-
1
-
-
84902946445
-
Exploring metabolic engineering design principles for the photosynthetic production of lactic acid by Synechocystis sp PCC6803
-
Angermayr, S. A., van der Woude, A. D., Correddu, D., Vreugdenhil, A., Verrone, V., and Hellingwerf, K. J. (2014). Exploring metabolic engineering design principles for the photosynthetic production of lactic acid by Synechocystis sp. PCC6803. Biotechnol. Biofuels 7:99. doi: 10.1186/1754-6834-7-99
-
(2014)
Biotechnol. Biofuels
, vol.7
, pp. 99
-
-
Angermayr, S.A.1
van der Woude, A.D.2
Correddu, D.3
Vreugdenhil, A.4
Verrone, V.5
Hellingwerf, K.J.6
-
2
-
-
71849086611
-
Direct photosynthetic recycling of carbon dioxide to isobutyraldehyde
-
Atsumi, S., Higashide, W., and Liao, J. C. (2009). Direct photosynthetic recycling of carbon dioxide to isobutyraldehyde. Nat. Biotechnol. 27, 1177-1180. doi: 10.1038/nbt.1586
-
(2009)
Nat. Biotechnol
, vol.27
, pp. 1177-1180
-
-
Atsumi, S.1
Higashide, W.2
Liao, J.C.3
-
3
-
-
84856566482
-
Minimal cut sets in a metabolic network are elementary modes in a dual network
-
Ballerstein, K., von Kamp, A., Klamt, S., and Haus, U. U. (2012). Minimal cut sets in a metabolic network are elementary modes in a dual network. Bioinformatics 28, 381-387. doi: 10.1093/bioinformatics/btr674
-
(2012)
Bioinformatics
, vol.28
, pp. 381-387
-
-
Ballerstein, K.1
von Kamp, A.2
Klamt, S.3
Haus, U.U.4
-
4
-
-
84886740491
-
Path2Models: large-scale generation of computational models from biochemical pathway maps
-
Büchel, F., Rodriguez, N., Swainston, N., Wrzodek, C., Czauderna, T., Keller, R., et al. (2013). Path2Models: large-scale generation of computational models from biochemical pathway maps. BMC Syst. Biol. 7:116. doi: 10.1186/1752-0509-7-116
-
(2013)
BMC Syst. Biol
, vol.7
, pp. 116
-
-
Büchel, F.1
Rodriguez, N.2
Swainston, N.3
Wrzodek, C.4
Czauderna, T.5
Keller, R.6
-
5
-
-
0242487787
-
Optknock: a bilevel programming framework for identifying gene knockout strategies for microbial strain optimization
-
Burgard, A. P., Pharkya, P., and Maranas, C. D. (2003). Optknock: a bilevel programming framework for identifying gene knockout strategies for microbial strain optimization. Biotechnol. Bioeng. 84, 647-657. doi: 10.1002/bit.10803
-
(2003)
Biotechnol. Bioeng
, vol.84
, pp. 647-657
-
-
Burgard, A.P.1
Pharkya, P.2
Maranas, C.D.3
-
6
-
-
77952265112
-
In silico identification of gene amplification targets for improvement of lycopene production
-
Choi, H. S., Lee, S. Y., Kim, T. Y., and Woo, H. M. (2010). In silico identification of gene amplification targets for improvement of lycopene production. Appl. Environ. Microbiol. 76, 3097-3105. doi: 10.1128/AEM.00115-10
-
(2010)
Appl. Environ. Microbiol
, vol.76
, pp. 3097-3105
-
-
Choi, H.S.1
Lee, S.Y.2
Kim, T.Y.3
Woo, H.M.4
-
7
-
-
84895756673
-
k-OptForce: integrating kinetics with flux balance analysis for strain design
-
Chowdry, A., Zomorrodi, A. R., and Maranas, C. D. (2014). k-OptForce: integrating kinetics with flux balance analysis for strain design. PLoS Comput. Biol. 10:e1003487. doi: 10.1371/journal.pcbi.1003487
-
(2014)
PLoS Comput. Biol
, vol.10
-
-
Chowdry, A.1
Zomorrodi, A.R.2
Maranas, C.D.3
-
8
-
-
75849164426
-
Computing the shortest elementary flux modes in genome-scale metabolic networks
-
