메뉴 건너뛰기




Volumn 24, Issue 5, 2011, Pages 911-916

Support vector regression based modeling of pier scour using field data

Author keywords

Field scour data; Froehlich equation; HEC 18 equation; Neural network; Pier scour; Support vector machines

Indexed keywords

A-COEFFICIENT; BACK PROPAGATION NEURAL NETWORKS; DATA SETS; EMPIRICAL RELATIONS; FIELD DATA; FIELD SCOUR DATA; FROEHLICH EQUATION; GENERALIZED REGRESSION NEURAL NETWORKS; HEC-18 EQUATION; LOCAL SCOUR; MODELING APPROACH; PIER SCOUR; PIER WIDTH; POLYNOMIAL KERNELS; PREDICTIVE EQUATIONS; RADIAL BASIS; RADIAL BASIS FUNCTIONS; ROOT MEAN SQUARE ERRORS; SCOUR DEPTH; SUPPORT VECTOR REGRESSIONS;

EID: 79956110047     PISSN: 09521976     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.engappai.2010.11.002     Document Type: Article
Times cited : (77)

References (42)
  • 5
    • 77954534545 scopus 로고    scopus 로고
    • Evaluation of regular wave scour around a circular pile using data mining approaches
    • Ayoubloo, M.K.; Etemad-Shahidi, A.; Mahjoobi, J.; 2010. Evaluation of regular wave scour around a circular pile using data mining approaches. Applied Ocean Research 32, 3439.
    • (2010) Applied Ocean Research , vol.32 , pp. 34-39
    • Ayoubloo M., .K.1    Etemad-Shahidi, A.2    Mahjoobi, J.3
  • 7
    • 33750064596 scopus 로고    scopus 로고
    • Bayesian neural networks for prediction of equilibrium and time-dependent scour depth around bridge piers
    • DOI 10.1016/j.advengsoft.2006.08.004, PII S0965997806001177
    • S.M. Bateni, D.-S. Jeng, and B.W. Melville Bayesian neural networks for prediction of equilibrium and time-dependent scour depth around bridge piers Advances in Engineering Software 38 2007 102 111 (Pubitemid 44584688)
    • (2007) Advances in Engineering Software , vol.38 , Issue.2 , pp. 102-111
    • Bateni, S.M.1    Jeng, D.-S.2    Melville, B.W.3
  • 8
    • 33847679664 scopus 로고    scopus 로고
    • Neural network and neuro-fuzzy assessments for scour depth around bridge piers
    • DOI 10.1016/j.engappai.2006.06.012, PII S0952197606001230
    • S.M. Bateni, S.M. Borghei, and D.-S. Jeng Neural network and neuro-fuzzy assessments for scour depth around bridge piers Engineering Applications of Artificial Intelligence 20 2007 401 414 (Pubitemid 46366651)
    • (2007) Engineering Applications of Artificial Intelligence , vol.20 , Issue.3 , pp. 401-414
    • Bateni, S.M.1    Borghei, S.M.2    Jeng, D.-S.3
  • 9
    • 23044443211 scopus 로고    scopus 로고
    • Application of generalized regression neural networks to intermittent flow forecasting and estimation
    • DOI 10.1061/(ASCE)1084-0699(2005)10:4(336)
    • H.K. Cigizoglu Application of generalized regression neural networks to intermittent flow forecasting and estimation Journal of Hydrologic Engineering 10 2005 336 341 (Pubitemid 41070695)
    • (2005) Journal of Hydrologic Engineering , vol.10 , Issue.4 , pp. 336-341
    • Cigizoglu, H.K.1
  • 10
    • 33845254805 scopus 로고    scopus 로고
    • Prediction of local scour around bridge piers using artificial neural networks
    • DOI 10.1111/j.1752-1688.2006.tb03852.x
    • S.-U. Choi, and S. Cheong Prediction of local scour around bridge piers using artificial neural networks Journal of American Water Resources Association 42 2006 487 494 (Pubitemid 44858792)
    • (2006) Journal of the American Water Resources Association , vol.42 , Issue.2 , pp. 487-494
    • Choi, S.-U.1    Cheong, S.2
  • 11
    • 0035398081 scopus 로고    scopus 로고
    • Model induction with support vector machines: Introduction and applications
    • DOI 10.1061/(ASCE)0887-3801(2001)15:3(208), Reportnr 22146
