메뉴 건너뛰기




Volumn 7, Issue 3, 2016, Pages 412-418

Reliable prediction of carbon monoxide using developed support vector machine

Author keywords

Artificial intelligence; Carbon monoxide; Support vector machine; Uncertainty

Indexed keywords


EID: 84964956017     PISSN: 13091042     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.apr.2015.10.022     Document Type: Article
Times cited : (63)

References (44)
  • 3
    • 34547131556 scopus 로고    scopus 로고
    • Analysis and prediction of flow from local source in a river basin using a neuro-fuzzy modeling tool
    • Aqil M., Kita I., Yano A., Nishiyama S. Analysis and prediction of flow from local source in a river basin using a neuro-fuzzy modeling tool. J. Environ. Manag. 2007, 85(1):215-223.
    • (2007) J. Environ. Manag. , vol.85 , Issue.1 , pp. 215-223
    • Aqil, M.1    Kita, I.2    Yano, A.3    Nishiyama, S.4
  • 4
    • 73749088417 scopus 로고    scopus 로고
    • Department of Civil and Environmental Engineering, Sharif University of Technology, Tehran, Iran, (M.Sc thesis)
    • Bayat R. Source Apportionment of Tehran's Air Pollution 2005, Department of Civil and Environmental Engineering, Sharif University of Technology, Tehran, Iran, (M.Sc thesis).
    • (2005) Source Apportionment of Tehran's Air Pollution
    • Bayat, R.1
  • 6
    • 0029528238 scopus 로고
    • CART decision-tree statistical analysis and prediction of summer season maximum surface ozone for the Vancouver, Montreal and Atlantic regions of Canada
    • Burrows W.R., Benjamin M., Beauchamp S., Lord E.R., McCollor D., Thomson B. CART decision-tree statistical analysis and prediction of summer season maximum surface ozone for the Vancouver, Montreal and Atlantic regions of Canada. J. Appl. Meteorol. 1995, 34(8):1848-1862.
    • (1995) J. Appl. Meteorol. , vol.34 , Issue.8 , pp. 1848-1862
    • Burrows, W.R.1    Benjamin, M.2    Beauchamp, S.3    Lord, E.R.4    McCollor, D.5    Thomson, B.6
  • 7
    • 0034621379 scopus 로고    scopus 로고
    • Daily reservoir inflow forecasting using artificial neural networks with stopped training approach
    • Coulibaly P., Anctil F., Bobee B. Daily reservoir inflow forecasting using artificial neural networks with stopped training approach. J. Hydrol. 2000, 230(3-4):244-257.
    • (2000) J. Hydrol. , vol.230 , Issue.3-4 , pp. 244-257
    • Coulibaly, P.1    Anctil, F.2    Bobee, B.3
  • 8
    • 0034284752 scopus 로고    scopus 로고
    • Uncertainty, ensembles, and air quality dispersion modeling: applications and challenges
    • Dabberdt W.F., Miller E. Uncertainty, ensembles, and air quality dispersion modeling: applications and challenges. Atmos. Environ. 2000, 34(27):4667-4673.
    • (2000) Atmos. Environ. , vol.34 , Issue.27 , pp. 4667-4673
    • Dabberdt, W.F.1    Miller, E.2
  • 9
    • 17644428041 scopus 로고    scopus 로고
    • Numerical approach of carbon monoxide concentration dispersion in an enclosed garage
    • Duci A., Papakonstantinou K., Chaloulakou A., Markatos N. Numerical approach of carbon monoxide concentration dispersion in an enclosed garage. Build. Environ. 2004, 39(9):1043-1048.
    • (2004) Build. Environ. , vol.39 , Issue.9 , pp. 1043-1048
    • Duci, A.1    Papakonstantinou, K.2    Chaloulakou, A.3    Markatos, N.4
  • 10
    • 84907578344 scopus 로고    scopus 로고
    • Development of an ANN-based air pollution forecasting system with explicit knowledge through sensitivity analysis
    • Elangasinghe M.A., Singhal N., Dirks K.N., Salmond J.A. Development of an ANN-based air pollution forecasting system with explicit knowledge through sensitivity analysis. Atmos. Pollut. Res. 2014, 5:696-708.
