메뉴 건너뛰기




Volumn 17, Issue 1, 2016, Pages

Tree inference for single-cell data

Author keywords

[No Author keywords available]

Indexed keywords

JANUS KINASE 2; DNA;

EID: 84965070761     PISSN: 14747596     EISSN: 1474760X     Source Type: Journal    
DOI: 10.1186/s13059-016-0936-x     Document Type: Article
Times cited : (215)

References (41)
  • 1
    • 0017167185 scopus 로고
    • The clonal evolution of tumor cell populations
    • Nowell PC. The clonal evolution of tumor cell populations. Science. 1976; 194:23-8.
    • (1976) Science , vol.194 , pp. 23-28
    • Nowell, P.C.1
  • 5
    • 84867744264 scopus 로고    scopus 로고
    • Evolution of the cancer genome
    • Yates LR, Campbell PJ. Evolution of the cancer genome. Nat Rev Genet. 2012; 13:795-806.
    • (2012) Nat Rev Genet , vol.13 , pp. 795-806
    • Yates, L.R.1    Campbell, P.J.2
  • 6
    • 84856013431 scopus 로고    scopus 로고
    • Clonal evolution in cancer
    • Greaves M, Maley CC. Clonal evolution in cancer. Nature. 2012; 481:306-13.
    • (2012) Nature , vol.481 , pp. 306-313
    • Greaves, M.1    Maley, C.C.2
  • 8
    • 84862757952 scopus 로고    scopus 로고
    • Evolutionary dynamics of carcinogenesis and why targeted therapy does not work
    • Gillies RJ, Verduzco D, Gatenby RA. Evolutionary dynamics of carcinogenesis and why targeted therapy does not work. Nat Rev Cancer. 2012; 12:487-93.
    • (2012) Nat Rev Cancer , vol.12 , pp. 487-493
    • Gillies, R.J.1    Verduzco, D.2    Gatenby, R.A.3
  • 11
    • 84867121875 scopus 로고    scopus 로고
    • Intratumor heterogeneity: evolution through space and time
    • Swanton C. Intratumor heterogeneity: evolution through space and time. Cancer Res. 2012; 72:4875-82.
    • (2012) Cancer Res , vol.72 , pp. 4875-4882
    • Swanton, C.1
  • 12
    • 0004137004 scopus 로고    scopus 로고
    • Algorithms on strings, trees and sequences: computer science and computational biology
    • Cambridge: Cambridge University Press
    • Gusfield D. Algorithms on strings, trees and sequences: computer science and computational biology. Cambridge: Cambridge University Press; 1997.
    • (1997)
    • Gusfield, D.1
  • 13
    • 85027920141 scopus 로고    scopus 로고
    • Cancer genomics: one cell at a time
    • Navin NE. Cancer genomics: one cell at a time. Genome Biol. 2014; 15:452.
    • (2014) Genome Biol , vol.15 , pp. 452
    • Navin, N.E.1
  • 18
    • 84880934918 scopus 로고    scopus 로고
    • Theta: inferring intra-tumor heterogeneity from high-throughput dna sequencing data
    • Oesper L, Mahmoody A, Raphael BJ. Theta: inferring intra-tumor heterogeneity from high-throughput dna sequencing data. Genome Biol. 2013; 14:80.
    • (2013) Genome Biol , vol.14 , pp. 80
    • Oesper, L.1    Mahmoody, A.2    Raphael, B.J.3
  • 20
    • 84884963475 scopus 로고    scopus 로고
    • Trap: a tree approach for fingerprinting subclonal tumor composition
    • Strino F, Parisi F, Micsinai M, Kluger Y. Trap: a tree approach for fingerprinting subclonal tumor composition. Nucleic Acids Res. 2013; 41:165-5.
    • (2013) Nucleic Acids Res , vol.41 , pp. 165-165
    • Strino, F.1    Parisi, F.2    Micsinai, M.3    Kluger, Y.4
  • 21
