메뉴 건너뛰기




Volumn 3, Issue MAR, 2015, Pages

RobOKoD: Microbial strain design for (over)production of target compounds

Author keywords

Constraint based modeling; Metabolic engineering; Strain design; Synthetic biology; Systems biology

Indexed keywords


EID: 84964459500     PISSN: None     EISSN: 2296634X     Source Type: Journal    
DOI: 10.3389/fcell.2015.00017     Document Type: Article
Times cited : (21)

References (38)
  • 1
    • 84902946445 scopus 로고    scopus 로고
    • Exploring metabolic engineering design principles for the photosynthetic production of lactic acid by Synechocystis sp PCC6803
    • Angermayr, S. A., van der Woude, A. D., Correddu, D., Vreugdenhil, A., Verrone, V., and Hellingwerf, K. J. (2014). Exploring metabolic engineering design principles for the photosynthetic production of lactic acid by Synechocystis sp. PCC6803. Biotechnol. Biofuels 7:99. doi: 10.1186/1754-6834-7-99
    • (2014) Biotechnol. Biofuels , vol.7 , pp. 99
    • Angermayr, S.A.1    van der Woude, A.D.2    Correddu, D.3    Vreugdenhil, A.4    Verrone, V.5    Hellingwerf, K.J.6
  • 2
    • 71849086611 scopus 로고    scopus 로고
    • Direct photosynthetic recycling of carbon dioxide to isobutyraldehyde
    • Atsumi, S., Higashide, W., and Liao, J. C. (2009). Direct photosynthetic recycling of carbon dioxide to isobutyraldehyde. Nat. Biotechnol. 27, 1177-1180. doi: 10.1038/nbt.1586
    • (2009) Nat. Biotechnol , vol.27 , pp. 1177-1180
    • Atsumi, S.1    Higashide, W.2    Liao, J.C.3
  • 3
    • 84856566482 scopus 로고    scopus 로고
    • Minimal cut sets in a metabolic network are elementary modes in a dual network
    • Ballerstein, K., von Kamp, A., Klamt, S., and Haus, U. U. (2012). Minimal cut sets in a metabolic network are elementary modes in a dual network. Bioinformatics 28, 381-387. doi: 10.1093/bioinformatics/btr674
    • (2012) Bioinformatics , vol.28 , pp. 381-387
    • Ballerstein, K.1    von Kamp, A.2    Klamt, S.3    Haus, U.U.4
  • 4
    • 84886740491 scopus 로고    scopus 로고
    • Path2Models: large-scale generation of computational models from biochemical pathway maps
    • Büchel, F., Rodriguez, N., Swainston, N., Wrzodek, C., Czauderna, T., Keller, R., et al. (2013). Path2Models: large-scale generation of computational models from biochemical pathway maps. BMC Syst. Biol. 7:116. doi: 10.1186/1752-0509-7-116
    • (2013) BMC Syst. Biol , vol.7 , pp. 116
    • Büchel, F.1    Rodriguez, N.2    Swainston, N.3    Wrzodek, C.4    Czauderna, T.5    Keller, R.6
  • 5
    • 0242487787 scopus 로고    scopus 로고
    • Optknock: a bilevel programming framework for identifying gene knockout strategies for microbial strain optimization
    • Burgard, A. P., Pharkya, P., and Maranas, C. D. (2003). Optknock: a bilevel programming framework for identifying gene knockout strategies for microbial strain optimization. Biotechnol. Bioeng. 84, 647-657. doi: 10.1002/bit.10803
    • (2003) Biotechnol. Bioeng , vol.84 , pp. 647-657
    • Burgard, A.P.1    Pharkya, P.2    Maranas, C.D.3
  • 6
    • 77952265112 scopus 로고    scopus 로고
    • In silico identification of gene amplification targets for improvement of lycopene production
    • Choi, H. S., Lee, S. Y., Kim, T. Y., and Woo, H. M. (2010). In silico identification of gene amplification targets for improvement of lycopene production. Appl. Environ. Microbiol. 76, 3097-3105. doi: 10.1128/AEM.00115-10
    • (2010) Appl. Environ. Microbiol , vol.76 , pp. 3097-3105
    • Choi, H.S.1    Lee, S.Y.2    Kim, T.Y.3    Woo, H.M.4
  • 7
    • 84895756673 scopus 로고    scopus 로고