de Figueiredo, L. F., Podhorski, A., Rubio, A., Kaleta, C., Beasley, J. E., Schuster, S., et al. (2009). Computing the shortest elementary flux modes in genome-scale metabolic networks. Bioinformatics 25, 3158-3165. doi: 10.1093/bioinformatics/btp564
-
(2009)
Bioinformatics
, vol.25
, pp. 3158-3165
-
-
de Figueiredo, L.F.1
Podhorski, A.2
Rubio, A.3
Kaleta, C.4
Beasley, J.E.5
Schuster, S.6
-
9
-
-
80051941601
-
Engineered reversal of the β-oxidation cycle for the synthesis of fuels and chemicals
-
Dellomonaco, C., Clomburg, J. M., Miller, E. N., and Gonzalez, R. (2011). Engineered reversal of the β-oxidation cycle for the synthesis of fuels and chemicals. Nature 476, 355-359. doi: 10.1038/nature10333
-
(2011)
Nature
, vol.476
, pp. 355-359
-
-
Dellomonaco, C.1
Clomburg, J.M.2
Miller, E.N.3
Gonzalez, R.4
-
10
-
-
77958597036
-
Further developments towards a genome-scale metabolic model of yeast
-
Dobson, P. D., Smallbone, K., Jameson, D., Simeonidis, E., Lanthaler, K., Pir, P., et al. (2010). Further developments towards a genome-scale metabolic model of yeast. BMC Syst. Biol. 4:145. doi: 10.1186/1752-0509-4-145
-
(2010)
BMC Syst. Biol
, vol.4
, pp. 145
-
-
Dobson, P.D.1
Smallbone, K.2
Jameson, D.3
Simeonidis, E.4
Lanthaler, K.5
Pir, P.6
-
11
-
-
34347332311
-
A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information
-
Feist, A. M., Henry, C. S., Reed, J. L., Krummenacker, M., Joyce, A. R., Karp, P. D., et al. (2007). A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information. Mol. Syst. Biol. 3:121. doi: 10.1038/msb4100155
-
(2007)
Mol. Syst. Biol
, vol.3
, pp. 121
-
-
Feist, A.M.1
Henry, C.S.2
Reed, J.L.3
Krummenacker, M.4
Joyce, A.R.5
Karp, P.D.6
-
12
-
-
77950863401
-
Model-driven evaluation of the production potential for growth-coupled products of Escherichia coli
-
Feist, A. M., Zielinski, D. C., Orth, J. D., Schellenberger, J., Herrgard, M. J., and Palsson, B. Ø. (2010). Model-driven evaluation of the production potential for growth-coupled products of Escherichia coli. Metab. Eng. 12, 173-186. doi: 10.1016/j.ymben.2009.10.003
-
(2010)
Metab. Eng
, vol.12
, pp. 173-186
-
-
Feist, A.M.1
Zielinski, D.C.2
Orth, J.D.3
Schellenberger, J.4
Herrgard, M.J.5
Palsson, B.O.6
-
13
-
-
77957117220
-
Computationally efficient flux variability analysis
-
Gudmundsson, S., and Thiele, I. (2010). Computationally efficient flux variability analysis. BMC Bioinformatics 11:489. doi: 10.1186/1471-2105-11-489
-
(2010)
BMC Bioinformatics
, vol.11
, pp. 489
-
-
Gudmundsson, S.1
Thiele, I.2
-
14
-
-
84879515443
-
The ability of flux balance analysis to predict evolution of central metabolism scales with the initial distance to the optimum
-
Harcombe, W. R., Delaney, N. F., Leiby, N., Klitgord, N., and Marx, C. J. (2013). The ability of flux balance analysis to predict evolution of central metabolism scales with the initial distance to the optimum. PLoS Comput. Biol. 9:e1003091. doi: 10.1371/journal.pcbi.1003091
-
(2013)
PLoS Comput. Biol
, vol.9
-
-
Harcombe, W.R.1
Delaney, N.F.2
Leiby, N.3
Klitgord, N.4
Marx, C.J.5
-
15
-
-
84861744439
-
Yeast 5-an expanded reconstruction of the Saccharomyces cerevisiae metabolic network
-
Heavner, B. D., Smallbone, K., Barker, B., Mendes, P., and Walker, L. P. (2012). Yeast 5-an expanded reconstruction of the Saccharomyces cerevisiae metabolic network. BMC Syst. Biol. 6:55. doi: 10.1186/1752-0509-6-55
