메뉴 건너뛰기




Volumn 93, Issue 1-2, 1997, Pages 1-27

An optimal approximation algorithm for Bayesian inference

Author keywords

Approximation; Bayesian inference; Belief networks

Indexed keywords

ALGORITHMS; APPROXIMATION THEORY; ARTIFICIAL INTELLIGENCE; COMPUTATIONAL COMPLEXITY; PROBABILITY;

EID: 0031170063     PISSN: 00043702     EISSN: None     Source Type: Journal    
DOI: 10.1016/s0004-3702(97)00013-1     Document Type: Article
Times cited : (69)

References (35)
  • 1
    • 30244519573 scopus 로고
    • Special issue on probability forecasting
    • Special Issue on Probability Forecasting, Internat. J. Forecasting 11 (1995).
    • (1995) Internat. J. Forecasting , vol.11
  • 2
    • 30244475285 scopus 로고
    • Special issue on real-world applications of uncertain reasoning
    • Special Issue on Real-World Applications of Uncertain Reasoning, Comm. ACM 38 (1995).
    • (1995) Comm. ACM , vol.38
  • 3
    • 85012759845 scopus 로고
    • An empirical evaluation of a randomized algorithm for probabilistic inference
    • M. Henrion, R.D. Shachter, L.N. Kanal and J.F. Lemmer, eds., Elsevier, Amsterdam
    • R. Chavez and G.F. Cooper, An empirical evaluation of a randomized algorithm for probabilistic inference, in: M. Henrion, R.D. Shachter, L.N. Kanal and J.F. Lemmer, eds., Uncertainty in Artificial Intelligence 5 (Elsevier, Amsterdam, 1990) 191-207.
    • (1990) Uncertainty in Artificial Intelligence , vol.5 , pp. 191-207
    • Chavez, R.1    Cooper, G.F.2
  • 4
    • 84987047932 scopus 로고
    • A randomized approximation algorithm for probabilistic inference on Bayesian belief networks
    • R. Chavez and G.F. Cooper, A randomized approximation algorithm for probabilistic inference on Bayesian belief networks, Networks 20 (1990) 661-685.
    • (1990) Networks , vol.20 , pp. 661-685
    • Chavez, R.1    Cooper, G.F.2
  • 6
    • 0025401005 scopus 로고
    • The computational complexity of probabilistic inference using Bayesian belief networks
    • G.F. Cooper, The computational complexity of probabilistic inference using Bayesian belief networks, Artificial Intelligence 42 (1990) 393-405.
    • (1990) Artificial Intelligence , vol.42 , pp. 393-405
    • Cooper, G.F.1
  • 8
    • 85019472124 scopus 로고
    • A Bayesian analysis of simulation algorithms for inference in belief networks
    • P. Dagum and E. Horvitz, A Bayesian analysis of simulation algorithms for inference in belief networks, Networks 23 (1993) 499-516.
    • (1993) Networks , vol.23 , pp. 499-516
    • Dagum, P.1    Horvitz, E.2
  • 10
    • 0027560587 scopus 로고
    • Approximating probabilistic inference in Bayesian belief networks is NP-hard
    • P. Dagum and M. Luby, Approximating probabilistic inference in Bayesian belief networks is NP-hard, Artificial Intelligence 60 (1993) 141-153.
    • (1993) Artificial Intelligence , vol.60 , pp. 141-153
    • Dagum, P.1    Luby, M.2
  • 11
    • 0000348244 scopus 로고
    • Incremental probabilistic inference
    • Washington, DC Association for Uncertainty in Artificial Intelligence
    • B. D'Ambrosio, Incremental probabilistic inference, in: Proceedings 9th Conference on Uncertainty in Artificial Intelligence, Washington, DC (Association for Uncertainty in Artificial Intelligence, 1993) 301-308.
    • (1993) Proceedings 9th Conference on Uncertainty in Artificial Intelligence , pp. 301-308
    • D'Ambrosio, B.1
  • 13
