-
1
-
-
21844446254
-
Structured variational distributions in vibes
-
Society for Artificial Intelligence and Statistics
-
C. Bishop and J. Winn. Structured variational distributions in vibes. In Artificial Intelligence and Statistics. Society for Artificial Intelligence and Statistics, 2003.
-
(2003)
Artificial Intelligence and Statistics
-
-
Bishop, C.1
Winn, J.2
-
2
-
-
0001249662
-
AIS-BN: An adaptive importance sampling algorithm for evidential reasoning in large Bayesian networks
-
J. Cheng and M. J. Druzdzel. BN-AIS: An adaptive importance sampling algorithm for evidential reasoning in large Bayesian networks. Journal of Artificial Intelligence Research, 13:155-188, 2000. (Pubitemid 33682085)
-
(2000)
Journal of Artificial Intelligence Research
, vol.13
, pp. 155-188
-
-
Cheng, J.1
Druzdzel, M.J.2
-
3
-
-
80053210336
-
A variational approach for approximating Bayesian networks by edge deletion
-
Morgan Kaufmann
-
A. Choi and A. Darwiche. A variational approach for approximating bayesian networks by edge deletion. In Uncertainty in Artificial Intelligence, pages 211-219. Morgan Kaufmann, 2006.
-
(2006)
Uncertainty in Artificial Intelligence
, pp. 211-219
-
-
Choi, A.1
Darwiche, A.2
-
4
-
-
17444409624
-
A tutorial on the cross-entropy method
-
DOI 10.1007/s10479-005-5724-z
-
P. de Boer, D. Kroese, S. Mannor, and R. Rubinstein. A tutorial on the cross-entropy method. Annals of Operations Research, 134(1):19-67, 2005. (Pubitemid 40550039)
-
(2005)
Annals of Operations Research
, vol.134
, Issue.1
, pp. 19-67
-
-
De Boer, P.-T.1
Kroese, D.P.2
Mannor, S.3
Rubinstein, R.Y.4
-
6
-
-
0013058634
-
Variational MCMC
-
Morgan Kaufmann
-
N. de Freitas, P. Højen-Sørensen, M. Jordan, and S. Russell. Variational MCMC. In Uncertainty in Artificial Intelligence, pages 120-127. Morgan Kaufmann, 2001.
-
(2001)
Uncertainty in Artificial Intelligence
, pp. 120-127
-
-
De Freitas, N.1
Højen-Sørensen, P.2
Jordan, M.3
Russell, S.4
-
7
-
-
0002251094
-
Bucket elimination: A unifying framework for probabilistic inference
-
Morgan Kaufmann
-
R. Dechter. Bucket elimination: A unifying framework for probabilistic inference. In Uncertainty in Artificial Intelligence, pages 211-219. Morgan Kaufmann, 1996.
-
(1996)
Uncertainty in Artificial Intelligence
, pp. 211-219
-
-
Dechter, R.1
-
8
-
-
0035389748
-
Introduction to importance sampling in rare-event simulations
-
DOI 10.1088/0143-0807/22/4/315, PII S0143080701233157
-
M. Denny. Introduction to importance sampling in rare-event simulations. European Journal of Physics, 22(4):403-411, 2001. (Pubitemid 32749082)
-
(2001)
European Journal of Physics
, vol.22
, Issue.4
, pp. 403-411
-
-
Denny, M.1
-
9
-
-
33845752284
-
Convergence of adaptive sampling schemes
-
University Paris Dauphine
-
R. Douc, A. Guillin, J. Marin, and C. Robert. Convergence of adaptive sampling schemes. Technical Report 2005-6, Cahiers du CEREMADE, University Paris Dauphine, 2005.
