-
1
-
-
30244519573
-
Special issue on probability forecasting
-
Special Issue on Probability Forecasting, Internat. J. Forecasting 11 (1995).
-
(1995)
Internat. J. Forecasting
, vol.11
-
-
-
2
-
-
30244475285
-
Special issue on real-world applications of uncertain reasoning
-
Special Issue on Real-World Applications of Uncertain Reasoning, Comm. ACM 38 (1995).
-
(1995)
Comm. ACM
, vol.38
-
-
-
3
-
-
85012759845
-
An empirical evaluation of a randomized algorithm for probabilistic inference
-
M. Henrion, R.D. Shachter, L.N. Kanal and J.F. Lemmer, eds., Elsevier, Amsterdam
-
R. Chavez and G.F. Cooper, An empirical evaluation of a randomized algorithm for probabilistic inference, in: M. Henrion, R.D. Shachter, L.N. Kanal and J.F. Lemmer, eds., Uncertainty in Artificial Intelligence 5 (Elsevier, Amsterdam, 1990) 191-207.
-
(1990)
Uncertainty in Artificial Intelligence
, vol.5
, pp. 191-207
-
-
Chavez, R.1
Cooper, G.F.2
-
4
-
-
84987047932
-
A randomized approximation algorithm for probabilistic inference on Bayesian belief networks
-
R. Chavez and G.F. Cooper, A randomized approximation algorithm for probabilistic inference on Bayesian belief networks, Networks 20 (1990) 661-685.
-
(1990)
Networks
, vol.20
, pp. 661-685
-
-
Chavez, R.1
Cooper, G.F.2
-
5
-
-
0008526838
-
-
Ph.D. Thesis, Medical Computer Science Group, Stanford University, Stanford, CA
-
G.F. Cooper, NESTOR: a computer-based medical diagnostic aid that integrates causal and probabilistic knowledge, Ph.D. Thesis, Medical Computer Science Group, Stanford University, Stanford, CA (1984).
-
(1984)
NESTOR: a Computer-Based Medical Diagnostic Aid That Integrates Causal and Probabilistic Knowledge
-
-
Cooper, G.F.1
-
6
-
-
0025401005
-
The computational complexity of probabilistic inference using Bayesian belief networks
-
G.F. Cooper, The computational complexity of probabilistic inference using Bayesian belief networks, Artificial Intelligence 42 (1990) 393-405.
-
(1990)
Artificial Intelligence
, vol.42
, pp. 393-405
-
-
Cooper, G.F.1
-
8
-
-
85019472124
-
A Bayesian analysis of simulation algorithms for inference in belief networks
-
P. Dagum and E. Horvitz, A Bayesian analysis of simulation algorithms for inference in belief networks, Networks 23 (1993) 499-516.
-
(1993)
Networks
, vol.23
, pp. 499-516
-
-
Dagum, P.1
Horvitz, E.2
-
9
-
-
0029516817
-
An optimal algorithm for Monte Carlo estimation
-
Milwaukee, WI
-
P. Dagum, R. Karp, M. Luby and S. Ross, An optimal algorithm for Monte Carlo estimation, in: Proceedings 36th IEEE Symposium on Foundations of Computer Science, Milwaukee, WI (1995) 142-149.
-
(1995)
Proceedings 36th IEEE Symposium on Foundations of Computer Science
, pp. 142-149
-
-
Dagum, P.1
Karp, R.2
Luby, M.3
Ross, S.4
-
10
-
-
0027560587
-
Approximating probabilistic inference in Bayesian belief networks is NP-hard
-
P. Dagum and M. Luby, Approximating probabilistic inference in Bayesian belief networks is NP-hard, Artificial Intelligence 60 (1993) 141-153.
-
(1993)
Artificial Intelligence
, vol.60
, pp. 141-153
-
-
Dagum, P.1
Luby, M.2
-
11
-
-
0000348244
-
Incremental probabilistic inference
-
Washington, DC Association for Uncertainty in Artificial Intelligence
-
B. D'Ambrosio, Incremental probabilistic inference, in: Proceedings 9th Conference on Uncertainty in Artificial Intelligence, Washington, DC (Association for Uncertainty in Artificial Intelligence, 1993) 301-308.