    • k-OptForce: integrating kinetics with flux balance analysis for strain design
    • Chowdry, A., Zomorrodi, A. R., and Maranas, C. D. (2014). k-OptForce: integrating kinetics with flux balance analysis for strain design. PLoS Comput. Biol. 10:e1003487. doi: 10.1371/journal.pcbi.1003487
    • (2014) PLoS Comput. Biol , vol.10
    • Chowdry, A.1    Zomorrodi, A.R.2    Maranas, C.D.3
  • 8
    • 75849164426 scopus 로고    scopus 로고
    • Computing the shortest elementary flux modes in genome-scale metabolic networks
    • de Figueiredo, L. F., Podhorski, A., Rubio, A., Kaleta, C., Beasley, J. E., Schuster, S., et al. (2009). Computing the shortest elementary flux modes in genome-scale metabolic networks. Bioinformatics 25, 3158-3165. doi: 10.1093/bioinformatics/btp564
    • (2009) Bioinformatics , vol.25 , pp. 3158-3165
    • de Figueiredo, L.F.1    Podhorski, A.2    Rubio, A.3    Kaleta, C.4    Beasley, J.E.5    Schuster, S.6
  • 9
    • 80051941601 scopus 로고    scopus 로고
    • Engineered reversal of the β-oxidation cycle for the synthesis of fuels and chemicals
    • Dellomonaco, C., Clomburg, J. M., Miller, E. N., and Gonzalez, R. (2011). Engineered reversal of the β-oxidation cycle for the synthesis of fuels and chemicals. Nature 476, 355-359. doi: 10.1038/nature10333
    • (2011) Nature , vol.476 , pp. 355-359
    • Dellomonaco, C.1    Clomburg, J.M.2    Miller, E.N.3    Gonzalez, R.4
  • 11
    • 34347332311 scopus 로고    scopus 로고
    • A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information
    • Feist, A. M., Henry, C. S., Reed, J. L., Krummenacker, M., Joyce, A. R., Karp, P. D., et al. (2007). A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information. Mol. Syst. Biol. 3:121. doi: 10.1038/msb4100155
    • (2007) Mol. Syst. Biol , vol.3 , pp. 121
    • Feist, A.M.1    Henry, C.S.2    Reed, J.L.3    Krummenacker, M.4    Joyce, A.R.5    Karp, P.D.6
  • 12
    • 77950863401 scopus 로고    scopus 로고
    • Model-driven evaluation of the production potential for growth-coupled products of Escherichia coli
    • Feist, A. M., Zielinski, D. C., Orth, J. D., Schellenberger, J., Herrgard, M. J., and Palsson, B. Ø. (2010). Model-driven evaluation of the production potential for growth-coupled products of Escherichia coli. Metab. Eng. 12, 173-186. doi: 10.1016/j.ymben.2009.10.003
    • (2010) Metab. Eng , vol.12 , pp. 173-186
    • Feist, A.M.1    Zielinski, D.C.2    Orth, J.D.3    Schellenberger, J.4    Herrgard, M.J.5    Palsson, B.O.6
  • 13
    • 77957117220 scopus 로고    scopus 로고
    • Computationally efficient flux variability analysis
    • Gudmundsson, S., and Thiele, I. (2010). Computationally efficient flux variability analysis. BMC Bioinformatics 11:489. doi: 10.1186/1471-2105-11-489
    • (2010) BMC Bioinformatics , vol.11 , pp. 489
    • Gudmundsson, S.1    Thiele, I.2
  • 14
    • 84879515443 scopus 로고    scopus 로고
    • The ability of flux balance analysis to predict evolution of central metabolism scales with the initial distance to the optimum
    • Harcombe, W. R., Delaney, N. F., Leiby, N., Klitgord, N., and Marx, C. J. (2013). The ability of flux balance analysis to predict evolution of central metabolism scales with the initial distance to the optimum. PLoS Comput. Biol. 9:e1003091. doi: 10.1371/journal.pcbi.1003091
    • (2013) PLoS Comput. Biol , vol.9
    • Harcombe, W.R.1    Delaney, N.F.2    Leiby, N.3    Klitgord, N.4    Marx, C.J.5
  • 15
    • 84861744439 scopus 로고    scopus 로고
    • Yeast 5-an expanded reconstruction of the Saccharomyces cerevisiae metabolic network
