메뉴 건너뛰기




Volumn 5, Issue , 2014, Pages 3620-3628

Structured recurrent temporal restricted Boltzmann machines

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL INTELLIGENCE; GRAPHIC METHODS; LEARNING SYSTEMS; SPEECH RECOGNITION;

EID: 84919828137     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (35)

References (25)
  • 1
    • 41549101939 scopus 로고    scopus 로고
    • Model selection through sparse maximum ukelihood estimation for multivariate gaussian or binary data
    • Banerjee, O., Ghaoui, L. E., and D'aspremont, A. Model selection through sparse maximum Ukelihood estimation for multivariate Gaussian or binary data. Journal of Machine Learning Research, 9:485-516, 2008.
    • (2008) Journal of Machine Learning Research , vol.9 , pp. 485-516
    • Banerjee, O.1    Ghaoui, L.E.2    D'Aspremont, A.3
  • 3
    • 84867129058 scopus 로고    scopus 로고
    • Modeling temporal dependencies in high-dimensional sequences: Application to polyphonic music generation and transcription
    • Boulanger-Lewandowski, N., Bengio, Y, and Vincent, R Modeling temporal dependencies in high-dimensional sequences: Application to polyphonic music generation and transcription. In ICML, 2012.
    • (2012) ICML
    • Boulanger-Lewandowski, N.1    Bengio, Y.2    Vincent, R.3
  • 4
    • 80053436198 scopus 로고    scopus 로고
    • Unsupervised models of images by spike and-slab RBMs
    • Courville, A. C, Bergstra, J., and Bengio, Y. Unsupervised models of images by spike and-slab RBMs. In ICML, 2011a.
    • (2011) ICML
    • Courville, A.C.1    Bergstra, J.2    Bengio, Y.3
  • 5
    • 84879854573 scopus 로고    scopus 로고
    • A spike and slab restricted Boltzmann machine
    • Courville, A. C, Bergstra, J., and Bengio, Y. A spike and slab restricted Boltzmann machine. In AISTATS, 2011b.
    • (2011) AISTATS
    • Courville, A.C.1    Bergstra, J.2    Bengio, Y.3
  • 6
    • 85162069624 scopus 로고    scopus 로고
    • Phone recognition with the mean-covariance restricted Boltzmann machine
    • Dahl., G. E., Ranzato, M., Rahman, M. A., and Hinton, G. E. Phone recognition with the mean-covariance restricted Boltzmann machine. In NIPS, 2010.
    • (2010) NIPS
    • Dahl, G.E.1    Ranzato, M.2    Rahman, M.A.3    Hinton, G.E.4
  • 8
    • 41549108614 scopus 로고    scopus 로고
    • Sparse inverse covariance estimation with the graphical lasso
    • Eriedman, J., Hastie, T., and Tibshirani, R. Sparse inverse covariance estimation with the graphical lasso. Biostatistics, (5):432441, 2008.
    • (2008) Biostatistics , vol.5 , pp. 432441
    • Eriedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 9
    • 0013344078 scopus 로고    scopus 로고
    • Training products of experts by minimizing contrastive divergence
    • Hinton, G. E. Training products of experts by minimizing contrastive divergence. Neural Computation, 14(8): 1771-1800, 2002.
    • (2002) Neural Computation , vol.14 , Issue.8 , pp. 1771-1800
    • Hinton, G.E.1
  • 10
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionality of data with neural networks
    • Hinton, G. E. and Salakhutdinov, R. Reducing the dimensionality of data with neural networks. Science, 313: 504-507, 2006.
    • (2006) Science , vol.313 , pp. 504-507
    • Hinton, G.E.1    Salakhutdinov, R.2
  • 12
    • 85161980001 scopus 로고    scopus 로고
    • Sparse deep belief net model for visual area V2
    • Lee, H., Ekanadham, C, and Ng, A. Y. Sparse deep belief net model for visual area V2. In NIPS. 2008.
    • (2008) NIPS
    • Lee, H.1    Ekanadham, C.2    Ng, A.Y.3
  • 13
    • 80053451847 scopus 로고    scopus 로고
    • Learning recurrent neural networks with Hessian-free optimization
    • Martens, J. and Sutskever, I. Learning recurrent neural networks with Hessian-free optimization. In ICML, 2011.
