메뉴 건너뛰기




Volumn , Issue , 2007, Pages 426-433

Importance sampling via variational optimization

Author keywords

[No Author keywords available]

Indexed keywords

ALTERNATIVE ALGORITHMS; CONDITIONAL PROBABILITY TABLES; GENETIC LINKAGE; IMPORTANCE FUNCTIONS; IMPORTANCE SAMPLING; PROPOSAL DISTRIBUTION; STOCHASTIC SAMPLING; VARIATIONAL METHODS; VARIATIONAL OPTIMIZATION;

EID: 80053212991     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (7)

References (28)
  • 1
    • 21844446254 scopus 로고    scopus 로고
    • Structured variational distributions in vibes
    • Society for Artificial Intelligence and Statistics
    • C. Bishop and J. Winn. Structured variational distributions in vibes. In Artificial Intelligence and Statistics. Society for Artificial Intelligence and Statistics, 2003.
    • (2003) Artificial Intelligence and Statistics
    • Bishop, C.1    Winn, J.2
  • 2
    • 0001249662 scopus 로고    scopus 로고
    • AIS-BN: An adaptive importance sampling algorithm for evidential reasoning in large Bayesian networks
    • J. Cheng and M. J. Druzdzel. BN-AIS: An adaptive importance sampling algorithm for evidential reasoning in large Bayesian networks. Journal of Artificial Intelligence Research, 13:155-188, 2000. (Pubitemid 33682085)
    • (2000) Journal of Artificial Intelligence Research , vol.13 , pp. 155-188
    • Cheng, J.1    Druzdzel, M.J.2
  • 3
    • 80053210336 scopus 로고    scopus 로고
    • A variational approach for approximating Bayesian networks by edge deletion
    • Morgan Kaufmann
    • A. Choi and A. Darwiche. A variational approach for approximating bayesian networks by edge deletion. In Uncertainty in Artificial Intelligence, pages 211-219. Morgan Kaufmann, 2006.
    • (2006) Uncertainty in Artificial Intelligence , pp. 211-219
    • Choi, A.1    Darwiche, A.2
  • 7
    • 0002251094 scopus 로고    scopus 로고
    • Bucket elimination: A unifying framework for probabilistic inference
    • Morgan Kaufmann
    • R. Dechter. Bucket elimination: A unifying framework for probabilistic inference. In Uncertainty in Artificial Intelligence, pages 211-219. Morgan Kaufmann, 1996.
    • (1996) Uncertainty in Artificial Intelligence , pp. 211-219
    • Dechter, R.1
  • 8
    • 0035389748 scopus 로고    scopus 로고
    • Introduction to importance sampling in rare-event simulations
    • DOI 10.1088/0143-0807/22/4/315, PII S0143080701233157
    • M. Denny. Introduction to importance sampling in rare-event simulations. European Journal of Physics, 22(4):403-411, 2001. (Pubitemid 32749082)
    • (2001) European Journal of Physics , vol.22 , Issue.4 , pp. 403-411
    • Denny, M.1
  • 10
    • 0038558013 scopus 로고    scopus 로고
    • Exact genetic linkage computations for general pedigrees
    • M. Fishelson and D. Geiger. Exact genetic linkage computations for general pedigrees. Bioinformatics, 1(1):1-9, 2002.
    • (2002) Bioinformatics , vol.1 , Issue.1 , pp. 1-9
    • Fishelson, M.1    Geiger, D.2
  • 12
    • 0007187272 scopus 로고
    • Backward simulation in Bayesian networks
    • Morgan Kaufmann
    • R. Fung and B. Favero. Backward simulation in bayesian networks. In Uncertainty in Artificial Intelligence, pages 227-23. Morgan Kaufmann, 1994.
    • (1994) Uncertainty in Artificial Intelligence , pp. 227-223
    • Fung, R.1    Favero, B.2
  • 13
    • 0039223218 scopus 로고
    • Weighing and integrating evidence for stochastic simulation in Bayesian networks
    • North-Holland Publishing Co.
    • R. M. Fung and K.-C. Chang. Weighing and integrating evidence for stochastic simulation in bayesian networks. In Uncertainty in Artificial Intelligence, pages 209-220. North-Holland Publishing Co., 1989.
    • (1989) Uncertainty in Artificial Intelligence , pp. 209-220
    • Fung, R.M.1    Chang, K.-C.2
  • 14
    • 33750575526 scopus 로고    scopus 로고
    • A variational inference procedure allowing internal structure for overlapping clusters and deterministic constraints
    • D. Geiger, C. Meek, and Y. Wexler. A variational inference procedure allowing internal structure for overlapping clusters and deterministic constraints. Journal of Artificial Intelligence Research, 27:1-23, 2006. (Pubitemid 44681371)
    • (2006) Journal of Artificial Intelligence Research , vol.27 , pp. 1-23
    • Geiger, D.1    Meek, C.2    Wexler, Y.3
  • 15
    • 0031268341 scopus 로고    scopus 로고
