메뉴 건너뛰기




Volumn 11, Issue , 2010, Pages 3541-3570

Incremental sigmoid belief networks for grammar learning

Author keywords

Bayesian networks; Dynamic Bayesian networks; Grammar learning; Natural language parsing; Neural networks

Indexed keywords

ABSTRACT MODELS; BELIEF NETWORKS; DYNAMIC BAYESIAN NETWORKS; EXACT INFERENCE; GRAMMAR LEARNING; LATENT VARIABLE; MEAN FIELD APPROXIMATION; NATURAL LANGUAGE GRAMMARS; NATURAL LANGUAGE PARSING; STATISTICAL DEPENDENCIES; STRUCTURED PREDICTION; VARIATIONAL APPROXIMATION;

EID: 79551498700     PISSN: 15324435     EISSN: 15337928     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (10)

References (46)
  • 1
    • 25844498898 scopus 로고    scopus 로고
    • Intricacies of Collins' parsing model
    • Dan M. Bikel. Intricacies of Collins' parsing model. Computational Linguistics, 30(4):479-511, 2004.
    • (2004) Computational Linguistics , vol.30 , Issue.4 , pp. 479-511
    • Bikel, D.M.1
  • 6
    • 0020748239 scopus 로고
    • Computer-intensive methods in statistics
    • Persi Diaconis and Bradley Efron. Computer-intensive methods in statistics. Scientific American, pages 116-130, 1983.
    • (1983) Scientific American , pp. 116-130
    • Diaconis, P.1    Efron, B.2
  • 14
    • 0029652445 scopus 로고
    • The wake-sleep algorithm for unsupervised neural networks
    • Geoffrey E. Hinton, Peter Dayan, Brendan Frey, and Radford Neal. The wake-sleep algorithm for unsupervised neural networks. Science, 268:1158-1161, 1995.
    • (1995) Science , vol.268 , pp. 1158-1161
    • Hinton, G.E.1    Dayan, P.2    Frey, B.3    Neal, R.4
  • 15
    • 0005921873 scopus 로고    scopus 로고
    • PCFG models of linguistic tree representations
    • Mark Johnson. PCFG models of linguistic tree representations. Computational Linguistics, 24(4): 613-632, 1998.
    • (1998) Computational Linguistics , vol.24 , Issue.4 , pp. 613-632
    • Johnson, M.1
  • 16
    • 0033225865 scopus 로고    scopus 로고
    • An introduction to variational methods for graphical models
    • Michael I. Jordan, editor, MIT Press, Cambridge, MA
    • Michael I. Jordan, Zoubin Ghahramani, Tommi Jaakkola, and Lawrence K. Saul. An introduction to variational methods for graphical models. In Michael I. Jordan, editor, Learning in Graphical Models. MIT Press, Cambridge, MA, 1999.
    • (1999) Learning in Graphical Models
    • Jordan, M.I.1    Ghahramani, Z.2    Jaakkola, T.3    Saul, L.K.4
  • 19
    • 0142192295 scopus 로고    scopus 로고
    • Conditional random fields: Probabilistic models for segmenting and labeling sequence data
    • Morgan Kaufmann, San Francisco, CA
    • John Lafferty, Andrew McCallum, and Fernando Pereira. Conditional random fields: Probabilistic models for segmenting and labeling sequence data. In Proceedings of the 18th International Conference on Machine Learning, pages 282-289.Morgan Kaufmann, San Francisco, CA, 2001.
    • (2001) Proceedings of the 18th International Conference on Machine Learning , pp. 282-289
    • Lafferty, J.1    McCallum, A.2    Pereira, F.3
  • 21
    • 34249852033 scopus 로고
    • Building a large annotated corpus of English: The Penn Treebank
    • Mitchell P. Marcus, Beatrice Santorini, and Mary Ann Marcinkiewicz. Building a large annotated corpus of English: The Penn Treebank. Computational Linguistics, 19(2):313-330, 1993.
    • (1993) Computational Linguistics , vol.19 , Issue.2 , pp. 313-330
    • Marcus, M.P.1    Santorini, B.2    Marcinkiewicz, M.A.3
  • 25
    • 44049116681 scopus 로고
    • Connectionist learning of belief networks
    • Radford Neal. Connectionist learning of belief networks. Artificial Intelligence, 56:71-113, 1992.
    • (1992) Artificial Intelligence , vol.56 , pp. 71-113
    • Neal, R.1
  • 33
    • 80053437970 scopus 로고    scopus 로고
    • Inference and learning in large factor graphs with adaptive proposal distributions and a rank-based objective
    • University of Massachusetts
    • Khashayar Rohanimanesh, Michael Wick, and Andrew McCallum. Inference and learning in large factor graphs with adaptive proposal distributions and a rank-based objective. Technical Report UM-CS-2009-008, University of Massachusetts, 2009.
    • (2009) Technical Report UM-CS-2009-008
    • Rohanimanesh, K.1    Wick, M.2    McCallum, A.3
  • 34
    • 0000646059 scopus 로고
    • Learning internal representations by error propagation
    • D. E. Rumelhart and J. L. McClelland, editors, MIT Press, Cambridge, MA
    • David E. Rumelhart, Geoffrey E. Hinton, and Ronald J.Williams. Learning internal representations by error propagation. In D. E. Rumelhart and J. L. McClelland, editors, Parallel Distributed Processing, Vol 1, pages 318-362. MIT Press, Cambridge, MA, 1986.
    • (1986) Parallel Distributed Processing , vol.1 , pp. 318-362
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 36
    • 0003383444 scopus 로고    scopus 로고
    • A mean field learning algorithm for unsupervised neural networks
    • Michael I. Jordan, editor, MIT Press, Cambridge, MA
    • Lawrence K. Saul and Michael I. Jordan. A mean field learning algorithm for unsupervised neural networks. In Michael I. Jordan, editor, Learning in Graphical Models, pages 541-554. MIT Press, Cambridge, MA, 1999.
    • (1999) Learning in Graphical Models , pp. 541-554
    • Saul, L.K.1    Jordan, M.I.2
  • 39
    • 0036341851 scopus 로고
    • Computational complexity of probabilistic disambiguation
    • Khalil Sima'an. Computational complexity of probabilistic disambiguation. Grammars, 5:125-151, 1992.
    • (1992) Grammars , vol.5 , pp. 125-151
    • Sima'an, K.1
  • 40
    • 0018544552 scopus 로고
    • A method for transforming grammars into LL(k) form
    • Eljas Soisalon-Soininen and Esko Ukkonen. A method for transforming grammars into LL(k) form. Acta Informatica, 12:339-369, 1979.
    • (1979) Acta Informatica , vol.12 , pp. 339-369
    • Soisalon-Soininen, E.1    Ukkonen, E.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.