    • Heavner, B. D., Smallbone, K., Barker, B., Mendes, P., and Walker, L. P. (2012). Yeast 5-an expanded reconstruction of the Saccharomyces cerevisiae metabolic network. BMC Syst. Biol. 6:55. doi: 10.1186/1752-0509-6-55
    • (2012) BMC Syst. Biol , vol.6 , pp. 55
    • Heavner, B.D.1    Smallbone, K.2    Barker, B.3    Mendes, P.4    Walker, L.P.5
  • 16
    • 85014438978 scopus 로고    scopus 로고
    • 'Understanding network behavior by structured representations of transition invariants'
    • eds A. Condon, D. Harel, J. N. Kok, A. Salomaa, and E. Winfree (Berlin; Heidelberg: Springer-Verlag)
    • Heiner, M. (2009). 'Understanding network behavior by structured representations of transition invariants'. in Algorithmic Bioprocesses: Natural Computing Series, eds A. Condon, D. Harel, J. N. Kok, A. Salomaa, and E. Winfree (Berlin; Heidelberg: Springer-Verlag), 367-389
    • (2009) Algorithmic Bioprocesses: Natural Computing Series , pp. 367-389
    • Heiner, M.1
  • 17
    • 0037342537 scopus 로고    scopus 로고
    • The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models
    • Hucka, M., Finney, A., Sauro, H. M., Bolouri, H., Doyle, J. C., Kitano, H., et al. (2003). The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models. Bioinformatics 19, 524-531. doi: 10.1093/bioinformatics/btg015
    • (2003) Bioinformatics , vol.19 , pp. 524-531
    • Hucka, M.1    Finney, A.2    Sauro, H.M.3    Bolouri, H.4    Doyle, J.C.5    Kitano, H.6
  • 18
    • 40549120269 scopus 로고    scopus 로고
    • Predicting gene essentiality using genome-scale in silico models
    • Joyce, A. R., and Palsson, B. Ø. (2008). Predicting gene essentiality using genome-scale in silico models. Methods Mol. Biol. 416, 433-457. doi: 10.1007/978-1-59745-321-9_30
    • (2008) Methods Mol. Biol , vol.416 , pp. 433-457
    • Joyce, A.R.1    Palsson, B.O.2
  • 19
    • 0036500993 scopus 로고    scopus 로고
    • Systems biology: a brief overview
    • Kitano, H. (2002). Systems biology: a brief overview. Science 295, 1662-1664. doi: 10.1126/science.1069492
    • (2002) Science , vol.295 , pp. 1662-1664
    • Kitano, H.1
  • 20
    • 63249117139 scopus 로고    scopus 로고
    • The role of predictive modelling in rationally re-engineering biological systems
    • Koide, T., Pang, W. L., and Baliga, N. S. (2009). The role of predictive modelling in rationally re-engineering biological systems. Nat. Rev. Microbiol. 7, 297-305. doi: 10.1038/nrmicro2107
    • (2009) Nat. Rev. Microbiol , vol.7 , pp. 297-305
    • Koide, T.1    Pang, W.L.2    Baliga, N.S.3
  • 21
    • 84862301363 scopus 로고    scopus 로고
    • Improving metabolic flux predictions using absolute gene expression data
    • Lee, D., Smallbone, K., Dunn, W. B., Murabito, E., Winder, C. L., Kell, D. B., et al. (2012). Improving metabolic flux predictions using absolute gene expression data. BMC Syst. Biol. 6:73. doi: 10.1186/1752-0509-6-73
    • (2012) BMC Syst. Biol , vol.6 , pp. 73
    • Lee, D.1    Smallbone, K.2    Dunn, W.B.3    Murabito, E.4    Winder, C.L.5    Kell, D.B.6
  • 22
    • 84905016966 scopus 로고    scopus 로고
    • Overproduction of fatty acids in engineered Saccharomyces cerevisiae
    • Li, X., Guo, D., Cheng, Y., Zhu, F., Deng, Z., and Liu, T. (2014). Overproduction of fatty acids in engineered Saccharomyces cerevisiae. Biotechnol. Bioeng. 111, 1841-1852. doi: 10.1002/bit.25239
    • (2014) Biotechnol. Bioeng , vol.111 , pp. 1841-1852
    • Li, X.1    Guo, D.2    Cheng, Y.3    Zhu, F.4    Deng, Z.5    Liu, T.6
  • 23
    • 79952789318 scopus 로고    scopus 로고
    • An experimentally validated genome-scale metabolic reconstruction of Klebsiella pneumoniae MGH 78578, iYL1228
