-
1
-
-
0030193416
-
Importance sampling algorithms for the propagation of probabilities in belief networks
-
Cano, J. E., Hernandez, L. D., & Moral, S. (1996). Importance sampling algorithms for the propagation of probabilities in belief networks. International Journal of Approximate Reasoning, 15, 77-92.
-
(1996)
International Journal of Approximate Reasoning
, vol.15
, pp. 77-92
-
-
Cano, J.E.1
Hernandez, L.D.2
Moral, S.3
-
2
-
-
84987047932
-
A randomized approximation algorithm for probabilistic inference on Bayesian belief networks
-
Chavez, M. R., & Cooper, G. F. (1990). A randomized approximation algorithm for probabilistic inference on Bayesian belief networks. Networks, 20(5), 661-685.
-
(1990)
Networks
, vol.20
, Issue.5
, pp. 661-685
-
-
Chavez, M.R.1
Cooper, G.F.2
-
5
-
-
0001992695
-
On-line student modeling for coached problem solving using Bayesian networks
-
Vienna, New York. Springer Verlag
-
Conati, C., Gertner, A. S., VanLehn, K., & Druzdzel, M. J. (1997). On-line student modeling for coached problem solving using Bayesian networks. In Proceedings of the Sixth International Conference on User Modeling (UM-96), pp. 231-242 Vienna, New York. Springer Verlag.
-
(1997)
Proceedings of the Sixth International Conference on User Modeling (UM-96)
, pp. 231-242
-
-
Conati, C.1
Gertner, A.S.2
VanLehn, K.3
Druzdzel, M.J.4
-
6
-
-
0025401005
-
The computational complexity of probabilistic inference using Bayesian belief networks
-
Cooper, G. F. (1990). The computational complexity of probabilistic inference using Bayesian belief networks. Artificial Intelligence, 42(2-3), 393-405.
-
(1990)
Artificial Intelligence
, vol.42
, Issue.2-3
, pp. 393-405
-
-
Cooper, G.F.1
-
7
-
-
0027640933
-
A tutorial introduction to stochastic simulation algorithm for belief networks
-
chap. 5, Elsevier Science Publishers B.V.
-
Cousins, S. B., Chen, W., & Frisse, M. E. (1993). A tutorial introduction to stochastic simulation algorithm for belief networks. In Artificial Intelligence in Medicine, chap. 5, pp. 315-340. Elsevier Science Publishers B.V.
-
(1993)
Artificial Intelligence in Medicine
, pp. 315-340
-
-
Cousins, S.B.1
Chen, W.2
Frisse, M.E.3
-
8
-
-
0029516817
-
An optimal algorithm for Monte Carlo estimation
-
Portland, Oregon
-
Dagum, P., Karp, R., Luby, M., & Ross, S. (1995). An optimal algorithm for Monte Carlo estimation (extended abstract). In Proceedings of the 36th IEEE Symposium on Foundations of Computer Science, pp. 142-149 Portland, Oregon.
-
(1995)
Proceedings of the 36th IEEE Symposium on Foundations of Computer Science
, pp. 142-149
-
-
Dagum, P.1
Karp, R.2
Luby, M.3
Ross, S.4
-
9
-
-
0027560587
-
Approximating probabilistic inference in Bayesian belief networks is NP-hard
-
Dagum, P., & Luby, M. (1993). Approximating probabilistic inference in Bayesian belief networks is NP-hard. Artificial Intelligence, 60(1), 141-153.
-
(1993)
Artificial Intelligence
, vol.60
, Issue.1
, pp. 141-153
-
-
Dagum, P.1
Luby, M.2
-
10
-
-
0031170063
-
An optimal approximation algorithm for Bayesian inference
-
Dagum, P., & Luby, M. (1997). An optimal approximation algorithm for Bayesian inference. Artificial Intelligence, 93, 1-27.
-
(1997)
Artificial Intelligence
, vol.93
, pp. 1-27
-
-
Dagum, P.1
Luby, M.2
-
13
-
-
0007319555
-
Weighing and integrating evidence for stochastic simulation in Bayesian networks
-
New York, N. Y. Elsevier Science Publishing Company, Inc.
-
Fung, R., & Chang, K.-C. (1989). Weighing and integrating evidence for stochastic simulation in Bayesian networks. In Uncertainty in Artificial Intelligence 5, pp. 209-219 New York, N. Y. Elsevier Science Publishing Company, Inc.
-
(1989)
Uncertainty in Artificial Intelligence
, vol.5
, pp. 209-219
-
-
Fung, R.1
Chang, K.-C.2
-
15
-
-
0021518209
-
Stochastic relaxations, Gibbs distributions and the Bayesian restoration of images
-
Geman, S., & Geman, D. (1984). Stochastic relaxations, Gibbs distributions and the Bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 6(6), 721-742.