-
(1993)
Proceedings 9th Conference on Uncertainty in Artificial Intelligence
, pp. 301-308
-
-
D'Ambrosio, B.1
-
12
-
-
0027004045
-
Approximations of general independent distributions
-
G. Even, O. Goldreich, M. Luby, N. Nisan and B. Velickovic, Approximations of general independent distributions, in: Proceedings 24th IEEE Annual Symposium on Theory of Computing (1992).
-
(1992)
Proceedings 24th IEEE Annual Symposium on Theory of Computing
-
-
Even, G.1
Goldreich, O.2
Luby, M.3
Nisan, N.4
Velickovic, B.5
-
13
-
-
0039223218
-
Weighing and integrating evidence for stochastic simulation in Bayesian networks
-
M. Henrion, R.D. Shachter, L.N. Kanal and J.F. Lemmer, eds., Elsevier, Amsterdam
-
R. Fung and K.-C. Chang, Weighing and integrating evidence for stochastic simulation in Bayesian networks, in: M. Henrion, R.D. Shachter, L.N. Kanal and J.F. Lemmer, eds., Uncertainty in Artificial Intelligence 5 (Elsevier, Amsterdam, 1990) 209-219.
-
(1990)
Uncertainty in Artificial Intelligence
, vol.5
, pp. 209-219
-
-
Fung, R.1
Chang, K.-C.2
-
15
-
-
0001247275
-
Propagating uncertainty in Bayesian networks by probabilistic logic sampling
-
J.F. Lemmer and L.N. Kanal, eds., North-Holland, Amsterdam
-
M. Henrion, Propagating uncertainty in Bayesian networks by probabilistic logic sampling, in: J.F. Lemmer and L.N. Kanal, eds., Uncertainty in Artificial Intelligence 2 (North-Holland, Amsterdam, 1988) 149-163.
-
(1988)
Uncertainty in Artificial Intelligence
, vol.2
, pp. 149-163
-
-
Henrion, M.1
-
16
-
-
0037810161
-
Search-based methods to bound diagnostic probabilities in very large belief nets
-
University of Los Angeles, Los Angeles, CA
-
M. Henrion, Search-based methods to bound diagnostic probabilities in very large belief nets, in: Proceedings 7th Workshop on Uncertainty in Artificial Intelligence, University of Los Angeles, Los Angeles, CA (1991).
-
(1991)
Proceedings 7th Workshop on Uncertainty in Artificial Intelligence
-
-
Henrion, M.1
-
17
-
-
0006448878
-
Bounded conditioning: Flexible inference for decisions under scarce resources
-
Windsor, Ont.
-
E. Horvitz, H.J. Suermondt and G.F. Cooper, Bounded conditioning: flexible inference for decisions under scarce resources, in: Proceedings 1989 Workshop on Uncertainty in Artificial Intelligence, Windsor, Ont. (1989) 182-193.
-
(1989)
Proceedings 1989 Workshop on Uncertainty in Artificial Intelligence
, pp. 182-193
-
-
Horvitz, E.1
Suermondt, H.J.2
Cooper, G.F.3
-
18
-
-
0345250958
-
Efficient search-based inference for noisy-OR belief networks: TopEpsilon
-
Portland, OR American Association for Artificial Intelligence
-
K. Huang and M. Henrion, Efficient search-based inference for noisy-OR belief networks: TopEpsilon, in: Proceedings 12th Conference on Uncertainty in Artificial Intelligence, Portland, OR (American Association for Artificial Intelligence, 1996) 325-331.
-
(1996)
Proceedings 12th Conference on Uncertainty in Artificial Intelligence
, pp. 325-331
-
-
Huang, K.1
Henrion, M.2
-
19
-
-
0001698979
-
Bayesian updating in causal probabilistic networks by local computations
-
F.V. Jensen, S.L. Lauritzen and K.G. Olesen, Bayesian updating in causal probabilistic networks by local computations, Comput. Statist. Quarterly 4 (1990) 269-282.
-
(1990)
Comput. Statist. Quarterly
, vol.4
, pp. 269-282
-
-
Jensen, F.V.1
Lauritzen, S.L.2
Olesen, K.G.3
-
20
-
-
0001202403
-
Monte-Carlo approximation algorithms for enumeration problems
-
R. Karp, M. Luby and N. Madras, Monte-Carlo approximation algorithms for enumeration problems, J. Algorithms 10 (1989) 429-448.