    • 0039223218 scopus 로고
    • Weighing and integrating evidence for stochastic simulation in Bayesian networks
    • M. Henrion, R.D. Shachter, L.N. Kanal and J.F. Lemmer, eds., Elsevier, Amsterdam
    • R. Fung and K.-C. Chang, Weighing and integrating evidence for stochastic simulation in Bayesian networks, in: M. Henrion, R.D. Shachter, L.N. Kanal and J.F. Lemmer, eds., Uncertainty in Artificial Intelligence 5 (Elsevier, Amsterdam, 1990) 209-219.
    • (1990) Uncertainty in Artificial Intelligence , vol.5 , pp. 209-219
    • Fung, R.1    Chang, K.-C.2
  • 15
    • 0001247275 scopus 로고
    • Propagating uncertainty in Bayesian networks by probabilistic logic sampling
    • J.F. Lemmer and L.N. Kanal, eds., North-Holland, Amsterdam
    • M. Henrion, Propagating uncertainty in Bayesian networks by probabilistic logic sampling, in: J.F. Lemmer and L.N. Kanal, eds., Uncertainty in Artificial Intelligence 2 (North-Holland, Amsterdam, 1988) 149-163.
    • (1988) Uncertainty in Artificial Intelligence , vol.2 , pp. 149-163
    • Henrion, M.1
  • 16
    • 0037810161 scopus 로고
    • Search-based methods to bound diagnostic probabilities in very large belief nets
    • University of Los Angeles, Los Angeles, CA
    • M. Henrion, Search-based methods to bound diagnostic probabilities in very large belief nets, in: Proceedings 7th Workshop on Uncertainty in Artificial Intelligence, University of Los Angeles, Los Angeles, CA (1991).
    • (1991) Proceedings 7th Workshop on Uncertainty in Artificial Intelligence
    • Henrion, M.1
  • 18
    • 0345250958 scopus 로고    scopus 로고
    • Efficient search-based inference for noisy-OR belief networks: TopEpsilon
    • Portland, OR American Association for Artificial Intelligence
    • K. Huang and M. Henrion, Efficient search-based inference for noisy-OR belief networks: TopEpsilon, in: Proceedings 12th Conference on Uncertainty in Artificial Intelligence, Portland, OR (American Association for Artificial Intelligence, 1996) 325-331.
    • (1996) Proceedings 12th Conference on Uncertainty in Artificial Intelligence , pp. 325-331
    • Huang, K.1    Henrion, M.2
  • 19
    • 0001698979 scopus 로고
    • Bayesian updating in causal probabilistic networks by local computations
    • F.V. Jensen, S.L. Lauritzen and K.G. Olesen, Bayesian updating in causal probabilistic networks by local computations, Comput. Statist. Quarterly 4 (1990) 269-282.
    • (1990) Comput. Statist. Quarterly , vol.4 , pp. 269-282
    • Jensen, F.V.1    Lauritzen, S.L.2    Olesen, K.G.3
  • 20
    • 0001202403 scopus 로고
    • Monte-Carlo approximation algorithms for enumeration problems
    • R. Karp, M. Luby and N. Madras, Monte-Carlo approximation algorithms for enumeration problems, J. Algorithms 10 (1989) 429-448.
    • (1989) J. Algorithms , vol.10 , pp. 429-448
    • Karp, R.1    Luby, M.2    Madras, N.3
  • 21
    • 0001006209 scopus 로고
    • Local computations with probabilities on graphical structures and their application to expert systems
    • S.L. Lauritzen and D. Spiegelhalter, Local computations with probabilities on graphical structures and their application to expert systems, J. Royal Statist. Soc. Ser. B 50 (1988).
    • (1988) J. Royal Statist. Soc. Ser. B , vol.50
    • Lauritzen, S.L.1    Spiegelhalter, D.2
  • 24
    • 0008827213 scopus 로고
    • Pseudorandom bits for constant depth circuits
