.37 , pp. 7456-7468
    • Talei, A.1    Chua, L.H.C.2    Quek, C.3
  • 45
    • 77956263390 scopus 로고    scopus 로고
    • Evaluation of rainfall and discharge inputs used by Adaptive Network-based Fuzzy Inference Systems (ANFIS) in rainfall-runoff modelling
    • Talei A., Chua L.H.C., Wong T.S. Evaluation of rainfall and discharge inputs used by Adaptive Network-based Fuzzy Inference Systems (ANFIS) in rainfall-runoff modelling. J. Hydrol. 2010, 391(3):248-262.
    • (2010) J. Hydrol. , vol.391 , Issue.3 , pp. 248-262
    • Talei, A.1    Chua, L.H.C.2    Wong, T.S.3
  • 46
    • 84886101097 scopus 로고    scopus 로고
    • Runoff forecasting using a Takagi-Sugeno neuro-fuzzy model with online learning
    • Talei A., Chua L.H.C., Quek C., Jansson P.E. Runoff forecasting using a Takagi-Sugeno neuro-fuzzy model with online learning. J. Hydrol. 2013, 488:17-32.
    • (2013) J. Hydrol. , vol.488 , pp. 17-32
    • Talei, A.1    Chua, L.H.C.2    Quek, C.3    Jansson, P.E.4
  • 47
    • 33751081243 scopus 로고    scopus 로고
    • ANN and fuzzy logic models for simulating event-based rainfall-runoff
    • Tayfur G., Singh V.P. ANN and fuzzy logic models for simulating event-based rainfall-runoff. J. Hydraulic Eng. 2006, 132(12).
    • (2006) J. Hydraulic Eng. , vol.132 , Issue.12
    • Tayfur, G.1    Singh, V.P.2
  • 48
    • 0000148490 scopus 로고
    • Precipitation for large areas
    • Thiessen A.H. Precipitation for large areas. Mon. Weather Rev. 1911, 39:1082-1084.
    • (1911) Mon. Weather Rev. , vol.39 , pp. 1082-1084
    • Thiessen, A.H.1
  • 49
    • 79956076857 scopus 로고    scopus 로고
    • (Hydrology) Chapter 16, Michigan.
    • USDA-NRCS, 2007. National Engineering Handbook, Part 630 (Hydrology) Chapter 16, Michigan.
    • (2007) National Engineering Handbook
  • 50
    • 84886295461 scopus 로고    scopus 로고
    • Coupled hydraulic and Kalman filter model for real time correction of flood forecast in the Three Gorges Interzone of Yangtze River, China
    • Wu X., Xiang X., Wang C., Chen X., Xu C., Yu Z. Coupled hydraulic and Kalman filter model for real time correction of flood forecast in the Three Gorges Interzone of Yangtze River, China. J. Hydrol. Eng. 2013, 18:1416-1425.
    • (2013) J. Hydrol. Eng. , vol.18 , pp. 1416-1425
    • Wu, X.1    Xiang, X.2    Wang, C.3    Chen, X.4    Xu, C.5    Yu, Z.6
  • 51
    • 34248666540 scopus 로고
    • Fuzzy sets
    • Zadeh L.A. Fuzzy sets. Inf. Control 1965, 8(3):338-353.
    • (1965) Inf. Control , vol.8 , Issue.3 , pp. 338-353
    • Zadeh, L.A.1
  • 52
    • 84856215654 scopus 로고    scopus 로고
    • SAC-SMA a priori parameter differences and their impact on distributed hydrologic model simulations
    • Zhang Z., Koren V., Reed S., Smith M., Zhang Y., Moreda F., Cosgrove B.A. SAC-SMA a priori parameter differences and their impact on distributed hydrologic model simulations. J. Hydrol. 2012, 420-421:216-227.
    • (2012) J. Hydrol. , pp. 216-227
    • Zhang, Z.1    Koren, V.2    Reed, S.3    Smith, M.4    Zhang, Y.5    Moreda, F.6    Cosgrove, B.A.7


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.