-
1
-
-
41549101939
-
Model selection through sparse maximum ukelihood estimation for multivariate gaussian or binary data
-
Banerjee, O., Ghaoui, L. E., and D'aspremont, A. Model selection through sparse maximum Ukelihood estimation for multivariate Gaussian or binary data. Journal of Machine Learning Research, 9:485-516, 2008.
-
(2008)
Journal of Machine Learning Research
, vol.9
, pp. 485-516
-
-
Banerjee, O.1
Ghaoui, L.E.2
D'Aspremont, A.3
-
3
-
-
84867129058
-
Modeling temporal dependencies in high-dimensional sequences: Application to polyphonic music generation and transcription
-
Boulanger-Lewandowski, N., Bengio, Y, and Vincent, R Modeling temporal dependencies in high-dimensional sequences: Application to polyphonic music generation and transcription. In ICML, 2012.
-
(2012)
ICML
-
-
Boulanger-Lewandowski, N.1
Bengio, Y.2
Vincent, R.3
-
4
-
-
80053436198
-
Unsupervised models of images by spike and-slab RBMs
-
Courville, A. C, Bergstra, J., and Bengio, Y. Unsupervised models of images by spike and-slab RBMs. In ICML, 2011a.
-
(2011)
ICML
-
-
Courville, A.C.1
Bergstra, J.2
Bengio, Y.3
-
6
-
-
85162069624
-
Phone recognition with the mean-covariance restricted Boltzmann machine
-
Dahl., G. E., Ranzato, M., Rahman, M. A., and Hinton, G. E. Phone recognition with the mean-covariance restricted Boltzmann machine. In NIPS, 2010.
-
(2010)
NIPS
-
-
Dahl, G.E.1
Ranzato, M.2
Rahman, M.A.3
Hinton, G.E.4
-
7
-
-
80053440619
-
Infinite dynamic Bayesian networks
-
Doshi, E, Wingate, D., Tenenbaum, J. B., and Roy, N. Infinite dynamic Bayesian networks. In ICML, 2011.
-
(2011)
ICML
-
-
Doshi, E.1
Wingate, D.2
Tenenbaum, J.B.3
Roy, N.4
-
8
-
-
41549108614
-
Sparse inverse covariance estimation with the graphical lasso
-
Eriedman, J., Hastie, T., and Tibshirani, R. Sparse inverse covariance estimation with the graphical lasso. Biostatistics, (5):432441, 2008.
-
(2008)
Biostatistics
, vol.5
, pp. 432441
-
-
Eriedman, J.1
Hastie, T.2
Tibshirani, R.3
-
9
-
-
0013344078
-
Training products of experts by minimizing contrastive divergence
-
Hinton, G. E. Training products of experts by minimizing contrastive divergence. Neural Computation, 14(8): 1771-1800, 2002.
-
(2002)
Neural Computation
, vol.14
, Issue.8
, pp. 1771-1800
-
-
Hinton, G.E.1
-
10
-
-
33746600649
-
Reducing the dimensionality of data with neural networks
-
Hinton, G. E. and Salakhutdinov, R. Reducing the dimensionality of data with neural networks. Science, 313: 504-507, 2006.
-
(2006)
Science
, vol.313
, pp. 504-507
-
-
Hinton, G.E.1
Salakhutdinov, R.2
-
12
-
-
85161980001
-
Sparse deep belief net model for visual area V2
-
Lee, H., Ekanadham, C, and Ng, A. Y. Sparse deep belief net model for visual area V2. In NIPS. 2008.
-
(2008)
NIPS
-
-
Lee, H.1
Ekanadham, C.2
Ng, A.Y.3
-
13
-
-
80053451847
-
Learning recurrent neural networks with Hessian-free optimization
-
Martens, J. and Sutskever, I. Learning recurrent neural networks with Hessian-free optimization. In ICML, 2011.
-
(2011)
ICML
-
-
Martens, J.1
Sutskever, I.2
-
14
-
-
84877789440
-
Structured learning of Gaussian graphical models
-
Mohan, K., Chung, M., Han, S., Witten, D., Lee, S. I., and M, E. Structured learning of Gaussian graphical models. In NIPS. 2012.
-
(2012)
NIPS
-
-
Mohan, K.1
Chung, M.2
Han, S.3
Witten, D.4
Lee, S.I.5
-
15
-
-
84897497795
-
On the difficulty of training recurrent neural networks
-
Pascanu, R., Mikolov, T., and Bengio, Y. On the difficulty of training recurrent neural networks. In ICML, volume 28,2013.