    • Liao, Y. C., Huang, T. W., Chen, F. C., Charusanti, P., Hong, J. S., Chang, H. Y., et al. (2011). An experimentally validated genome-scale metabolic reconstruction of Klebsiella pneumoniae MGH 78578, iYL1228. J. Bacteriol. 193, 1710-1717. doi: 10.1128/JB.01218-10
    • (2011) J. Bacteriol , vol.193 , pp. 1710-1717
    • Liao, Y.C.1    Huang, T.W.2    Chen, F.C.3    Charusanti, P.4    Hong, J.S.5    Chang, H.Y.6
  • 24
    • 84882604844 scopus 로고    scopus 로고
    • Microbial engineering strategies to improve cell viability for biochemical production
    • Lo, T. M., Teo, W. S., Ling, H., Chen, B., Kang, A., and Chang, M. W. (2013). Microbial engineering strategies to improve cell viability for biochemical production. Biotechnol. Adv. 31, 903-914. doi: 10.1016/j.biotechadv.2013.02.001
    • (2013) Biotechnol. Adv , vol.31 , pp. 903-914
    • Lo, T.M.1    Teo, W.S.2    Ling, H.3    Chen, B.4    Kang, A.5    Chang, M.W.6
  • 25
    • 84861442550 scopus 로고    scopus 로고
    • Production of 2, 3-butanediol in Saccharomyces cerevisiae by in silico aided metabolic engineering
    • Ng, C. Y., Jung, M.-Y., Lee, J., and Oh, M.-K. (2012). Production of 2, 3-butanediol in Saccharomyces cerevisiae by in silico aided metabolic engineering. Microb. Cell Fact. 11:68. doi: 10.1186/1475-2859-11-68
    • (2012) Microb. Cell Fact , vol.11 , pp. 68
    • Ng, C.Y.1    Jung, M.-Y.2    Lee, J.3    Oh, M.-K.4
  • 26
    • 77749320898 scopus 로고    scopus 로고
    • What is flux balance analysis?
    • Orth, J. D., Thiele, I., and Palsson, B. Ø. (2010). What is flux balance analysis? Nat. Biotechnol. 28, 245-248. doi: 10.1038/nbt.1614
    • (2010) Nat. Biotechnol , vol.28 , pp. 245-248
    • Orth, J.D.1    Thiele, I.2    Palsson, B.O.3
  • 27
    • 84865075156 scopus 로고    scopus 로고
    • Flux variability scanning based on enforced objective flux for identifying gene amplification targets
    • Park, J. M., Park, H. M., Kim, W. J., Kim, H. U., Kim, T. Y., and Lee, S. Y. (2012). Flux variability scanning based on enforced objective flux for identifying gene amplification targets. BMC Syst. Biol. 6:106. doi: 10.1186/1752-0509-6-106
    • (2012) BMC Syst. Biol , vol.6 , pp. 106
    • Park, J.M.1    Park, H.M.2    Kim, W.J.3    Kim, H.U.4    Kim, T.Y.5    Lee, S.Y.6
  • 28
    • 29544436058 scopus 로고    scopus 로고
    • An optimization framework for identifying reaction activation/inhibition or elimination candidates for overproduction in microbial systems
    • Pharkya, P., and Maranas, C. D. (2006). An optimization framework for identifying reaction activation/inhibition or elimination candidates for overproduction in microbial systems. Metab. Eng. 8, 1-13. doi: 10.1016/j.ymben.2005.08.003
    • (2006) Metab. Eng , vol.8 , pp. 1-13
    • Pharkya, P.1    Maranas, C.D.2
  • 29
    • 77950960250 scopus 로고    scopus 로고
    • OptFlux: an open-source software platform for in silico metabolic engineering
    • Rocha, I., Maia, P., Evangelista, P., Vilaça, P., Soares, S., Pinto, J. P., et al. (2010). OptFlux: an open-source software platform for in silico metabolic engineering. BMC Syst. Biol. 4:45. doi: 10.1186/1752-0509-4-45
    • (2010) BMC Syst. Biol , vol.4 , pp. 45
    • Rocha, I.1    Maia, P.2    Evangelista, P.3    Vilaça, P.4    Soares, S.5    Pinto, J.P.6
  • 30
    • 33846061120 scopus 로고    scopus 로고
    • Metabolic networks in motion: 13C-based flux analysis
    • Sauer, U. (2006). Metabolic networks in motion: 13C-based flux analysis. Mol. Syst. Biol. 2, 62. doi: 10.1038/msb4100109