    • (2014) Atmos. Pollut. Res. , vol.5 , pp. 696-708
    • Elangasinghe, M.A.1    Singhal, N.2    Dirks, K.N.3    Salmond, J.A.4
  • 12
    • 0021282869 scopus 로고
    • Uncertainty in air quality modeling
    • Fox D.G. Uncertainty in air quality modeling. Bull. Am. Meteorol. Soc. 1984, 65(1):27-36.
    • (1984) Bull. Am. Meteorol. Soc. , vol.65 , Issue.1 , pp. 27-36
    • Fox, D.G.1
  • 13
    • 58949092610 scopus 로고    scopus 로고
    • Application of support vector machines in scour prediction on grade-control structures
    • Goel A., Pal M. Application of support vector machines in scour prediction on grade-control structures. Eng. Appl. Artif. Intell. 2009, 22(2):216-223.
    • (2009) Eng. Appl. Artif. Intell. , vol.22 , Issue.2 , pp. 216-223
    • Goel, A.1    Pal, M.2
  • 14
    • 31044433834 scopus 로고    scopus 로고
    • 10 hourly concentrations, in the Greater Area of Athens, Greece
    • 10 hourly concentrations, in the Greater Area of Athens, Greece. Atmos. Environ. 2006, 40(7):1216-1229.
    • (2006) Atmos. Environ. , vol.40 , Issue.7 , pp. 1216-1229
    • Grivas, G.1    Chaloulakou, A.2
  • 17
    • 15544389367 scopus 로고    scopus 로고
    • Potential assessment of the "support vector machine" method in forecasting ambient air pollutant trends
    • Lu W., Wang W. Potential assessment of the "support vector machine" method in forecasting ambient air pollutant trends. Chemosphere 2005, 59:693-701.
    • (2005) Chemosphere , vol.59 , pp. 693-701
    • Lu, W.1    Wang, W.2
  • 18
    • 59349113300 scopus 로고    scopus 로고
    • Computation of uncertainty for atmospheric emission projections from key pollutant sources in Spain
    • Lumbreras J., García-Martos C., Mira J., Borge R. Computation of uncertainty for atmospheric emission projections from key pollutant sources in Spain. Atmos. Environ. 2009, 43(8):1557-1564.
    • (2009) Atmos. Environ. , vol.43 , Issue.8 , pp. 1557-1564
    • Lumbreras, J.1    García-Martos, C.2    Mira, J.3    Borge, R.4
  • 19
    • 4644299901 scopus 로고    scopus 로고
    • Effects of uncertainties in parameters of a Lagrangian particle model on mean ground-level concentrations under stable conditions
    • Manomaiphiboon K., Russell A.G. Effects of uncertainties in parameters of a Lagrangian particle model on mean ground-level concentrations under stable conditions. Atmos. Environ. 2004, 38(33):5529-5543.
    • (2004) Atmos. Environ. , vol.38 , Issue.33 , pp. 5529-5543
    • Manomaiphiboon, K.1    Russell, A.G.2
  • 20
    • 84964991572 scopus 로고    scopus 로고
    • Climate forced air-quality modeling at urban scale: sensitivity to model resolution, emissions and meteorology
    • Markakis K., Valari M., Perrussel O., Sanchez O., Honore C. Climate forced air-quality modeling at urban scale: sensitivity to model resolution, emissions and meteorology. Atmos. Chem. Phys. 2015, 15:4767-4821.