-
(2005)
Technical Report 2005-6, Cahiers du CEREMADE
-
-
Douc, R.1
Guillin, A.2
Marin, J.3
Robert, C.4
-
10
-
-
0038558013
-
Exact genetic linkage computations for general pedigrees
-
M. Fishelson and D. Geiger. Exact genetic linkage computations for general pedigrees. Bioinformatics, 1(1):1-9, 2002.
-
(2002)
Bioinformatics
, vol.1
, Issue.1
, pp. 1-9
-
-
Fishelson, M.1
Geiger, D.2
-
12
-
-
0007187272
-
Backward simulation in Bayesian networks
-
Morgan Kaufmann
-
R. Fung and B. Favero. Backward simulation in bayesian networks. In Uncertainty in Artificial Intelligence, pages 227-23. Morgan Kaufmann, 1994.
-
(1994)
Uncertainty in Artificial Intelligence
, pp. 227-223
-
-
Fung, R.1
Favero, B.2
-
13
-
-
0039223218
-
Weighing and integrating evidence for stochastic simulation in Bayesian networks
-
North-Holland Publishing Co.
-
R. M. Fung and K.-C. Chang. Weighing and integrating evidence for stochastic simulation in bayesian networks. In Uncertainty in Artificial Intelligence, pages 209-220. North-Holland Publishing Co., 1989.
-
(1989)
Uncertainty in Artificial Intelligence
, pp. 209-220
-
-
Fung, R.M.1
Chang, K.-C.2
-
14
-
-
33750575526
-
A variational inference procedure allowing internal structure for overlapping clusters and deterministic constraints
-
D. Geiger, C. Meek, and Y. Wexler. A variational inference procedure allowing internal structure for overlapping clusters and deterministic constraints. Journal of Artificial Intelligence Research, 27:1-23, 2006. (Pubitemid 44681371)
-
(2006)
Journal of Artificial Intelligence Research
, vol.27
, pp. 1-23
-
-
Geiger, D.1
Meek, C.2
Wexler, Y.3
-
15
-
-
0031268341
-
Factorial hidden Markov models
-
Z. Ghahramani and M. I. Jordan. Factorial hidden Markov models. Machine Learning, 29:245-273, 1997. (Pubitemid 127510040)
-
(1997)
Machine Learning
, vol.29
, Issue.2-3
, pp. 245-273
-
-
Ghahramani, Z.1
Jordan, M.I.2
-
16
-
-
0001247275
-
Propagating uncertainty in Bayesian networks by probabilistic logic sampling
-
Elsevier Science
-
M. Henrion. Propagating uncertainty in bayesian networks by probabilistic logic sampling. In Uncertainty in Artificial Intelligence, pages 149-164. Elsevier Science, 1986.
-
(1986)
Uncertainty in Artificial Intelligence
, pp. 149-164
-
-
Henrion, M.1
-
17
-
-
0007178970
-
A Monte Carlo algorithm for probabilistic propagation in belief networks based on importance sampling and stratified simulation techniques
-
PII S0888613X97100044
-
L. Hernandez, S. Moral, and A. Salmerón. A monte carlo algorithm for probabilistic propagation in belief networks based on importance sampling and stratified simulation techniques. International Journal of Approximate Reasoning, 18:53-91, 1998. (Pubitemid 128393704)
-
(1998)
International Journal of Approximate Reasoning
, vol.18
, Issue.1-2
, pp. 53-91
-
-
Hernandez, L.D.1
Moral, S.2
Salmeron, A.3
-
18
-
-
0033225865
-
Introduction to variational methods for graphical models
-
DOI 10.1023/A:1007665907178
-
M. I. Jordan, Z. Ghahramani, T. S. Jaakkola, and L. K. Saul. An introduction to variational methods for graphical models. Machine Learning, 37(2): 183-233, 1999. (Pubitemid 30544678)
-
(1999)
