메뉴 건너뛰기




Volumn 37, Issue , 2010, Pages 279-328

Join-graph propagation algorithms

Author keywords

[No Author keywords available]

Indexed keywords

APPROXIMATE ALGORITHMS; BELIEF PROPAGATION; BELIEF PROPAGATION ALGORITHM; CONSTRAINT PROPAGATION; GENERALIZED BELIEF PROPAGATION; ITERATIVE SCHEMES; PARAMETERIZED; PROPAGATION ALGORITHM; STATE-OF-THE-ART ALGORITHMS; STATISTICAL PHYSICS;

EID: 77952699200     PISSN: None     EISSN: 10769757     Source Type: Journal    
DOI: 10.1613/jair.2842     Document Type: Article
Times cited : (57)

References (63)
  • 1
    • 0021787868 scopus 로고
    • Efficient algorithms for combinatorial problems on graphs with bounded decomposability - A survey
    • Arnborg, S. A. (1985). Efficient algorithms for combinatorial problems on graphs with bounded decomposability - a survey. BIT, 25, 2-23.
    • (1985) BIT , vol.25 , pp. 2-23
    • Arnborg, S.A.1
  • 5
    • 26944443478 scopus 로고    scopus 로고
    • Survey propagation: An algorithm for satisfiability
    • Braunstein, A., Mézard, M., & Zecchina, R. (2005). Survey propagation: An algorithm for satisfiability. Random Struct. Algorithms, 27(2), 201-226.
    • (2005) Random Struct. Algorithms , vol.27 , Issue.2 , pp. 201-226
    • Braunstein, A.1    Mézard, M.2    Zecchina, R.3
  • 6
    • 38649102485 scopus 로고    scopus 로고
    • On probabilistic inference by weighted model counting
    • Chavira, M., & Darwiche, A. (2008). On probabilistic inference by weighted model counting. Artificial Intelligence, 172(6-7), 772-799.
    • (2008) Artificial Intelligence , vol.172 , Issue.6-7 , pp. 772-799
    • Chavira, M.1    Darwiche, A.2
  • 12
    • 0025401005 scopus 로고
    • The computational complexity of probabistic inferences
    • Cooper, G. F. (1990). The computational complexity of probabistic inferences. Artificial Intelligence, 42, 393-405.
    • (1990) Artificial Intelligence , vol.42 , pp. 393-405
    • Cooper, G.F.1
  • 13
    • 0027560587 scopus 로고
    • Approximating probabilistic inference in bayesian belief networks is NP-hard
    • Dagum, P., & Luby, M. (1993). Approximating probabilistic inference in bayesian belief networks is NP-hard. Artificial Intelligence, 60(1), 141-153.
    • (1993) Artificial Intelligence , vol.60 , Issue.1 , pp. 141-153
    • Dagum, P.1    Luby, M.2
  • 14
    • 0035250750 scopus 로고    scopus 로고
    • Recursive conditioning
    • Darwiche, A. (2001). Recursive conditioning. Artificial Intelligence, 125(1-2), 5-41.
    • (2001) Artificial Intelligence , vol.125 , Issue.1-2 , pp. 5-41
    • Darwiche, A.1
  • 17
    • 0033188982 scopus 로고    scopus 로고
    • Bucket elimination: A unifying framework for reasoning
    • Dechter, R. (1999). Bucket elimination: A unifying framework for reasoning. Artificial Intelligence, 113, 41-85.
    • (1999) Artificial Intelligence , vol.113 , pp. 41-85
    • Dechter, R.1
  • 23
    • 33847283947 scopus 로고    scopus 로고
    • AND/OR search spaces for graphical models
    • DOI 10.1016/j.artint.2006.11.003, PII S000437020600138X
    • Dechter, R., & Mateescu, R. (2007). AND/OR search spaces for graphical models. Artificial Intelligence, 171(2-3), 73-106. (Pubitemid 46328845)
    • (2007) Artificial Intelligence , vol.171 , Issue.2-3 , pp. 73-106
    • Dechter, R.1    Mateescu, R.2
  • 24
    • 0023842374 scopus 로고
    • Network-based heuristics for constraint satisfaction problems
    • Dechter, R., & Pearl, J. (1987). Network-based heuristics for constraint satisfaction problems. Artificial Intelligence, 34, 1-38.
    • (1987) Artificial Intelligence , vol.34 , pp. 1-38
    • Dechter, R.1    Pearl, J.2
  • 25
    • 0024640050 scopus 로고
    • Tree clustering for constraint networks
    • Dechter, R., & Pearl, J. (1989). Tree clustering for constraint networks. Artificial Intelligence, 38, 353-366.
    • (1989) Artificial Intelligence , vol.38 , pp. 353-366
    • Dechter, R.1    Pearl, J.2
  • 27
    • 1642312636 scopus 로고    scopus 로고
    • Mini-buckets: A general scheme for approximating inference
    • Dechter, R., & Rish, I. (2003). Mini-buckets: A general scheme for approximating inference. Journal of ACM, 50(2), 107-153.
    • (2003) Journal of ACM , vol.50 , Issue.2 , pp. 107-153
    • Dechter, R.1    Rish, I.2
  • 32
    • 34848899497 scopus 로고    scopus 로고
    • Truncating the loop series expansion for belief propagation
    • Gomez, V., Mooji, J. M., & Kappen, H. J. (2007). Truncating the loop series expansion for belief propagation. Journal of Machine Learning, 8, 1987-2016.
    • (2007) Journal of Machine Learning , vol.8 , pp. 1987-2016
    • Gomez, V.1    Mooji, J.M.2    Kappen, H.J.3
  • 35
    • 0012349395 scopus 로고    scopus 로고
    • Ph.D. thesis, Information and Computer Science, University of California, Irvine