    • (2011) ICML
    • Martens, J.1    Sutskever, I.2
  • 14
    • 84877789440 scopus 로고    scopus 로고
    • Structured learning of Gaussian graphical models
    • Mohan, K., Chung, M., Han, S., Witten, D., Lee, S. I., and M, E. Structured learning of Gaussian graphical models. In NIPS. 2012.
    • (2012) NIPS
    • Mohan, K.1    Chung, M.2    Han, S.3    Witten, D.4    Lee, S.I.5
  • 15
    • 84897497795 scopus 로고    scopus 로고
    • On the difficulty of training recurrent neural networks
    • Pascanu, R., Mikolov, T., and Bengio, Y. On the difficulty of training recurrent neural networks. In ICML, volume 28,2013.
    • (2013) ICML , vol.28
    • Pascanu, R.1    Mikolov, T.2    Bengio, Y.3
  • 17
    • 0022594196 scopus 로고
    • An introduction to hidden markov models
    • Rabiner, L. and Juang, B.-H. An introduction to hidden markov models. ASSP Magazine, IEEE, 3(1):4-16, 1986.
    • (1986) ASSP Magazine, IEEE , vol.3 , Issue.1 , pp. 4-16
    • Rabiner, L.1    Juang, B.-H.2
  • 18
    • 77955989954 scopus 로고    scopus 로고
    • Modeling pixel means and covariances using factorized third-order bohzmann machines
    • Ranzato, M. and Hinton, G. E. Modeling pixel means and covariances using factorized third-order bohzmann machines. In CVPR, 2010.
    • (2010) CVPR
    • Ranzato, M.1    Hinton, G.E.2
  • 20
    • 0000329993 scopus 로고
    • Information processing in dynamical systems: Foundations of harmony theory
    • Rumelhart D. E. McClelland J. L. et al. (eds.). MIT Press, Cambridge
    • Smolensky, P. Information processing in dynamical systems: Foundations of harmony theory. In Rumelhart, D. E., McClelland, J. L., et al. (eds.). Parallel Distributed Processing: Volume 1: Foundations, pp. 194-281. MIT Press, Cambridge, 1987.
    • (1987) Parallel Distributed Processing: Volume 1: Foundations , pp. 194-281
    • Smolensky, P.1
  • 21
    • 78649428828 scopus 로고    scopus 로고
    • Topology selection in graphical models of autoregressive processes
    • Songsiri, J. and Vandenberghe, L. Topology selection in graphical models of autoregressive processes. Journal of Machine Learning Research, 11:2671-2705, 2010.
    • (2010) Journal of Machine Learning Research , vol.11 , pp. 2671-2705
    • Songsiri, J.1    Vandenberghe, L.2
  • 22
    • 34547997421 scopus 로고    scopus 로고
    • Learning multilevel distributed representations for high-dimensional sequences
    • Sutskever, I. and Hinton, G. E. Learning multilevel distributed representations for high-dimensional sequences. In AISTATS, 2007.
    • (2007) AISTATS
    • Sutskever, I.1    Hinton, G.E.2
  • 23
    • 84868323622 scopus 로고    scopus 로고
    • The recurrent temporal restricted Boltzmann machine
    • Sutskever, I., Hinton, G. E., and Graham, T. W. The recurrent temporal restricted Boltzmann machine. In NIPS, 2008.
    • (2008) NIPS
    • Sutskever, I.1    Hinton, G.E.2    Graham, T.W.3
  • 24
    • 84897510162 scopus 로고    scopus 로고
    • On the importance of initialization and momentum in deep learning
    • Sutskever, I., Martens, J., Dahl, G. E., and Hinton, G. E. On the importance of initialization and momentum in deep learning. In ICML, 2013.
    • (2013) ICML
    • Sutskever, I.1    Martens, J.2    Dahl, G.E.3    Hinton, G.E.4
  • 25
    • 79955836081 scopus 로고    scopus 로고
    • Two distributed-state models for generating high-dimensional time series
    • Taylor, G. W., Hinton, G. E., and Roweis, S. T. Two distributed-state models for generating high-dimensional time series. Journal of Machine Learning Research, 12: 1025-1068, 2011.
    • (2011) Journal of Machine Learning Research , vol.12 , pp. 1025-1068
    • Taylor, G.W.1    Hinton, G.E.2    Roweis, S.T.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.