Machine Learning
, vol.37
, Issue.2
, pp. 183-233
-
-
Jordan, M.I.1
Ghahramani, Z.2
Jaakkola, T.S.3
Saul, L.K.4
-
19
-
-
26444479778
-
Optimization by simulated annealing
-
S. Kirkpatrick, C. Gelatt, and M. Vecchi. Optimization by simulated annealing. Science, 220(4598):671-680, 1983.
-
(1983)
Science
, vol.220
, Issue.4598
, pp. 671-680
-
-
Kirkpatrick, S.1
Gelatt, C.2
Vecchi, M.3
-
20
-
-
4744345480
-
Homozygosity mapping of lethal congenital contractural syndrome type 2 (LCCS2) to a 6 cM interval on chromosome 12q13
-
DOI 10.1002/ajmg.a.30266
-
G. Narkis, D. Landau, E. Manor, K. Elbedour, A. Tzemach, M. Fishelson, D. Geiger, R. Ofir, R. Carmi, and O. Birk. Homozygosity mapping of lethal congenital contractural syndrome type 2 (LCCS2) to a 6 cM interval on chromosome 12q13. American Journal of Medical Genetics, 130(3):272-276, 2004. (Pubitemid 39313228)
-
(2004)
American Journal of Medical Genetics
, vol.130 A
, Issue.3
, pp. 272-276
-
-
Narkis, G.1
Landau, D.2
Manor, E.3
Elbedour, K.4
Tzemach, A.5
Fishelson, M.6
Geiger, D.7
Ofir, R.8
Carmi, R.9
Birk, O.S.10
-
21
-
-
0004080531
-
-
John Wiley & Sons, Inc., New York, NY, USA
-
R. Y. Rubinstein. Simulation and the Monte Carlo Method. John Wiley & Sons, Inc., New York, NY, USA, 1981.
-
(1981)
Simulation and the Monte Carlo Method
-
-
Rubinstein, R.Y.1
-
23
-
-
85013513795
-
Simulation approaches to general probabilistic inference on belief networks
-
North-Holland Publishing Co.
-
R. Shachter and M. Poet. Simulation approaches to general probabilistic inference on belief networks. In Uncertainty in Artificial Intelligence, pages 221-231. North-Holland Publishing Co., 1989.
-
(1989)
Uncertainty in Artificial Intelligence
, pp. 221-231
-
-
Shachter, R.1
Poet, M.2
-
24
-
-
0036157589
-
Detection and integration of genotyping errors in statistical genetics
-
DOI 10.1086/338920
-
E. Sobel, J. Papp, and K. Lange. Detection and integration of genotyping errors in statistical genetics. American Journal of Human Genetics, 70:496-508, 2002. (Pubitemid 34112302)
-
(2002)
American Journal of Human Genetics
, vol.70
, Issue.2
, pp. 496-508
-
-
Sobel, E.1
Papp, J.C.2
Lange, K.3
-
26
-
-
0012131861
-
Variational approximations between mean field theory and the junction tree algorithm
-
Morgan Kaufmann
-
W. Wiegerinck. Variational approximations between mean field theory and the junction tree algorithm. In Uncertainty in Artificial Intelligence. Morgan Kaufmann, 2000.
-
(2000)
Uncertainty in Artificial Intelligence
-
-
Wiegerinck, W.1
-
27
-
-
3242679207
-
A generalized mean field algorithm for variational inference in exponential families
-
Morgan Kaufmann
-
E. P. Xing, M. I. Jordan, and S. Russell. A generalized mean field algorithm for variational inference in exponential families. In Uncertainty in Artificial Intelligence. Morgan Kaufmann, 2003.
-
(2003)
Uncertainty in Artificial Intelligence
-
-
Xing, E.P.1
Jordan, M.I.2
Russell, S.3
-
28
-
-
16244413498
-
An importance sampling algorithm based on evidence pre-propagation
-
Morgan Kaufmann
-
C. Yuan and M. Druzdzel. An importance sampling algorithm based on evidence pre-propagation. In Uncertainty in Artificial Intelligence, pages 624-63. Morgan Kaufmann, 2003.
-
(2003)
Uncertainty in Artificial Intelligence
, pp. 624-663
-
-
Yuan, C.1
Druzdzel, M.2
|