    • Y.B. Dibike, S. Velickov, D.P. Solomatine, and M.B. Abbott Model induction with support vector machines: introduction and applications Journal of Computing in Civil Engineering 15 2001 208 216 (Pubitemid 32583199)
    • (2001) Journal of Computing in Civil Engineering , vol.15 , Issue.3 , pp. 208-216
    • Dibike, Y.B.1    Velickov, S.2    Solomatine, D.3    Abbott, M.B.4
  • 12
    • 0025507992 scopus 로고
    • Controlling mechanism of local scouring
    • B. Dargahi Controlling mechanism of local scouring Journal of Hydrologic Engineering 116 10 1990 1197 1214
    • (1990) Journal of Hydrologic Engineering , vol.116 , Issue.10 , pp. 1197-1214
    • Dargahi, B.1
  • 14
    • 64849117838 scopus 로고    scopus 로고
    • Generalized regression neural networks and feed forward neural networks for prediction of scour depth around bridge piers
    • M. Firat, and M. Gungor Generalized regression neural networks and feed forward neural networks for prediction of scour depth around bridge piers Advances in Engineering Software 40 8 2009 731 737
    • (2009) Advances in Engineering Software , vol.40 , Issue.8 , pp. 731-737
    • Firat, M.1    Gungor, M.2
  • 15
    • 58949092610 scopus 로고    scopus 로고
    • Application of support vector machines in scour prediction on grade-control structures
    • A. Goel, and M. Pal Application of support vector machines in scour prediction on grade-control structures Engineering Applications of Artificial Intelligence 22 2 2009 216 223
    • (2009) Engineering Applications of Artificial Intelligence , vol.22 , Issue.2 , pp. 216-223
    • Goel, A.1    Pal, M.2
  • 17
    • 68749103188 scopus 로고    scopus 로고
    • Linear genetic programming for prediction of circular pile scour
    • A. Guven, H.Md. Azamathulla, and N.A. Zakaria Linear genetic programming for prediction of circular pile scour Ocean Engineering 36 12-13 2009 985 991
    • (2009) Ocean Engineering , vol.36 , Issue.1213 , pp. 985-991
    • Guven, A.1    Azamathulla, H.Md.2    Zakaria, N.A.3
  • 18
    • 54249085849 scopus 로고    scopus 로고
    • Prediction of local scour downstream of grade-control structures using neural networks
    • A. Guven, and M. Gunal Prediction of local scour downstream of grade-control structures using neural networks Journal of Hydraulic Engineering - ASCE 134 2008 16561660
    • (2008) Journal of Hydraulic Engineering - ASCE , vol.134
    • Guven, A.1    Gunal, M.2
  • 19
    • 0021579901 scopus 로고
    • Comparison of prediction equations for bridge pier and abutment scour
    • Transportation Research Board, Washington
    • Jones, J.S.; 1984. Comparison of prediction equations for bridge pier and abutment scour. Trans. Res. Rec. 1950, Transportation Research Board, Washington.
    • (1950) Trans. Res. Rec.
    • Jones, J.S.1
  • 20
    • 0031701371 scopus 로고    scopus 로고
    • Maximum local scour depth at bridge piers and abutments
    • J.K. Kandasamy, and B.W. Melville Maximum local scour depth at bridge piers and abutments Journal of Hydraulic Research 36 2 1998 183 198
    • (1998) Journal of Hydraulic Research , vol.36 , Issue.2 , pp. 183-198
    • Kandasamy, J.K.1    Melville, B.W.2
  • 21
    • 2142660326 scopus 로고    scopus 로고
    • Estimation of pile group scour using neural networks
    • DOI 10.1016/j.apor.2003.06.001, PII S014111870300066X
    • A.R. Kambekar, and M.C. Deo Estimation of group pile scour using neural networks Journal of Applied Ocean Research 25 4 2003 225 234 (Pubitemid 38550116)
    • (2003) Applied Ocean Research , vol.25 , Issue.4 , pp. 225-234
    • Kambekar, A.R.1    Deo, M.C.2
  • 22
    • 76549119652 scopus 로고    scopus 로고
    • Artificial neural network study of observed pattern of scour depth around bridge piers
    • A. Kaya Artificial neural network study of observed pattern of scour depth around bridge piers Computers and Geotechnics 37 3 2010 413 418