    • (2015) Atmos. Chem. Phys. , vol.15 , pp. 4767-4821
    • Markakis, K.1    Valari, M.2    Perrussel, O.3    Sanchez, O.4    Honore, C.5
  • 21
    • 27844608945 scopus 로고    scopus 로고
    • Artificial neural network approach for modelling nitrogen dioxide dispersion from vehicular exhaust emissions
    • Nagendra S.M.S., Khare M. Artificial neural network approach for modelling nitrogen dioxide dispersion from vehicular exhaust emissions. Ecol. Model. 2006, 190(1):99-115.
    • (2006) Ecol. Model. , vol.190 , Issue.1 , pp. 99-115
    • Nagendra, S.M.S.1    Khare, M.2
  • 22
    • 40549131589 scopus 로고    scopus 로고
    • Artificial neural network based carbon monoxide persistence models for episodic urban air quality management
    • Nagendra S.M.S., Khare M. Artificial neural network based carbon monoxide persistence models for episodic urban air quality management. Environ. Monit. Assess. 2008, 139(1-3):247-255.
    • (2008) Environ. Monit. Assess. , vol.139 , Issue.1-3 , pp. 247-255
    • Nagendra, S.M.S.1    Khare, M.2
  • 23
    • 73749085391 scopus 로고    scopus 로고
    • Uncertainty analysis of developed ANN and ANFIS models in prediction of carbon monoxide daily concentration
    • Noori R., Hoshyaripour G., Ashrafi K., Nadjar-Araabi B. Uncertainty analysis of developed ANN and ANFIS models in prediction of carbon monoxide daily concentration. Atmos. Environ. 2010, 44:476-482.
    • (2010) Atmos. Environ. , vol.44 , pp. 476-482
    • Noori, R.1    Hoshyaripour, G.2    Ashrafi, K.3    Nadjar-Araabi, B.4
  • 24
    • 79953796890 scopus 로고    scopus 로고
    • Assessment of input variables determination on the SVM model performance using PCA, Gamma test, and forward selection techniques for monthly stream flow prediction
    • Noori R., Karbassi A.R., Moghaddamnia A., Han D., Zokaei-Ashtiani M.H., Farokhnia A., Ghafari Gousheh M. Assessment of input variables determination on the SVM model performance using PCA, Gamma test, and forward selection techniques for monthly stream flow prediction. J. Hydrol. 2011, 401(3):177-189.
    • (2011) J. Hydrol. , vol.401 , Issue.3 , pp. 177-189
    • Noori, R.1    Karbassi, A.R.2    Moghaddamnia, A.3    Han, D.4    Zokaei-Ashtiani, M.H.5    Farokhnia, A.6    Ghafari Gousheh, M.7
  • 26
    • 84964955774 scopus 로고    scopus 로고
    • Introducing an appropriate model using support vector machine for predicting carbon monoxide daily concentration in Tehran atmosphere
    • Noori R., Hoshyaripour G., Ashrafi K., Rasti O. Introducing an appropriate model using support vector machine for predicting carbon monoxide daily concentration in Tehran atmosphere. Iran. J. Health Environ. 2013, 6(1):1-10.
    • (2013) Iran. J. Health Environ. , vol.6 , Issue.1 , pp. 1-10
    • Noori, R.1    Hoshyaripour, G.2    Ashrafi, K.3    Rasti, O.4
  • 27
    • 84950244991 scopus 로고    scopus 로고
    • How reliable are ANN, ANFIS, and SVM techniques for predicting longitudinal dispersion coefficient in natural rivers?
    • Noori R., Deng Z., Kiaghadi A., Kachoosangi F.T. How reliable are ANN, ANFIS, and SVM techniques for predicting longitudinal dispersion coefficient in natural rivers?. J. Hydraul. Eng. 2015, 10.1061/(ASCE)HY.1943-7900.0001062.
    • (2015) J. Hydraul. Eng.
    • Noori, R.1    Deng, Z.2    Kiaghadi, A.3    Kachoosangi, F.T.4
  • 28
    • 84936744063 scopus 로고    scopus 로고
    • Comparisons of GM (1, 1), and BPNN for predicting hourly particulate matter in Dali area of Taichung City, Taiwan
    • Pai T.Z., Chen L. Comparisons of GM (1, 1), and BPNN for predicting hourly particulate matter in Dali area of Taichung City, Taiwan. Atmos. Pollut. Res. 2015, 6:572-580.