    • 84902455399 scopus 로고    scopus 로고
    • A combinatorial approach for analyzing intra-tumor heterogeneity from high-throughput sequencing data
    • Hajirasouliha I, Mahmoody A, Raphael BJ. A combinatorial approach for analyzing intra-tumor heterogeneity from high-throughput sequencing data. Bioinformatics. 2014; 30:78-86.
    • (2014) Bioinformatics , vol.30 , pp. 78-86
    • Hajirasouliha, I.1    Mahmoody, A.2    Raphael, B.J.3
  • 22
    • 84931036281 scopus 로고    scopus 로고
    • Reconstruction of clonal trees and tumor composition from multi-sample sequencing data
    • El-Kebir M, Oesper L, Acheson-Field H, Raphael BJ. Reconstruction of clonal trees and tumor composition from multi-sample sequencing data. Bioinformatics. 2015; 31:62-70.
    • (2015) Bioinformatics , vol.31 , pp. 62-70
    • El-Kebir, M.1    Oesper, L.2    Acheson-Field, H.3    Raphael, B.J.4
  • 23
    • 84964314164 scopus 로고    scopus 로고
    • Subcloneseeker: a computational framework for reconstructing tumor clone structure for cancer variant interpretation and prioritization
    • Qiao Y, Quinlan AR, Jazaeri AA, Verhaak RG, Wheeler DA, Marth GT. Subcloneseeker: a computational framework for reconstructing tumor clone structure for cancer variant interpretation and prioritization. Genome Biol. 2014; 15:443.
    • (2014) Genome Biol , vol.15 , pp. 443
    • Qiao, Y.1    Quinlan, A.R.2    Jazaeri, A.A.3    Verhaak, R.G.4    Wheeler, D.A.5    Marth, G.T.6
  • 24
    • 84935825808 scopus 로고    scopus 로고
    • PhyloWGS: Reconstructing subclonal composition and evolution from whole-genome sequencing of tumors
    • Deshwar AG, Vembu S, Yung CK, Jang GH, Stein L, Morris Q. PhyloWGS: Reconstructing subclonal composition and evolution from whole-genome sequencing of tumors. Genome Biol. 2015; 16:35.
    • (2015) Genome Biol , vol.16 , pp. 35
    • Deshwar, A.G.1    Vembu, S.2    Yung, C.K.3    Jang, G.H.4    Stein, L.5    Morris, Q.6
  • 25
    • 84893164721 scopus 로고    scopus 로고
    • Inferring clonal evolution of tumors from single nucleotide somatic mutations
    • Jiao W, Vembu S, Deshwar AG, Stein L, Morris Q. Inferring clonal evolution of tumors from single nucleotide somatic mutations. BMC Bioinform. 2014; 15:35.
    • (2014) BMC Bioinform , vol.15 , pp. 35
    • Jiao, W.1    Vembu, S.2    Deshwar, A.G.3    Stein, L.4    Morris, Q.5
  • 29
    • 84896286643 scopus 로고    scopus 로고
    • Single cell analysis of cancer genomes
    • Van Loo P, Voet T. Single cell analysis of cancer genomes. Curr Opinion Genet Dev. 2014; 24:82-91.
    • (2014) Curr Opinion Genet Dev , vol.24 , pp. 82-91
    • Van Loo, P.1    Voet, T.2
  • 30
    • 84863229772 scopus 로고    scopus 로고
    • Single-cell exome sequencing and monoclonal evolution of a JAK2-negative myeloproliferative neoplasm
    • Hou Y, Song L, Zhu P, Zhang B, Tao Y, Xu X, Li F, Wu K, Liang J, Shao D, et al. Single-cell exome sequencing and monoclonal evolution of a JAK2-negative myeloproliferative neoplasm. Cell. 2012; 148:873-85.
    • (2012) Cell , vol.148 , pp. 873-885
    • Hou, Y.1    Song, L.2    Zhu, P.3    Zhang, B.4    Tao, Y.5    Xu, X.6    Li, F.7    Wu, K.8    Liang, J.9    Shao, D.10