    • (2010) Computers and Geotechnics , vol.37 , Issue.3 , pp. 413-418
    • Kaya, A.1
  • 23
    • 33745276242 scopus 로고    scopus 로고
    • Prediction of soil composition from CPT data using general regression neural network
    • DOI 10.1061/(ASCE)0887-3801(2006)20:4(281)
    • P.U. Kurup, and E.P. Griffin Prediction of soil composition from CPT data using general regression neural network Journal of Computing in Civil Engineering 20 4 2006 281 289 (Pubitemid 43925190)
    • (2006) Journal of Computing in Civil Engineering , vol.20 , Issue.4 , pp. 281-289
    • Kurup, P.U.1    Griffin, E.P.2
  • 29
    • 79956094965 scopus 로고    scopus 로고
    • GRNN based modelling of pier scour depth using field dataset
    • Sunder, V.; Srinivasan, K.; Murali, K.; Sudheer, K.P. (Eds.) 2-5 August, IIT Chennai, India
    • Pal, M.; Singh, N.K.; 2010, GRNN based modelling of pier scour depth using field dataset. In: Sunder, V.; Srinivasan, K.; Murali, K.; Sudheer, K.P. (Eds.), Proceedings of the Ninth International Conference on Hydro-Science and Engineering, 25 August, IIT Chennai, India, pp. 15821588.
    • (2010) Proceedings of the Ninth International Conference on Hydro-Science and Engineering , pp. 1582-1588
    • Pal, M.1    Singh N., .K.2
  • 30
    • 45749119086 scopus 로고    scopus 로고
    • Modeling pile capacity using support vector machines and generalized regression neural network
    • M. Pal, and S. Deswal Modeling pile capacity using support vector machines and generalized regression neural network Journal of Geotechnical and Geoenvironmental Engineering - ASCE 134(7) 2008 10211124
    • (2008) Journal of Geotechnical and Geoenvironmental Engineering - ASCE , vol.1347
    • Pal, M.1    Deswal, S.2
  • 31
    • 28244500557 scopus 로고    scopus 로고
    • Prediction of the end depth ratio and discharge in semi circular and circular shaped channels using support vector machines
    • M. Pal, and A. Goel Prediction of the end depth ratio and discharge in semi circular and circular shaped channels using support vector machines Flow Measurement and Instrumentation 17 2006 50 57
    • (2006) Flow Measurement and Instrumentation , vol.17 , pp. 50-57
    • Pal, M.1    Goel, A.2
  • 32
    • 33746870002 scopus 로고    scopus 로고
    • Support vector machines-based modelling of seismic liquefaction potential
    • DOI 10.1002/nag.509
    • M. Pal Support vector machines-based modelling of seismic liquefaction potential International Journal for Numerical and Analytical Methods in Geomechanics 30 2006 983 996 (Pubitemid 44184296)
    • (2006) International Journal for Numerical and Analytical Methods in Geomechanics , vol.30 , Issue.10 , pp. 983-996
    • Pal, M.1
  • 34
    • 0003455934 scopus 로고    scopus 로고
    • fourth ed.; Washington, DC, Federal Highway Administration Hydraulic Engineering Circular No. 18, FHWA NHI 01-001
    • Richardson, E.V.; Davis, S.R.; 2001. Evaluating scour at bridges, fourth ed.; Washington, DC, Federal Highway Administration Hydraulic Engineering Circular No. 18, FHWA NHI 01-001, 378 pp.
    • (2001) Evaluating Scour at Bridges , pp. 378
    • Richardson E., .V.1    Davis S., .R.2
  • 36
    • 0004126314 scopus 로고    scopus 로고
    • Masters Thesis, Technische Universität München, Germany. Available from: (accessed20.06.08)
    • Smola, A.J.; 1996. Regression estimation with support vector learning machines. Masters Thesis, Technische Universität München, Germany. Available from: 〈 http://www.kernel-machines.org/papers/smola96.ps.gz 〉 (accessed 20.06.08).
    • (1996) Regression Estimation with Support Vector Learning Machines
    • Smola, A.J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.