    • (2015) Atmos. Pollut. Res. , vol.6 , pp. 572-580
    • Pai, T.Z.1    Chen, L.2
  • 30
    • 84881313051 scopus 로고    scopus 로고
    • Forecasting hourly roadside particulate matter in Taipei County of Taiwan based on first-order and one-variable Grey Model
    • Pai T.Z., Hanaki K., Chiou R.J. Forecasting hourly roadside particulate matter in Taipei County of Taiwan based on first-order and one-variable Grey Model. Clean Soil Air Water 2013, 41(8):737-742.
    • (2013) Clean Soil Air Water , vol.41 , Issue.8 , pp. 737-742
    • Pai, T.Z.1    Hanaki, K.2    Chiou, R.J.3
  • 31
    • 34548509470 scopus 로고    scopus 로고
    • Prediction of end-depth-ratio and discharge in trapezoidal shaped channels using support vector machines
    • Pal M., Goel A. Prediction of end-depth-ratio and discharge in trapezoidal shaped channels using support vector machines. Water Resour. Manag. 2007, 21:1763-1780.
    • (2007) Water Resour. Manag. , vol.21 , pp. 1763-1780
    • Pal, M.1    Goel, A.2
  • 32
    • 79956110047 scopus 로고    scopus 로고
    • Support vector regression based modeling of pier scour using field data
    • Pal M., Singh N.K., Tiwari N.K. Support vector regression based modeling of pier scour using field data. Eng. Appl. Artif. Intell. 2011, 24(5):911-916.
    • (2011) Eng. Appl. Artif. Intell. , vol.24 , Issue.5 , pp. 911-916
    • Pal, M.1    Singh, N.K.2    Tiwari, N.K.3
  • 33
    • 0038035885 scopus 로고    scopus 로고
    • Air quality in an underground garage: computational and experimental investigation of ventilation effectiveness
    • Papakonstantinou K., Chaloulakou A., Duci A., Vlachakis N., Markatos N. Air quality in an underground garage: computational and experimental investigation of ventilation effectiveness. Energy Build. 2003, 35(9):933-940.
    • (2003) Energy Build. , vol.35 , Issue.9 , pp. 933-940
    • Papakonstantinou, K.1    Chaloulakou, A.2    Duci, A.3    Vlachakis, N.4    Markatos, N.5
  • 34
    • 79952963554 scopus 로고    scopus 로고
    • Atmospheric emissions from vegetation fires in Portugal (1990-2008): estimates, uncertainty analysis, and sensitivity analysis
    • Rosa I.M.D., Pereira J.M.C., Tarantola S. Atmospheric emissions from vegetation fires in Portugal (1990-2008): estimates, uncertainty analysis, and sensitivity analysis. Atmos. Chem. Phys. 2011, 11:2625-2640.
    • (2011) Atmos. Chem. Phys. , vol.11 , pp. 2625-2640
    • Rosa, I.M.D.1    Pereira, J.M.C.2    Tarantola, S.3
  • 35
    • 84927944185 scopus 로고    scopus 로고
    • Neural network forecast of daily pollution concentration using optimal meteorological data at synoptic and local scales
    • Russo A., Lind P.L., Raischell F., Trigol R., Mende M. Neural network forecast of daily pollution concentration using optimal meteorological data at synoptic and local scales. Atmos. Pollut. Res. 2015, 6:540-549.
    • (2015) Atmos. Pollut. Res. , vol.6 , pp. 540-549
    • Russo, A.1    Lind, P.L.2    Raischell, F.3    Trigol, R.4    Mende, M.5
  • 36
    • 84936750594 scopus 로고    scopus 로고
    • Evaluation of MARS for the spatial distribution modeling of carbon monoxide in an urban area
    • Shahraiyni H.T., Shahsavani D., Sargazi S., Habibi-Nokhanda M. Evaluation of MARS for the spatial distribution modeling of carbon monoxide in an urban area. Atmos. Pollut. Res. 2015, 6:581-588.
