메뉴 건너뛰기




Volumn 13, Issue , 2000, Pages 155-188

AIS-BN: An Adaptive Importance Sampling Algorithm for Evidential Reasoning in Large Bayesian Networks

Author keywords

[No Author keywords available]

Indexed keywords


EID: 0001249662     PISSN: 10769757     EISSN: None     Source Type: Journal    
DOI: 10.1613/jair.764     Document Type: Article
Times cited : (160)

References (39)
  • 1
    • 0030193416 scopus 로고    scopus 로고
    • Importance sampling algorithms for the propagation of probabilities in belief networks
    • Cano, J. E., Hernandez, L. D., & Moral, S. (1996). Importance sampling algorithms for the propagation of probabilities in belief networks. International Journal of Approximate Reasoning, 15, 77-92.
    • (1996) International Journal of Approximate Reasoning , vol.15 , pp. 77-92
    • Cano, J.E.1    Hernandez, L.D.2    Moral, S.3
  • 2
    • 84987047932 scopus 로고
    • A randomized approximation algorithm for probabilistic inference on Bayesian belief networks
    • Chavez, M. R., & Cooper, G. F. (1990). A randomized approximation algorithm for probabilistic inference on Bayesian belief networks. Networks, 20(5), 661-685.
    • (1990) Networks , vol.20 , Issue.5 , pp. 661-685
    • Chavez, M.R.1    Cooper, G.F.2
  • 6
    • 0025401005 scopus 로고
    • The computational complexity of probabilistic inference using Bayesian belief networks
    • Cooper, G. F. (1990). The computational complexity of probabilistic inference using Bayesian belief networks. Artificial Intelligence, 42(2-3), 393-405.
    • (1990) Artificial Intelligence , vol.42 , Issue.2-3 , pp. 393-405
    • Cooper, G.F.1
  • 7
    • 0027640933 scopus 로고
    • A tutorial introduction to stochastic simulation algorithm for belief networks
    • chap. 5, Elsevier Science Publishers B.V.
    • Cousins, S. B., Chen, W., & Frisse, M. E. (1993). A tutorial introduction to stochastic simulation algorithm for belief networks. In Artificial Intelligence in Medicine, chap. 5, pp. 315-340. Elsevier Science Publishers B.V.
    • (1993) Artificial Intelligence in Medicine , pp. 315-340
    • Cousins, S.B.1    Chen, W.2    Frisse, M.E.3
  • 9
    • 0027560587 scopus 로고
    • Approximating probabilistic inference in Bayesian belief networks is NP-hard
    • Dagum, P., & Luby, M. (1993). Approximating probabilistic inference in Bayesian belief networks is NP-hard. Artificial Intelligence, 60(1), 141-153.
    • (1993) Artificial Intelligence , vol.60 , Issue.1 , pp. 141-153
    • Dagum, P.1    Luby, M.2
  • 10
    • 0031170063 scopus 로고    scopus 로고
    • An optimal approximation algorithm for Bayesian inference
    • Dagum, P., & Luby, M. (1997). An optimal approximation algorithm for Bayesian inference. Artificial Intelligence, 93, 1-27.
    • (1997) Artificial Intelligence , vol.93 , pp. 1-27
    • Dagum, P.1    Luby, M.2
  • 13
    • 0007319555 scopus 로고
    • Weighing and integrating evidence for stochastic simulation in Bayesian networks
    • New York, N. Y. Elsevier Science Publishing Company, Inc.
    • Fung, R., & Chang, K.-C. (1989). Weighing and integrating evidence for stochastic simulation in Bayesian networks. In Uncertainty in Artificial Intelligence 5, pp. 209-219 New York, N. Y. Elsevier Science Publishing Company, Inc.
    • (1989) Uncertainty in Artificial Intelligence , vol.5 , pp. 209-219
    • Fung, R.1    Chang, K.-C.2
  • 15
    • 0021518209 scopus 로고
    • Stochastic relaxations, Gibbs distributions and the Bayesian restoration of images
    • Geman, S., & Geman, D. (1984). Stochastic relaxations, Gibbs distributions and the Bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 6(6), 721-742.
    • (1984) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.6 , Issue.6 , pp. 721-742
    • Geman, S.1    Geman, D.2
  • 19
    • 0001247275 scopus 로고
    • Propagating uncertainty in Bayesian networks by probabilistic logic sampling
    • New York, N. Y. Elsevier Science Publishing Company, Inc.
    • Henrion, M. (1988). Propagating uncertainty in Bayesian networks by probabilistic logic sampling. In Uncertainty in Artificial Intellgience 2, pp. 149-163 New York, N. Y. Elsevier Science Publishing Company, Inc.
    • (1988) Uncertainty in Artificial Intellgience , vol.2 , pp. 149-163
    • Henrion, M.1
  • 20
    • 0000045489 scopus 로고
    • Some practical issues in constructing belief networks
    • Kanal, L., Levitt, T., & Lemmer, J. (Eds.), Elsevier Science Publishers B.V., North Holland