-
(2013)
ICML
, vol.28
-
-
Pascanu, R.1
Mikolov, T.2
Bengio, Y.3
-
16
-
-
77955992535
-
Temporal causality for the analysis of visual events
-
Prabhakar, K., Oh, S. M., Wang, R, Abowd., G. D., and Rehg, J. M. Temporal causality for the analysis of visual events. In CVPR, 2010.
-
(2010)
CVPR
-
-
Prabhakar, K.1
Oh, S.M.2
Wang, R.3
Abowd, G.D.4
Rehg, J.M.5
-
17
-
-
0022594196
-
An introduction to hidden markov models
-
Rabiner, L. and Juang, B.-H. An introduction to hidden markov models. ASSP Magazine, IEEE, 3(1):4-16, 1986.
-
(1986)
ASSP Magazine, IEEE
, vol.3
, Issue.1
, pp. 4-16
-
-
Rabiner, L.1
Juang, B.-H.2
-
18
-
-
77955989954
-
Modeling pixel means and covariances using factorized third-order bohzmann machines
-
Ranzato, M. and Hinton, G. E. Modeling pixel means and covariances using factorized third-order bohzmann machines. In CVPR, 2010.
-
(2010)
CVPR
-
-
Ranzato, M.1
Hinton, G.E.2
-
19
-
-
0000646059
-
Learning internal representations by error propagation
-
Rumelhart, D. E. and Mcclelland, J. L. (eds.). MIT Press, Cambridge, MA
-
Rumelhart, D. E., Hinton, G. E., and Williams, R. J. Learning internal representations by error propagation. In Rumelhart, D. E. and Mcclelland, J. L. (eds.). Parallel Distributed Processing: Explorations in the Microstruc-ture of Cognition, Volume I: Foundations, pp. 318-362. MIT Press, Cambridge, MA, 1986.
-
(1986)
Parallel Distributed Processing: Explorations in the Microstruc-ture of Cognition, Volume I: Foundations
, pp. 318-362
-
-
Rumelhart, D.E.1
Hinton, G.E.2
Williams, R.J.3
-
20
-
-
0000329993
-
Information processing in dynamical systems: Foundations of harmony theory
-
Rumelhart D. E. McClelland J. L. et al. (eds.). MIT Press, Cambridge
-
Smolensky, P. Information processing in dynamical systems: Foundations of harmony theory. In Rumelhart, D. E., McClelland, J. L., et al. (eds.). Parallel Distributed Processing: Volume 1: Foundations, pp. 194-281. MIT Press, Cambridge, 1987.
-
(1987)
Parallel Distributed Processing: Volume 1: Foundations
, pp. 194-281
-
-
Smolensky, P.1
-
21
-
-
78649428828
-
Topology selection in graphical models of autoregressive processes
-
Songsiri, J. and Vandenberghe, L. Topology selection in graphical models of autoregressive processes. Journal of Machine Learning Research, 11:2671-2705, 2010.
-
(2010)
Journal of Machine Learning Research
, vol.11
, pp. 2671-2705
-
-
Songsiri, J.1
Vandenberghe, L.2
-
22
-
-
34547997421
-
Learning multilevel distributed representations for high-dimensional sequences
-
Sutskever, I. and Hinton, G. E. Learning multilevel distributed representations for high-dimensional sequences. In AISTATS, 2007.
-
(2007)
AISTATS
-
-
Sutskever, I.1
Hinton, G.E.2
-
23
-
-
84868323622
-
The recurrent temporal restricted Boltzmann machine
-
Sutskever, I., Hinton, G. E., and Graham, T. W. The recurrent temporal restricted Boltzmann machine. In NIPS, 2008.
-
(2008)
NIPS
-
-
Sutskever, I.1
Hinton, G.E.2
Graham, T.W.3
-
24
-
-
84897510162
-
On the importance of initialization and momentum in deep learning
-
Sutskever, I., Martens, J., Dahl, G. E., and Hinton, G. E. On the importance of initialization and momentum in deep learning. In ICML, 2013.
-
(2013)
ICML
-
-
Sutskever, I.1
Martens, J.2
Dahl, G.E.3
Hinton, G.E.4
-
25
-
-
79955836081
-
Two distributed-state models for generating high-dimensional time series
-
Taylor, G. W., Hinton, G. E., and Roweis, S. T. Two distributed-state models for generating high-dimensional time series. Journal of Machine Learning Research, 12: 1025-1068, 2011.
-
(2011)
Journal of Machine Learning Research
, vol.12
, pp. 1025-1068
-
-
Taylor, G.W.1
Hinton, G.E.2
Roweis, S.T.3
|