  • 32
    • 37849054103 scopus 로고    scopus 로고
    • Integer programming formulations and computations solving phylogenetic and population genetic problems with missing or genotypic data
    • Berlin: Springer
    • Gusfield D, Frid Y, Brown D. Integer programming formulations and computations solving phylogenetic and population genetic problems with missing or genotypic data. In: Computing and combinatorics. Berlin: Springer: 2007. p. 51-64.
    • (2007) Computing and combinatorics , pp. 51-64
    • Gusfield, D.1    Frid, Y.2    Brown, D.3
  • 33
    • 84935892963 scopus 로고    scopus 로고
    • BitPhylogeny: a probabilistic framework for reconstructing intra-tumor phylogenies
    • Yuan K, Sakoparnig T, Markowetz F, Beerenwinkel N. BitPhylogeny: a probabilistic framework for reconstructing intra-tumor phylogenies. Genome Biol. 2015; 16:36.
    • (2015) Genome Biol , vol.16 , pp. 36
    • Yuan, K.1    Sakoparnig, T.2    Markowetz, F.3    Beerenwinkel, N.4
  • 34
    • 84892726448 scopus 로고    scopus 로고
    • Using single cell sequencing data to model the evolutionary history of a tumor
    • Kim KI, Simon R. Using single cell sequencing data to model the evolutionary history of a tumor. BMC Bioinform. 2014; 15:27.
    • (2014) BMC Bioinform , vol.15 , pp. 27
    • Kim, K.I.1    Simon, R.2
  • 35
    • 84863230091 scopus 로고    scopus 로고
    • Single-cell exome sequencing reveals single-nucleotide mutation characteristics of a kidney tumor
    • Xu X, Hou Y, Yin X, Bao L, Tang A, Song L, Li F, Tsang S, Wu K, Wu H, et al. Single-cell exome sequencing reveals single-nucleotide mutation characteristics of a kidney tumor. Cell. 2012; 148:886-95.
    • (2012) Cell , vol.148 , pp. 886-895
    • Xu, X.1    Hou, Y.2    Yin, X.3    Bao, L.4    Tang, A.5    Song, L.6    Li, F.7    Tsang, S.8    Wu, K.9    Wu, H.10
  • 37
    • 84886987303 scopus 로고    scopus 로고
    • Uniform random generation of large acyclic digraphs
    • Kuipers J, Moffa G. Uniform random generation of large acyclic digraphs. Stat Comput. 2015; 25:227-42.
    • (2015) Stat Comput , vol.25 , pp. 227-242
    • Kuipers, J.1    Moffa, G.2
  • 38
    • 0037262841 scopus 로고    scopus 로고
    • Being Bayesian about network structure. A Bayesian approach to structure discovery in Bayesian networks
    • Friedman N, Koller D. Being Bayesian about network structure. A Bayesian approach to structure discovery in Bayesian networks. Mach Learn. 2003; 50:95-125.
    • (2003) Mach Learn , vol.50 , pp. 95-125
    • Friedman, N.1    Koller, D.2
  • 39
    • 85019023792 scopus 로고    scopus 로고
    • Partition MCMC for inference on acyclic digraphs
    • Kuipers J, Moffa G. Partition MCMC for inference on acyclic digraphs. J Am Stat Assoc. 2016. doi: http://dx.doi.org/10.1080/01621459.2015.1133426.
    • (2016) J Am Stat Assoc
    • Kuipers, J.1    Moffa, G.2
  • 40
  • 41
    • 21844520724 scopus 로고
    • Bayesian graphical models for discrete data
    • Madigan D, York J. Bayesian graphical models for discrete data. Int Stat Rev. 1995; 63:215-32.
    • (1995) Int Stat Rev , vol.63 , pp. 215-232
    • Madigan, D.1    York, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.