    • Kask, K. (2001). Approximation algorithms for graphical models. Ph.D. thesis, Information and Computer Science, University of California, Irvine.
    • (2001) Approximation Algorithms for Graphical Models
    • Kask, K.1
  • 36
    • 0035369520 scopus 로고    scopus 로고
    • A general scheme for automatic search heuristics from specification dependencies
    • Kask, K., & Dechter, R. (2001). A general scheme for automatic search heuristics from specification dependencies. Artificial Intelligence, 129(1-2), 91-131.
    • (2001) Artificial Intelligence , vol.129 , Issue.1-2 , pp. 91-131
    • Kask, K.1    Dechter, R.2
  • 37
    • 21444441210 scopus 로고    scopus 로고
    • Unifying cluster-tree decompositions for reasoning in graphical models
    • Kask, K., Dechter, R., Larrosa, J., & Dechter, A. (2005). Unifying cluster-tree decompositions for reasoning in graphical models. Artificial Intelligence, 166 (1-2), 165-193.
    • (2005) Artificial Intelligence , vol.166 , Issue.1-2 , pp. 165-193
    • Kask, K.1    Dechter, R.2    Larrosa, J.3    Dechter, A.4
  • 38
    • 36149021742 scopus 로고
    • A theory of cooperative phenomena
    • Kikuchi, R. (1951). A theory of cooperative phenomena. Phys. Rev., 81(6), 988-1003.
    • (1951) Phys. Rev. , vol.81 , Issue.6 , pp. 988-1003
    • Kikuchi, R.1
  • 40
    • 72949112388 scopus 로고    scopus 로고
    • Up and down mini-bucket: A scheme for approximating combinatorial optimization tasks
    • University of California Irvine
    • Larrosa, J., Kask, K., & Dechter, R. (2001). Up and down mini-bucket: a scheme for approximating combinatorial optimization tasks. Tech. rep., University of California Irvine.
    • (2001) Tech. rep.
    • Larrosa, J.1    Kask, K.2    Dechter, R.3
  • 41
    • 0001006209 scopus 로고
    • Local computation with probabilities on graphical structures and their application to expert systems
    • Lauritzen, S. L., & Spiegelhalter, D. J. (1988). Local computation with probabilities on graphical structures and their application to expert systems. Journal of the Royal Statistical Society, Series B, 50(2), 157-224.
    • (1988) Journal of the Royal Statistical Society, Series B , vol.50 , Issue.2 , pp. 157-224
    • Lauritzen, S.L.1    Spiegelhalter, D.J.2
  • 42
    • 49449120803 scopus 로고
    • Consistency in networks of relations
    • Mackworth, A. K. (1977). Consistency in networks of relations. Artificial Intelligence, 8(1), 99-118.
    • (1977) Artificial Intelligence , vol.8 , Issue.1 , pp. 99-118
    • Mackworth, A.K.1
  • 44
    • 0037008520 scopus 로고    scopus 로고
    • Analytic and algorithmic solution of random satisfiability problems
    • Mézard, M., Parisi, G., & Zecchina, R. (2002). Analytic and algorithmic solution of random satisfiability problems. Science, 297, 812-815.
    • (2002) Science , vol.297 , pp. 812-815
    • Mézard, M.1    Parisi, G.2    Zecchina, R.3
  • 52
    • 23844535141 scopus 로고    scopus 로고
    • Cluster variation method in statistical physics and probabilistic graphical models
    • Pelizzola, A. (2005). Cluster variation method in statistical physics and probabilistic graphical models. Journal of Physics A: Mathematical and General, 38(33), R309-R339.
    • (2005) Journal of Physics A: Mathematical and General , vol.38 , Issue.33
    • Pelizzola, A.1
  • 54
    • 0030120958 scopus 로고    scopus 로고
    • On the hardness of approximate reasoning
    • Roth, D. (1996). On the hardness of approximate reasoning. Artificial Intelligence, 82(1-2), 273-302.
    • (1996) Artificial Intelligence , vol.82 , Issue.1-2 , pp. 273-302
    • Roth, D.1
  • 56
    • 0000251407 scopus 로고
    • Valuation-based systems for bayesian decision analysis
    • Shenoy, P. P. (1992). Valuation-based systems for bayesian decision analysis. Operations Research, 40, 463-484.
    • (1992) Operations Research , vol.40 , pp. 463-484
    • Shenoy, P.P.1
  • 59
    • 0037980825 scopus 로고    scopus 로고
    • Generalized belief propagation
    • TR2000-26, Mitsubishi Electric Research Laboratories
    • Yedidia, J. S., Freeman, W. T., & Weiss, Y. (2000). Generalized belief propagation. Tech. rep. TR2000-26, Mitsubishi Electric Research Laboratories.
    • (2000) Tech. rep
    • Yedidia, J.S.1    Freeman, W.T.2    Weiss, Y.3
  • 61
    • 23744513375 scopus 로고    scopus 로고
    • Constructing free energy approximations and generalized belief propagation algorithms
    • Yedidia, J. S., Freeman, W. T., & Weiss, Y. (2005). Constructing free energy approximations and generalized belief propagation algorithms. IEEE Transactions on Information Theory, 51, 2282-2312.
    • (2005) IEEE Transactions on Information Theory , vol.51 , pp. 2282-2312
    • Yedidia, J.S.1    Freeman, W.T.2    Weiss, Y.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.