-
(1989)
J. Algorithms
, vol.10
, pp. 429-448
-
-
Karp, R.1
Luby, M.2
Madras, N.3
-
21
-
-
0001006209
-
Local computations with probabilities on graphical structures and their application to expert systems
-
S.L. Lauritzen and D. Spiegelhalter, Local computations with probabilities on graphical structures and their application to expert systems, J. Royal Statist. Soc. Ser. B 50 (1988).
-
(1988)
J. Royal Statist. Soc. Ser. B
, vol.50
-
-
Lauritzen, S.L.1
Spiegelhalter, D.2
-
24
-
-
0008827213
-
Pseudorandom bits for constant depth circuits
-
N. Nisan, Pseudorandom bits for constant depth circuits, Combinatorica 11 (1991) 63-70.
-
(1991)
Combinatorica
, vol.11
, pp. 63-70
-
-
Nisan, N.1
-
25
-
-
0023347981
-
Evidential reasoning using stochastic simulation of causal models
-
J. Pearl, Evidential reasoning using stochastic simulation of causal models, Artificial Intelligence 32 (1987) 245-257.
-
(1987)
Artificial Intelligence
, vol.32
, pp. 245-257
-
-
Pearl, J.1
-
26
-
-
30244530598
-
Evidential reasoning using stochastic simulation of causal models
-
J. Pearl, Evidential reasoning using stochastic simulation of causal models (Addendum), Artificial Intelligence 33 (1987) 131.
-
(1987)
Artificial Intelligence
, vol.33
, pp. 131
-
-
Pearl, J.1
-
28
-
-
84939750950
-
A probabilistic causal model for diagnostic problem solving - Part 1: Integrating symbolic causal inference with numeric probabilistic inference
-
Y. Peng and J.A. Reggia, A probabilistic causal model for diagnostic problem solving - Part 1: Integrating symbolic causal inference with numeric probabilistic inference, IEEE Trans. Systems, Man and Cybernetics 17 (1987) 146-162.
-
(1987)
IEEE Trans. Systems, Man and Cybernetics
, vol.17
, pp. 146-162
-
-
Peng, Y.1
Reggia, J.A.2
-
29
-
-
0023347137
-
A probabilistic causal model for diagnostic problem solving - Part 2: Diagnostic strategy
-
Special Issue on Diagnosis
-
Y. Peng and J.A. Reggia, A probabilistic causal model for diagnostic problem solving - Part 2: Diagnostic strategy, IEEE Trans. Systems, Man and Cybernetics, Special Issue on Diagnosis 17 (1987) 395-406.
-
(1987)
IEEE Trans. Systems, Man and Cybernetics
, vol.17
, pp. 395-406
-
-
Peng, Y.1
Reggia, J.A.2
-
30
-
-
0006411640
-
Average-case analysis of a search algorithm for estimating prior and posterior probabilities in Bayesian networks with extreme probabilities
-
Chambery
-
D. Poole, Average-case analysis of a search algorithm for estimating prior and posterior probabilities in Bayesian networks with extreme probabilities, in: Proceedings IJCAI-93, Chambery (1993) 606-612.
-
(1993)
Proceedings IJCAI-93
, pp. 606-612
-
-
Poole, D.1
-
31
-
-
0345613137
-
Optimal Monte Carlo estimation of belief network inference
-
Portland, OR American Association for Artificial Intelligence
-
M. Pradhan and P. Dagum, Optimal Monte Carlo estimation of belief network inference, in: Proceedings 12th Conference on Uncertainty in Artificial Intelligence, Portland, OR (American Association for Artificial Intelligence, 1996) 446-453.
-
(1996)
Proceedings 12th Conference on Uncertainty in Artificial Intelligence
, pp. 446-453
-
-
Pradhan, M.1
Dagum, P.2
-
33
-
-
85013513795
-
Simulation approaches to general probabilistic inference on belief networks
-
M. Henrion, R.D. Shachter, L.N. Kanal and J.F. Lemmer, eds., Elsevier, Amsterdam
-
R.D. Shachter and M. Peot, Simulation approaches to general probabilistic inference on belief networks, in: M. Henrion, R.D. Shachter, L.N. Kanal and J.F. Lemmer, eds., Uncertainty in Artificial Intelligence, Vol. 5 (Elsevier, Amsterdam, 1990) 221-231.
-
(1990)
Uncertainty in Artificial Intelligence
, vol.5
, pp. 221-231
-
-
Shachter, R.D.1
Peot, M.2
|