-
(2012)
BMC Syst. Biol
, vol.6
, pp. 55
-
-
Heavner, B.D.1
Smallbone, K.2
Barker, B.3
Mendes, P.4
Walker, L.P.5
-
16
-
-
85014438978
-
'Understanding network behavior by structured representations of transition invariants'
-
eds A. Condon, D. Harel, J. N. Kok, A. Salomaa, and E. Winfree (Berlin; Heidelberg: Springer-Verlag)
-
Heiner, M. (2009). 'Understanding network behavior by structured representations of transition invariants'. in Algorithmic Bioprocesses: Natural Computing Series, eds A. Condon, D. Harel, J. N. Kok, A. Salomaa, and E. Winfree (Berlin; Heidelberg: Springer-Verlag), 367-389
-
(2009)
Algorithmic Bioprocesses: Natural Computing Series
, pp. 367-389
-
-
Heiner, M.1
-
17
-
-
0037342537
-
The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models
-
Hucka, M., Finney, A., Sauro, H. M., Bolouri, H., Doyle, J. C., Kitano, H., et al. (2003). The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models. Bioinformatics 19, 524-531. doi: 10.1093/bioinformatics/btg015
-
(2003)
Bioinformatics
, vol.19
, pp. 524-531
-
-
Hucka, M.1
Finney, A.2
Sauro, H.M.3
Bolouri, H.4
Doyle, J.C.5
Kitano, H.6
-
18
-
-
40549120269
-
Predicting gene essentiality using genome-scale in silico models
-
Joyce, A. R., and Palsson, B. Ø. (2008). Predicting gene essentiality using genome-scale in silico models. Methods Mol. Biol. 416, 433-457. doi: 10.1007/978-1-59745-321-9_30
-
(2008)
Methods Mol. Biol
, vol.416
, pp. 433-457
-
-
Joyce, A.R.1
Palsson, B.O.2
-
19
-
-
0036500993
-
Systems biology: a brief overview
-
Kitano, H. (2002). Systems biology: a brief overview. Science 295, 1662-1664. doi: 10.1126/science.1069492
-
(2002)
Science
, vol.295
, pp. 1662-1664
-
-
Kitano, H.1
-
20
-
-
63249117139
-
The role of predictive modelling in rationally re-engineering biological systems
-
Koide, T., Pang, W. L., and Baliga, N. S. (2009). The role of predictive modelling in rationally re-engineering biological systems. Nat. Rev. Microbiol. 7, 297-305. doi: 10.1038/nrmicro2107
-
(2009)
Nat. Rev. Microbiol
, vol.7
, pp. 297-305
-
-
Koide, T.1
Pang, W.L.2
Baliga, N.S.3
-
21
-
-
84862301363
-
Improving metabolic flux predictions using absolute gene expression data
-
Lee, D., Smallbone, K., Dunn, W. B., Murabito, E., Winder, C. L., Kell, D. B., et al. (2012). Improving metabolic flux predictions using absolute gene expression data. BMC Syst. Biol. 6:73. doi: 10.1186/1752-0509-6-73
-
(2012)
BMC Syst. Biol
, vol.6
, pp. 73
-
-
Lee, D.1
Smallbone, K.2
Dunn, W.B.3
Murabito, E.4
Winder, C.L.5
Kell, D.B.6
-
22
-
-
84905016966
-
Overproduction of fatty acids in engineered Saccharomyces cerevisiae
-
Li, X., Guo, D., Cheng, Y., Zhu, F., Deng, Z., and Liu, T. (2014). Overproduction of fatty acids in engineered Saccharomyces cerevisiae. Biotechnol. Bioeng. 111, 1841-1852. doi: 10.1002/bit.25239
-
(2014)
Biotechnol. Bioeng
, vol.111
, pp. 1841-1852
-
-
Li, X.1
Guo, D.2
Cheng, Y.3
Zhu, F.4
Deng, Z.5
Liu, T.6
-
23
-
-
79952789318
-
An experimentally validated genome-scale metabolic reconstruction of Klebsiella pneumoniae MGH 78578, iYL1228
-
Liao, Y. C., Huang, T. W., Chen, F. C., Charusanti, P., Hong, J. S., Chang, H. Y., et al. (2011). An experimentally validated genome-scale metabolic reconstruction of Klebsiella pneumoniae MGH 78578, iYL1228. J. Bacteriol. 193, 1710-1717. doi: 10.1128/JB.01218-10