    • (2006) Mol. Syst. Biol , vol.2 , pp. 62
    • Sauer, U.1
  • 31
    • 79551662521 scopus 로고    scopus 로고
    • Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox v2.0
    • Schellenberger, J., Que, R., Fleming, R. M., Thiele, I., Orth, J. D., Feist, A. M., et al. (2011). Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox v2.0. Nat. Protoc. 6, 1290-1307. doi: 10.1038/nprot.2011.308
    • (2011) Nat. Protoc , vol.6 , pp. 1290-1307
    • Schellenberger, J.1    Que, R.2    Fleming, R.M.3    Thiele, I.4    Orth, J.D.5    Feist, A.M.6
  • 32
    • 84893707475 scopus 로고    scopus 로고
    • Systematic construction of kinetic models from genome-scale metabolic networks
    • Stanford, N. J., Lubitz, T., Smallbone, K., Klipp, E., Mendes, P., and Liebermeister, W. (2013). Systematic construction of kinetic models from genome-scale metabolic networks. PLoS ONE 8:e79195. doi: 10.1371/journal.pone.0079195
    • (2013) PLoS ONE , vol.8
    • Stanford, N.J.1    Lubitz, T.2    Smallbone, K.3    Klipp, E.4    Mendes, P.5    Liebermeister, W.6
  • 33
    • 77949495880 scopus 로고    scopus 로고
    • Predicting metabolic engineering knockout strategies for chemical production: accounting for competing pathways
    • Tepper, N., and Shlomi, T. (2010). Predicting metabolic engineering knockout strategies for chemical production: accounting for competing pathways. Bioinformatics 26, 536-543. doi: 10.1093/bioinformatics/btp704
    • (2010) Bioinformatics , vol.26 , pp. 536-543
    • Tepper, N.1    Shlomi, T.2
  • 34
    • 75149129569 scopus 로고    scopus 로고
    • A protocol for generating a high-quality genome-scale metabolic reconstruction
    • Thiele, I., and Palsson, B. Ø. (2010). A protocol for generating a high-quality genome-scale metabolic reconstruction. Nat. Protoc. 5, 93-121. doi: 10.1038/nprot.2009.203
    • (2010) Nat. Protoc , vol.5 , pp. 93-121
    • Thiele, I.1    Palsson, B.O.2
  • 35
    • 79959216987 scopus 로고    scopus 로고
    • Statistics-based model for prediction of chemical biosynthesis yield from Saccharomyces cerevisiae
    • Varman, A. M., Xiao, Y., Leonard, E., and Tang, Y. J. (2011). Statistics-based model for prediction of chemical biosynthesis yield from Saccharomyces cerevisiae. Microb. Cell Fact. 10:45. doi: 10.1186/1475-2859-10-45
    • (2011) Microb. Cell Fact , vol.10 , pp. 45
    • Varman, A.M.1    Xiao, Y.2    Leonard, E.3    Tang, Y.J.4
  • 36
    • 84896731390 scopus 로고    scopus 로고
    • Enumeration of smallest intervention strategies in genome-scale metabolic networks
    • von Kamp, A., and Klamt, S. (2014). Enumeration of smallest intervention strategies in genome-scale metabolic networks. PLoS Comput. Biol. 10:e1003378. doi: 10.1371/journal.pcbi.1003378
    • (2014) PLoS Comput. Biol , vol.10
    • von Kamp, A.1    Klamt, S.2
  • 38
    • 84919947834 scopus 로고    scopus 로고
    • Overexpression of the Lactobacillus plantarum peptidoglycan biosynthesis murA2 gene increases the tolerance of Escherichia coli to alcohols and enhances ethanol production
    • Yuan, Y., Bi, C., Nicolaou, S. A., Zingaro, K. A., Ralston, M., and Papoutsakis, E. T. (2014). Overexpression of the Lactobacillus plantarum peptidoglycan biosynthesis murA2 gene increases the tolerance of Escherichia coli to alcohols and enhances ethanol production. Appl. Microbiol. Biotechnol. 98, 8399-8411. doi: 10.1007/s00253-014-6004-0
    • (2014) Appl. Microbiol. Biotechnol , vol.98 , pp. 8399-8411
    • Yuan, Y.1    Bi, C.2    Nicolaou, S.A.3    Zingaro, K.A.4    Ralston, M.5    Papoutsakis, E.T.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.