메뉴 건너뛰기




Volumn 46, Issue 2, 2007, Pages 320-333

Theoretical analysis and practical insights on importance sampling in Bayesian networks

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHMS; ARTIFICIAL INTELLIGENCE; HEURISTIC METHODS; MATHEMATICAL MODELS; PROBABILITY;

EID: 34648834540     PISSN: 0888613X     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.ijar.2006.09.006     Document Type: Article
Times cited : (12)

References (25)
  • 2
    • 0001249662 scopus 로고    scopus 로고
    • BN-AIS: An adaptive importance sampling algorithm for evidential reasoning in large Bayesian networks
    • Cheng J., and Druzdzel M.J. BN-AIS: An adaptive importance sampling algorithm for evidential reasoning in large Bayesian networks. Journal of Artificial Intelligence Research 13 (2000) 155-188
    • (2000) Journal of Artificial Intelligence Research , vol.13 , pp. 155-188
    • Cheng, J.1    Druzdzel, M.J.2
  • 3
    • 0025401005 scopus 로고
    • The computational complexity of probabilistic inference using Bayesian belief networks
    • Cooper G.F. The computational complexity of probabilistic inference using Bayesian belief networks. Artificial Intelligence 42 2-3 (1990) 393-405
    • (1990) Artificial Intelligence , vol.42 , Issue.2-3 , pp. 393-405
    • Cooper, G.F.1
  • 4
    • 0027560587 scopus 로고
    • Approximating probabilistic inference in Bayesian belief networks is NP-hard
    • Dagum P., and Luby M. Approximating probabilistic inference in Bayesian belief networks is NP-hard. Artificial Intelligence 60 1 (1993) 141-153
    • (1993) Artificial Intelligence , vol.60 , Issue.1 , pp. 141-153
    • Dagum, P.1    Luby, M.2
  • 6
    • 0039223218 scopus 로고
    • Weighing and integrating evidence for stochastic simulation in Bayesian networks
    • Henrion M., Shachter R., Kanal L., and Lemmer J. (Eds), Elsevier Science Publishing Company, Inc., New York, NY
    • Fung R., and Chang K.C. Weighing and integrating evidence for stochastic simulation in Bayesian networks. In: Henrion M., Shachter R., Kanal L., and Lemmer J. (Eds). Uncertainty in Artificial Intelligence 5 (1989), Elsevier Science Publishing Company, Inc., New York, NY 209-219
    • (1989) Uncertainty in Artificial Intelligence 5 , pp. 209-219
    • Fung, R.1    Chang, K.C.2
  • 8
    • 0001667705 scopus 로고
    • Bayesian inference in econometric models using Monte Carlo integration
    • Geweke J. Bayesian inference in econometric models using Monte Carlo integration. Econometrica 57 6 (1989) 1317-1339
    • (1989) Econometrica , vol.57 , Issue.6 , pp. 1317-1339
    • Geweke, J.1
  • 9
    • 0001071045 scopus 로고    scopus 로고
    • Pruned-enriched Rosenbluth method: Simulations of θ polymers of chain length up to 1 000 000
    • Grassberger P. Pruned-enriched Rosenbluth method: Simulations of θ polymers of chain length up to 1 000 000. Physical Review E 56 Sept. (1997) 3682-3693
    • (1997) Physical Review E , vol.56 , Issue.Sept , pp. 3682-3693
    • Grassberger, P.1
  • 10
    • 0001247275 scopus 로고
    • Propagating uncertainty in Bayesian networks by probalistic logic sampling
    • Elsevier Science Publishing Company, Inc., New York, NY
    • Henrion M. Propagating uncertainty in Bayesian networks by probalistic logic sampling. Uncertainty in Artificial Intelligence vol. 2 (1988), Elsevier Science Publishing Company, Inc., New York, NY 149-163
    • (1988) Uncertainty in Artificial Intelligence , vol.2 , pp. 149-163
    • Henrion, M.1
  • 11
    • 0007178970 scopus 로고    scopus 로고
    • A Monte Carlo algorithm for probabilistic propagation in belief networks based on importance sampling and stratified simulation techniques
    • Hernandez L.D., Moral S., and Salmeron A. A Monte Carlo algorithm for probabilistic propagation in belief networks based on importance sampling and stratified simulation techniques. International Journal of Approximate Reasoning 18 (1998) 53-91
    • (1998) International Journal of Approximate Reasoning , vol.18 , pp. 53-91
    • Hernandez, L.D.1    Moral, S.2    Salmeron, A.3
  • 13
    • 0036744537 scopus 로고    scopus 로고
    • Dynamically weighted importance sampling in Monte Carlo computation
    • Liang F. Dynamically weighted importance sampling in Monte Carlo computation. Journal of the American Statistical Association 97 (2002) 807-821
    • (2002) Journal of the American Statistical Association , vol.97 , pp. 807-821
    • Liang, F.1
  • 16
    • 8344266843 scopus 로고    scopus 로고
    • S. Moral, A. Salmeron, Dynamic importance sampling computation in Bayesian networks, in: Proceedings of Seventh European Conference on Symbolic and Quantitative Approaches to Reasoning with Uncertainty (ECSQARU-03), 2003, pp. 137-148.
  • 17
    • 34648871378 scopus 로고    scopus 로고
    • R.M. Neal, Annealed importance sampling. Technical report no. 9805, Dept. of Statistics, University of Toronto, 1998.
  • 20
    • 36849137515 scopus 로고
    • Monte Carlo calculation of the average extension of molecular chains
    • Rosenbluth M.N., and Rosenbluth A.W. Monte Carlo calculation of the average extension of molecular chains. Journal of Chemical Physics 23 256 (1955)
    • (1955) Journal of Chemical Physics , vol.23 , Issue.256
    • Rosenbluth, M.N.1    Rosenbluth, A.W.2
  • 22
    • 85013513795 scopus 로고
    • Simulation approaches to general probabilistic inference on belief networks
    • Henrion M., Shachter R., Kanal L., and Lemmer J. (Eds), Elsevier Science Publishing Company, Inc., New York, NY
    • Shachter R.D., and Peot M.A. Simulation approaches to general probabilistic inference on belief networks. In: Henrion M., Shachter R., Kanal L., and Lemmer J. (Eds). Uncertainty in Artificial Intelligence vol. 5 (1989), Elsevier Science Publishing Company, Inc., New York, NY 221-231
    • (1989) Uncertainty in Artificial Intelligence , vol.5 , pp. 221-231
    • Shachter, R.D.1    Peot, M.A.2
  • 24
    • 34648860191 scopus 로고    scopus 로고
    • C. Yuan, M.J. Druzdzel, A comparison of the effectiveness of two heuristics for importance sampling, in: Proceedings of the Second European Workshop on Probabilistic Graphical Models (PGM'04), Leiden, The Netherlands, 2004, pp. 225-232.
  • 25
    • 33748255514 scopus 로고    scopus 로고
    • Importance sampling algorithms for Bayesian networks: principles and performance
    • Yuan C., and Druzdzel M.J. Importance sampling algorithms for Bayesian networks: principles and performance. Mathematical and Computer Modelling 43 (2006) 1189-1207
    • (2006) Mathematical and Computer Modelling , vol.43 , pp. 1189-1207
    • Yuan, C.1    Druzdzel, M.J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.