-
(2011)
J. Bacteriol
, vol.193
, pp. 1710-1717
-
-
Liao, Y.C.1
Huang, T.W.2
Chen, F.C.3
Charusanti, P.4
Hong, J.S.5
Chang, H.Y.6
-
24
-
-
84882604844
-
Microbial engineering strategies to improve cell viability for biochemical production
-
Lo, T. M., Teo, W. S., Ling, H., Chen, B., Kang, A., and Chang, M. W. (2013). Microbial engineering strategies to improve cell viability for biochemical production. Biotechnol. Adv. 31, 903-914. doi: 10.1016/j.biotechadv.2013.02.001
-
(2013)
Biotechnol. Adv
, vol.31
, pp. 903-914
-
-
Lo, T.M.1
Teo, W.S.2
Ling, H.3
Chen, B.4
Kang, A.5
Chang, M.W.6
-
25
-
-
84861442550
-
Production of 2, 3-butanediol in Saccharomyces cerevisiae by in silico aided metabolic engineering
-
Ng, C. Y., Jung, M.-Y., Lee, J., and Oh, M.-K. (2012). Production of 2, 3-butanediol in Saccharomyces cerevisiae by in silico aided metabolic engineering. Microb. Cell Fact. 11:68. doi: 10.1186/1475-2859-11-68
-
(2012)
Microb. Cell Fact
, vol.11
, pp. 68
-
-
Ng, C.Y.1
Jung, M.-Y.2
Lee, J.3
Oh, M.-K.4
-
26
-
-
77749320898
-
What is flux balance analysis?
-
Orth, J. D., Thiele, I., and Palsson, B. Ø. (2010). What is flux balance analysis? Nat. Biotechnol. 28, 245-248. doi: 10.1038/nbt.1614
-
(2010)
Nat. Biotechnol
, vol.28
, pp. 245-248
-
-
Orth, J.D.1
Thiele, I.2
Palsson, B.O.3
-
27
-
-
84865075156
-
Flux variability scanning based on enforced objective flux for identifying gene amplification targets
-
Park, J. M., Park, H. M., Kim, W. J., Kim, H. U., Kim, T. Y., and Lee, S. Y. (2012). Flux variability scanning based on enforced objective flux for identifying gene amplification targets. BMC Syst. Biol. 6:106. doi: 10.1186/1752-0509-6-106
-
(2012)
BMC Syst. Biol
, vol.6
, pp. 106
-
-
Park, J.M.1
Park, H.M.2
Kim, W.J.3
Kim, H.U.4
Kim, T.Y.5
Lee, S.Y.6
-
28
-
-
29544436058
-
An optimization framework for identifying reaction activation/inhibition or elimination candidates for overproduction in microbial systems
-
Pharkya, P., and Maranas, C. D. (2006). An optimization framework for identifying reaction activation/inhibition or elimination candidates for overproduction in microbial systems. Metab. Eng. 8, 1-13. doi: 10.1016/j.ymben.2005.08.003
-
(2006)
Metab. Eng
, vol.8
, pp. 1-13
-
-
Pharkya, P.1
Maranas, C.D.2
-
29
-
-
77950960250
-
OptFlux: an open-source software platform for in silico metabolic engineering
-
Rocha, I., Maia, P., Evangelista, P., Vilaça, P., Soares, S., Pinto, J. P., et al. (2010). OptFlux: an open-source software platform for in silico metabolic engineering. BMC Syst. Biol. 4:45. doi: 10.1186/1752-0509-4-45
-
(2010)
BMC Syst. Biol
, vol.4
, pp. 45
-
-
Rocha, I.1
Maia, P.2
Evangelista, P.3
Vilaça, P.4
Soares, S.5
Pinto, J.P.6
-
30
-
-
33846061120
-
Metabolic networks in motion: 13C-based flux analysis
-
Sauer, U. (2006). Metabolic networks in motion: 13C-based flux analysis. Mol. Syst. Biol. 2, 62. doi: 10.1038/msb4100109
-
(2006)
Mol. Syst. Biol
, vol.2
, pp. 62
-
-
Sauer, U.1
-
31
-
-
79551662521
-
Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox v2.0
-
Schellenberger, J., Que, R., Fleming, R. M., Thiele, I., Orth, J. D., Feist, A. M., et al. (2011). Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox v2.0. Nat. Protoc. 6, 1290-1307. doi: 10.1038/nprot.2011.308