    • Factorial hidden Markov models
    • Z. Ghahramani and M. I. Jordan. Factorial hidden Markov models. Machine Learning, 29:245-273, 1997. (Pubitemid 127510040)
    • (1997) Machine Learning , vol.29 , Issue.2-3 , pp. 245-273
    • Ghahramani, Z.1    Jordan, M.I.2
  • 16
    • 0001247275 scopus 로고
    • Propagating uncertainty in Bayesian networks by probabilistic logic sampling
    • Elsevier Science
    • M. Henrion. Propagating uncertainty in bayesian networks by probabilistic logic sampling. In Uncertainty in Artificial Intelligence, pages 149-164. Elsevier Science, 1986.
    • (1986) Uncertainty in Artificial Intelligence , pp. 149-164
    • Henrion, M.1
  • 17
    • 0007178970 scopus 로고    scopus 로고
    • A Monte Carlo algorithm for probabilistic propagation in belief networks based on importance sampling and stratified simulation techniques
    • PII S0888613X97100044
    • L. Hernandez, S. Moral, and A. Salmerón. A monte carlo algorithm for probabilistic propagation in belief networks based on importance sampling and stratified simulation techniques. International Journal of Approximate Reasoning, 18:53-91, 1998. (Pubitemid 128393704)
    • (1998) International Journal of Approximate Reasoning , vol.18 , Issue.1-2 , pp. 53-91
    • Hernandez, L.D.1    Moral, S.2    Salmeron, A.3
  • 18
    • 0033225865 scopus 로고    scopus 로고
    • Introduction to variational methods for graphical models
    • DOI 10.1023/A:1007665907178
    • M. I. Jordan, Z. Ghahramani, T. S. Jaakkola, and L. K. Saul. An introduction to variational methods for graphical models. Machine Learning, 37(2): 183-233, 1999. (Pubitemid 30544678)
    • (1999) Machine Learning , vol.37 , Issue.2 , pp. 183-233
    • Jordan, M.I.1    Ghahramani, Z.2    Jaakkola, T.S.3    Saul, L.K.4
  • 19
    • 26444479778 scopus 로고
    • Optimization by simulated annealing
    • S. Kirkpatrick, C. Gelatt, and M. Vecchi. Optimization by simulated annealing. Science, 220(4598):671-680, 1983.
    • (1983) Science , vol.220 , Issue.4598 , pp. 671-680
    • Kirkpatrick, S.1    Gelatt, C.2    Vecchi, M.3
  • 23
    • 85013513795 scopus 로고
    • Simulation approaches to general probabilistic inference on belief networks
    • North-Holland Publishing Co.
    • R. Shachter and M. Poet. Simulation approaches to general probabilistic inference on belief networks. In Uncertainty in Artificial Intelligence, pages 221-231. North-Holland Publishing Co., 1989.
    • (1989) Uncertainty in Artificial Intelligence , pp. 221-231
    • Shachter, R.1    Poet, M.2
  • 24
    • 0036157589 scopus 로고    scopus 로고
    • Detection and integration of genotyping errors in statistical genetics
    • DOI 10.1086/338920
    • E. Sobel, J. Papp, and K. Lange. Detection and integration of genotyping errors in statistical genetics. American Journal of Human Genetics, 70:496-508, 2002. (Pubitemid 34112302)
    • (2002) American Journal of Human Genetics , vol.70 , Issue.2 , pp. 496-508
    • Sobel, E.1    Papp, J.C.2    Lange, K.3
  • 26
    • 0012131861 scopus 로고    scopus 로고
    • Variational approximations between mean field theory and the junction tree algorithm
    • Morgan Kaufmann
    • W. Wiegerinck. Variational approximations between mean field theory and the junction tree algorithm. In Uncertainty in Artificial Intelligence. Morgan Kaufmann, 2000.
    • (2000) Uncertainty in Artificial Intelligence
    • Wiegerinck, W.1
  • 27
    • 3242679207 scopus 로고    scopus 로고
    • A generalized mean field algorithm for variational inference in exponential families
    • Morgan Kaufmann
    • E. P. Xing, M. I. Jordan, and S. Russell. A generalized mean field algorithm for variational inference in exponential families. In Uncertainty in Artificial Intelligence. Morgan Kaufmann, 2003.
    • (2003) Uncertainty in Artificial Intelligence
    • Xing, E.P.1    Jordan, M.I.2    Russell, S.3
  • 28
    • 16244413498 scopus 로고    scopus 로고
    • An importance sampling algorithm based on evidence pre-propagation
    • Morgan Kaufmann
    • C. Yuan and M. Druzdzel. An importance sampling algorithm based on evidence pre-propagation. In Uncertainty in Artificial Intelligence, pages 624-63. Morgan Kaufmann, 2003.
    • (2003) Uncertainty in Artificial Intelligence , pp. 624-663
    • Yuan, C.1    Druzdzel, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.