-
(1984)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.6
, Issue.6
, pp. 721-742
-
-
Geman, S.1
Geman, D.2
-
17
-
-
0001861652
-
A new look at causal independence
-
San Mateo, CA. Morgan Kaufmann Publishers, Inc.
-
Heckerman, D., & Breese, J. S. (1994). A new look at causal independence. In Proceedings of the Tenth Annual Conference on Uncertainty in Artificial Intelligence (UAI-94), pp. 286-292 San Mateo, CA. Morgan Kaufmann Publishers, Inc.
-
(1994)
Proceedings of the Tenth Annual Conference on Uncertainty in Artificial Intelligence (UAI-94)
, pp. 286-292
-
-
Heckerman, D.1
Breese, J.S.2
-
18
-
-
0039355725
-
-
Tech. rep. KSL-90-08, Medical Computer Science Group, Section on Medical Informatics, Stanford University, Stanford, CA
-
Heckerman, D. E., Horvitz, E. J., & Nathwani, B. N. (1990). Toward normative expert systems: The Pathfinder project. Tech. rep. KSL-90-08, Medical Computer Science Group, Section on Medical Informatics, Stanford University, Stanford, CA.
-
(1990)
Toward Normative Expert Systems: The Pathfinder Project
-
-
Heckerman, D.E.1
Horvitz, E.J.2
Nathwani, B.N.3
-
19
-
-
0001247275
-
Propagating uncertainty in Bayesian networks by probabilistic logic sampling
-
New York, N. Y. Elsevier Science Publishing Company, Inc.
-
Henrion, M. (1988). Propagating uncertainty in Bayesian networks by probabilistic logic sampling. In Uncertainty in Artificial Intellgience 2, pp. 149-163 New York, N. Y. Elsevier Science Publishing Company, Inc.
-
(1988)
Uncertainty in Artificial Intellgience
, vol.2
, pp. 149-163
-
-
Henrion, M.1
-
20
-
-
0000045489
-
Some practical issues in constructing belief networks
-
Kanal, L., Levitt, T., & Lemmer, J. (Eds.), Elsevier Science Publishers B.V., North Holland
-
Henrion, M. (1989). Some practical issues in constructing belief networks. In Kanal, L., Levitt, T., & Lemmer, J. (Eds.), Uncertainty in Artificial Intelligence 3, pp. 161-173. Elsevier Science Publishers B.V., North Holland.
-
(1989)
Uncertainty in Artificial Intelligence
, vol.3
, pp. 161-173
-
-
Henrion, M.1
-
21
-
-
0037810161
-
Search-based methods to bound diagnostic probabilities in very large belief nets
-
San Mateo, California. Morgan Kaufmann Publishers
-
Henrion, M. (1991). Search-based methods to bound diagnostic probabilities in very large belief nets. In Proceedings of the Seventh Annual Conference on Uncertainty in Artificial Intelligence (UAI-91), pp. 142-150 San Mateo, California. Morgan Kaufmann Publishers.
-
(1991)
Proceedings of the Seventh Annual Conference on Uncertainty in Artificial Intelligence (UAI-91)
, pp. 142-150
-
-
Henrion, M.1
-
22
-
-
0007178970
-
A Monte Carlo algorithm for probabilistic propagation in belief networks based on importance sampling and stratified simulation techniques
-
Hernandez, L. D., Moral, S., & Antonio, S. (1998). A Monte Carlo algorithm for probabilistic propagation in belief networks based on importance sampling and stratified simulation techniques. International Journal of Approximate Reasoning, 18, 53-91.
-
(1998)
International Journal of Approximate Reasoning
, vol.18
, pp. 53-91
-
-
Hernandez, L.D.1
Moral, S.2
Antonio, S.3
-
23
-
-
0024137490
-
Increased rates of convergence through learning rate adaptation
-
Jacobs, R. A. (1988). Increased rates of convergence through learning rate adaptation. Neural Networks, 1, 295-307.
-
(1988)
Neural Networks
, vol.1
, pp. 295-307
-
-
Jacobs, R.A.1
-
24
-
-
0001006209
-
Local computations with probabilities on graphical structures and their application to expert systems
-
Lauritzen, S. L., & Spiegelhalter, D. J. (1988). Local computations with probabilities on graphical structures and their application to expert systems. Journal of the Royal Statistical Society, Series B (Methodological), 50(2), 157-224.