    • (2015) Atmos. Pollut. Res. , vol.6 , pp. 581-588
    • Shahraiyni, H.T.1    Shahsavani, D.2    Sargazi, S.3    Habibi-Nokhanda, M.4
  • 37
    • 84860697230 scopus 로고    scopus 로고
    • Linear and nonlinear modeling approaches for urban air quality prediction
    • Singh K.P., Gupta S., Kumar A., Shukla S.P. Linear and nonlinear modeling approaches for urban air quality prediction. Sci. Total Environ. 2012, 426:244-255.
    • (2012) Sci. Total Environ. , vol.426 , pp. 244-255
    • Singh, K.P.1    Gupta, S.2    Kumar, A.3    Shukla, S.P.4
  • 38
    • 84883717859 scopus 로고    scopus 로고
    • Identifying pollution sources and predicting urban air quality using ensemble learning methods
    • Singh K.P., Gupta S., Rai P. Identifying pollution sources and predicting urban air quality using ensemble learning methods. Atmos. Environ. 2013, 80:426-437.
    • (2013) Atmos. Environ. , vol.80 , pp. 426-437
    • Singh, K.P.1    Gupta, S.2    Rai, P.3
  • 39
    • 33749247555 scopus 로고    scopus 로고
    • Multiple linear regression and artificial neural networks based on principal components to predict ozone concentrations
    • Sousa S.I.V., Martins F.G., Alvim-Ferraz M.C.M., Pereira M.C. Multiple linear regression and artificial neural networks based on principal components to predict ozone concentrations. Environ. Model. Softw. 2007, 22:97-103.
    • (2007) Environ. Model. Softw. , vol.22 , pp. 97-103
    • Sousa, S.I.V.1    Martins, F.G.2    Alvim-Ferraz, M.C.M.3    Pereira, M.C.4
  • 42
    • 0036565492 scopus 로고    scopus 로고
    • Model sensitivity and uncertainty analysis using roadside air quality measurements
    • Vardoulakis S., Fisher B.E.A., Gonzalez-Flesca N., Pericleous K. Model sensitivity and uncertainty analysis using roadside air quality measurements. Atmos. Environ. 2002, 36(13):2121-2134.
    • (2002) Atmos. Environ. , vol.36 , Issue.13 , pp. 2121-2134
    • Vardoulakis, S.1    Fisher, B.E.A.2    Gonzalez-Flesca, N.3    Pericleous, K.4
  • 43
    • 33750333148 scopus 로고    scopus 로고
    • Sparse support vector regression based on orthogonal forward selection for the generalised kernel model
    • Wang X.X., Chen S., Lowe D., Harris C.J. Sparse support vector regression based on orthogonal forward selection for the generalised kernel model. Neurocomputing 2006, 70(1-3):462-474.
    • (2006) Neurocomputing , vol.70 , Issue.1-3 , pp. 462-474
    • Wang, X.X.1    Chen, S.2    Lowe, D.3    Harris, C.J.4
  • 44
    • 84908066723 scopus 로고    scopus 로고
    • Uncertainty in modeling dust mass balance and radiative forcing from size parameterization
    • Zhao C., Chen S., Leung L.R., Qian Y., Kok J.F., Zaveri R.A., Huang J. Uncertainty in modeling dust mass balance and radiative forcing from size parameterization. Atmos. Chem. Phys. 2013, 13:10733-10753.
    • (2013) Atmos. Chem. Phys. , vol.13 , pp. 10733-10753
    • Zhao, C.1    Chen, S.2    Leung, L.R.3    Qian, Y.4    Kok, J.F.5    Zaveri, R.A.6    Huang, J.7


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.