    • N. Nisan, Pseudorandom bits for constant depth circuits, Combinatorica 11 (1991) 63-70.
    • (1991) Combinatorica , vol.11 , pp. 63-70
    • Nisan, N.1
  • 25
    • 0023347981 scopus 로고
    • Evidential reasoning using stochastic simulation of causal models
    • J. Pearl, Evidential reasoning using stochastic simulation of causal models, Artificial Intelligence 32 (1987) 245-257.
    • (1987) Artificial Intelligence , vol.32 , pp. 245-257
    • Pearl, J.1
  • 26
    • 30244530598 scopus 로고
    • Evidential reasoning using stochastic simulation of causal models
    • J. Pearl, Evidential reasoning using stochastic simulation of causal models (Addendum), Artificial Intelligence 33 (1987) 131.
    • (1987) Artificial Intelligence , vol.33 , pp. 131
    • Pearl, J.1
  • 28
    • 84939750950 scopus 로고
    • A probabilistic causal model for diagnostic problem solving - Part 1: Integrating symbolic causal inference with numeric probabilistic inference
    • Y. Peng and J.A. Reggia, A probabilistic causal model for diagnostic problem solving - Part 1: Integrating symbolic causal inference with numeric probabilistic inference, IEEE Trans. Systems, Man and Cybernetics 17 (1987) 146-162.
    • (1987) IEEE Trans. Systems, Man and Cybernetics , vol.17 , pp. 146-162
    • Peng, Y.1    Reggia, J.A.2
  • 29
    • 0023347137 scopus 로고
    • A probabilistic causal model for diagnostic problem solving - Part 2: Diagnostic strategy
    • Special Issue on Diagnosis
    • Y. Peng and J.A. Reggia, A probabilistic causal model for diagnostic problem solving - Part 2: Diagnostic strategy, IEEE Trans. Systems, Man and Cybernetics, Special Issue on Diagnosis 17 (1987) 395-406.
    • (1987) IEEE Trans. Systems, Man and Cybernetics , vol.17 , pp. 395-406
    • Peng, Y.1    Reggia, J.A.2
  • 30
    • 0006411640 scopus 로고
    • Average-case analysis of a search algorithm for estimating prior and posterior probabilities in Bayesian networks with extreme probabilities
    • Chambery
    • D. Poole, Average-case analysis of a search algorithm for estimating prior and posterior probabilities in Bayesian networks with extreme probabilities, in: Proceedings IJCAI-93, Chambery (1993) 606-612.
    • (1993) Proceedings IJCAI-93 , pp. 606-612
    • Poole, D.1
  • 31
    • 0345613137 scopus 로고    scopus 로고
    • Optimal Monte Carlo estimation of belief network inference
    • Portland, OR American Association for Artificial Intelligence
    • M. Pradhan and P. Dagum, Optimal Monte Carlo estimation of belief network inference, in: Proceedings 12th Conference on Uncertainty in Artificial Intelligence, Portland, OR (American Association for Artificial Intelligence, 1996) 446-453.
    • (1996) Proceedings 12th Conference on Uncertainty in Artificial Intelligence , pp. 446-453
    • Pradhan, M.1    Dagum, P.2
  • 33
    • 85013513795 scopus 로고
    • Simulation approaches to general probabilistic inference on belief networks
    • M. Henrion, R.D. Shachter, L.N. Kanal and J.F. Lemmer, eds., Elsevier, Amsterdam
    • R.D. Shachter and M. Peot, Simulation approaches to general probabilistic inference on belief networks, in: M. Henrion, R.D. Shachter, L.N. Kanal and J.F. Lemmer, eds., Uncertainty in Artificial Intelligence, Vol. 5 (Elsevier, Amsterdam, 1990) 221-231.
    • (1990) Uncertainty in Artificial Intelligence , vol.5 , pp. 221-231
    • Shachter, R.D.1    Peot, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.