    • Henrion, M. (1989). Some practical issues in constructing belief networks. In Kanal, L., Levitt, T., & Lemmer, J. (Eds.), Uncertainty in Artificial Intelligence 3, pp. 161-173. Elsevier Science Publishers B.V., North Holland.
    • (1989) Uncertainty in Artificial Intelligence , vol.3 , pp. 161-173
    • Henrion, M.1
  • 21
  • 22
    • 0007178970 scopus 로고    scopus 로고
    • A Monte Carlo algorithm for probabilistic propagation in belief networks based on importance sampling and stratified simulation techniques
    • Hernandez, L. D., Moral, S., & Antonio, S. (1998). A Monte Carlo algorithm for probabilistic propagation in belief networks based on importance sampling and stratified simulation techniques. International Journal of Approximate Reasoning, 18, 53-91.
    • (1998) International Journal of Approximate Reasoning , vol.18 , pp. 53-91
    • Hernandez, L.D.1    Moral, S.2    Antonio, S.3
  • 23
    • 0024137490 scopus 로고
    • Increased rates of convergence through learning rate adaptation
    • Jacobs, R. A. (1988). Increased rates of convergence through learning rate adaptation. Neural Networks, 1, 295-307.
    • (1988) Neural Networks , vol.1 , pp. 295-307
    • Jacobs, R.A.1
  • 25
    • 0001341735 scopus 로고    scopus 로고
    • Intro to Monte Carlo methods
    • Jordan, M. I. (Ed.), The MIT Press, Cambridge, Massachusetts
    • MacKay, D. (1998). Intro to Monte Carlo methods. In Jordan, M. I. (Ed.), Learning in Graphical Models. The MIT Press, Cambridge, Massachusetts.
    • (1998) Learning in Graphical Models
    • MacKay, D.1
  • 27
    • 46149134436 scopus 로고
    • Fusion, propagation, and structuring in belief networks
    • Pearl, J. (1986). Fusion, propagation, and structuring in belief networks. Artificial Intelligence, 29(3), 241-288.
    • (1986) Artificial Intelligence , vol.29 , Issue.3 , pp. 241-288
    • Pearl, J.1
  • 28
    • 0023347981 scopus 로고
    • Evidential reasoning using stochastic simulation of causal models
    • Pearl, J. (1987). Evidential reasoning using stochastic simulation of causal models. Artifical Intelligence, 32, 245-257.
    • (1987) Artifical Intelligence , vol.32 , pp. 245-257
    • Pearl, J.1
  • 34
    • 0028516334 scopus 로고
    • An algorithm directly finding the K most probable configurations in Bayesian networks
    • Seroussi, B., & Golmard, J. L. (1994). An algorithm directly finding the K most probable configurations in Bayesian networks. International Journal of Approximate Reasoning, 11, 205-233.
    • (1994) International Journal of Approximate Reasoning , vol.11 , pp. 205-233
    • Seroussi, B.1    Golmard, J.L.2
  • 35
    • 0001203638 scopus 로고
    • Simulation approaches to general probabilistic inference on belief networks
    • New York, N. Y. Elsevier Science Publishing Company, Inc.
    • Shachter, R. D., & Peot, M. A. (1989). Simulation approaches to general probabilistic inference on belief networks. In Uncertainty in Artificial Intelligence 5, pp. 221-231 New York, N. Y. Elsevier Science Publishing Company, Inc.
    • (1989) Uncertainty in Artificial Intelligence , vol.5 , pp. 221-231
    • Shachter, R.D.1    Peot, M.A.2
  • 36
    • 0026010360 scopus 로고
    • An empirical analysis of likelihood-weighting simulation on a large, multiply-connected medical belief network
    • Shwe, M. A., & Cooper, G. F. (1991). An empirical analysis of likelihood-weighting simulation on a large, multiply-connected medical belief network. Computers and Biomedical Research, 24(5), 453-475.
    • (1991) Computers and Biomedical Research , vol.24 , Issue.5 , pp. 453-475
    • Shwe, M.A.1    Cooper, G.F.2
  • 37
    • 0026056182 scopus 로고
    • Probabilistic diagnosis using a reformulation of the INTERNIST-1/QMR knowledge base: I. The probabilistic model and inference algorithms
    • Shwe, M., Middleton, B., Heckerman, D., Henrion, M., Horvitz, E., & Lehmann, H. (1991). Probabilistic diagnosis using a reformulation of the INTERNIST-1/QMR knowledge base: I. The probabilistic model and inference algorithms. Methods of Information in Medicine, 30(4), 241-255.
    • (1991) Methods of Information in Medicine , vol.30 , Issue.4 , pp. 241-255
    • Shwe, M.1    Middleton, B.2    Heckerman, D.3    Henrion, M.4    Horvitz, E.5    Lehmann, H.6
  • 39
    • 38249013485 scopus 로고
    • Use of the Gibbs sampler in expert systems
    • York, J. (1992). Use of the Gibbs sampler in expert systems. Artificial Intelligence, 56, 115-130.
    • (1992) Artificial Intelligence , vol.56 , pp. 115-130
    • York, J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.