-
(2011)
Nat. Protoc
, vol.6
, pp. 1290-1307
-
-
Schellenberger, J.1
Que, R.2
Fleming, R.M.3
Thiele, I.4
Orth, J.D.5
Feist, A.M.6
-
32
-
-
84893707475
-
Systematic construction of kinetic models from genome-scale metabolic networks
-
Stanford, N. J., Lubitz, T., Smallbone, K., Klipp, E., Mendes, P., and Liebermeister, W. (2013). Systematic construction of kinetic models from genome-scale metabolic networks. PLoS ONE 8:e79195. doi: 10.1371/journal.pone.0079195
-
(2013)
PLoS ONE
, vol.8
-
-
Stanford, N.J.1
Lubitz, T.2
Smallbone, K.3
Klipp, E.4
Mendes, P.5
Liebermeister, W.6
-
33
-
-
77949495880
-
Predicting metabolic engineering knockout strategies for chemical production: accounting for competing pathways
-
Tepper, N., and Shlomi, T. (2010). Predicting metabolic engineering knockout strategies for chemical production: accounting for competing pathways. Bioinformatics 26, 536-543. doi: 10.1093/bioinformatics/btp704
-
(2010)
Bioinformatics
, vol.26
, pp. 536-543
-
-
Tepper, N.1
Shlomi, T.2
-
34
-
-
75149129569
-
A protocol for generating a high-quality genome-scale metabolic reconstruction
-
Thiele, I., and Palsson, B. Ø. (2010). A protocol for generating a high-quality genome-scale metabolic reconstruction. Nat. Protoc. 5, 93-121. doi: 10.1038/nprot.2009.203
-
(2010)
Nat. Protoc
, vol.5
, pp. 93-121
-
-
Thiele, I.1
Palsson, B.O.2
-
35
-
-
79959216987
-
Statistics-based model for prediction of chemical biosynthesis yield from Saccharomyces cerevisiae
-
Varman, A. M., Xiao, Y., Leonard, E., and Tang, Y. J. (2011). Statistics-based model for prediction of chemical biosynthesis yield from Saccharomyces cerevisiae. Microb. Cell Fact. 10:45. doi: 10.1186/1475-2859-10-45
-
(2011)
Microb. Cell Fact
, vol.10
, pp. 45
-
-
Varman, A.M.1
Xiao, Y.2
Leonard, E.3
Tang, Y.J.4
-
36
-
-
84896731390
-
Enumeration of smallest intervention strategies in genome-scale metabolic networks
-
von Kamp, A., and Klamt, S. (2014). Enumeration of smallest intervention strategies in genome-scale metabolic networks. PLoS Comput. Biol. 10:e1003378. doi: 10.1371/journal.pcbi.1003378
-
(2014)
PLoS Comput. Biol
, vol.10
-
-
von Kamp, A.1
Klamt, S.2
-
37
-
-
71149097660
-
Systems biology: the elements and principles of life
-
Westerhoff, H. V., Winder, C., Messiha, H., Simeonidis, E., Adamczyk, M., Verma, M., et al. (2009). Systems biology: the elements and principles of life. FEBS Lett. 583, 3882-3890. doi: 10.1016/j.febslet.2009.11.018
-
(2009)
FEBS Lett
, vol.583
, pp. 3882-3890
-
-
Westerhoff, H.V.1
Winder, C.2
Messiha, H.3
Simeonidis, E.4
Adamczyk, M.5
Verma, M.6
-
38
-
-
84919947834
-
Overexpression of the Lactobacillus plantarum peptidoglycan biosynthesis murA2 gene increases the tolerance of Escherichia coli to alcohols and enhances ethanol production
-
Yuan, Y., Bi, C., Nicolaou, S. A., Zingaro, K. A., Ralston, M., and Papoutsakis, E. T. (2014). Overexpression of the Lactobacillus plantarum peptidoglycan biosynthesis murA2 gene increases the tolerance of Escherichia coli to alcohols and enhances ethanol production. Appl. Microbiol. Biotechnol. 98, 8399-8411. doi: 10.1007/s00253-014-6004-0
-
(2014)
Appl. Microbiol. Biotechnol
, vol.98
, pp. 8399-8411
-
-
Yuan, Y.1
Bi, C.2
Nicolaou, S.A.3
Zingaro, K.A.4
Ralston, M.5
Papoutsakis, E.T.6
|