-
(1988)
Journal of the Royal Statistical Society, Series B (Methodological)
, vol.50
, Issue.2
, pp. 157-224
-
-
Lauritzen, S.L.1
Spiegelhalter, D.J.2
-
25
-
-
0001341735
-
Intro to Monte Carlo methods
-
Jordan, M. I. (Ed.), The MIT Press, Cambridge, Massachusetts
-
MacKay, D. (1998). Intro to Monte Carlo methods. In Jordan, M. I. (Ed.), Learning in Graphical Models. The MIT Press, Cambridge, Massachusetts.
-
(1998)
Learning in Graphical Models
-
-
MacKay, D.1
-
27
-
-
46149134436
-
Fusion, propagation, and structuring in belief networks
-
Pearl, J. (1986). Fusion, propagation, and structuring in belief networks. Artificial Intelligence, 29(3), 241-288.
-
(1986)
Artificial Intelligence
, vol.29
, Issue.3
, pp. 241-288
-
-
Pearl, J.1
-
28
-
-
0023347981
-
Evidential reasoning using stochastic simulation of causal models
-
Pearl, J. (1987). Evidential reasoning using stochastic simulation of causal models. Artifical Intelligence, 32, 245-257.
-
(1987)
Artifical Intelligence
, vol.32
, pp. 245-257
-
-
Pearl, J.1
-
31
-
-
0013227369
-
Knowledge engineering for large belief networks
-
San Francisco, CA. Morgan Kaufmann Publishers
-
Pradhan, M., Provan, G., Middleton, B., & Henrion, M. (1994). Knowledge engineering for large belief networks. In Proceedings of the Tenth Annual Conference on Uncertainty in Artificial Intelligence (UAI-94), pp. 484-490 San Francisco, CA. Morgan Kaufmann Publishers.
-
(1994)
Proceedings of the Tenth Annual Conference on Uncertainty in Artificial Intelligence (UAI-94)
, pp. 484-490
-
-
Pradhan, M.1
Provan, G.2
Middleton, B.3
Henrion, M.4
-
32
-
-
0004241478
-
-
Addison-Wesley, München
-
Ritter, H., Martinetz, T., & Schulten, K. (1991). Neuronale Netze. Addison-Wesley, München.
-
(1991)
Neuronale Netze
-
-
Ritter, H.1
Martinetz, T.2
Schulten, K.3
-
34
-
-
0028516334
-
An algorithm directly finding the K most probable configurations in Bayesian networks
-
Seroussi, B., & Golmard, J. L. (1994). An algorithm directly finding the K most probable configurations in Bayesian networks. International Journal of Approximate Reasoning, 11, 205-233.
-
(1994)
International Journal of Approximate Reasoning
, vol.11
, pp. 205-233
-
-
Seroussi, B.1
Golmard, J.L.2
-
35
-
-
0001203638
-
Simulation approaches to general probabilistic inference on belief networks
-
New York, N. Y. Elsevier Science Publishing Company, Inc.
-
Shachter, R. D., & Peot, M. A. (1989). Simulation approaches to general probabilistic inference on belief networks. In Uncertainty in Artificial Intelligence 5, pp. 221-231 New York, N. Y. Elsevier Science Publishing Company, Inc.
-
(1989)
Uncertainty in Artificial Intelligence
, vol.5
, pp. 221-231
-
-
Shachter, R.D.1
Peot, M.A.2
-
36
-
-
0026010360
-
An empirical analysis of likelihood-weighting simulation on a large, multiply-connected medical belief network
-
Shwe, M. A., & Cooper, G. F. (1991). An empirical analysis of likelihood-weighting simulation on a large, multiply-connected medical belief network. Computers and Biomedical Research, 24(5), 453-475.
-
(1991)
Computers and Biomedical Research
, vol.24
, Issue.5
, pp. 453-475
-
-
Shwe, M.A.1
Cooper, G.F.2
-
37
-
-
0026056182
-
Probabilistic diagnosis using a reformulation of the INTERNIST-1/QMR knowledge base: I. The probabilistic model and inference algorithms
-
Shwe, M., Middleton, B., Heckerman, D., Henrion, M., Horvitz, E., & Lehmann, H. (1991). Probabilistic diagnosis using a reformulation of the INTERNIST-1/QMR knowledge base: I. The probabilistic model and inference algorithms. Methods of Information in Medicine, 30(4), 241-255.
-
(1991)
Methods of Information in Medicine
, vol.30
, Issue.4
, pp. 241-255
-
-
Shwe, M.1
Middleton, B.2
Heckerman, D.3
Henrion, M.4
Horvitz, E.5
Lehmann, H.6
-
39
-
-
38249013485
-
Use of the Gibbs sampler in expert systems
-
York, J. (1992). Use of the Gibbs sampler in expert systems. Artificial Intelligence, 56, 115-130.
-
(1992)
Artificial Intelligence
, vol.56
, pp. 115-130
-
-
York, J.1
|