-
1
-
-
84872073184
-
Strong fiber-reinforced hydrogel
-
Agrawal, A., Rahbar, N., and Calvert, P. D. (2013). Strong fiber-reinforced hydrogel. Acta Biomater. 9, 5313-5318. doi: 10.1016/j.actbio.2012.10.011.
-
(2013)
Acta Biomater
, vol.9
, pp. 5313-5318
-
-
Agrawal, A.1
Rahbar, N.2
Calvert, P.D.3
-
2
-
-
28744448243
-
Mechanical properties of bacterial cellulose and interactions with smooth muscle cells
-
Bäckdahl, H., Helenius, G., Bodin, A., Nannmark, U., Johansson, B. R., Risberg, B., et al. (2006). Mechanical properties of bacterial cellulose and interactions with smooth muscle cells. Biomaterials 27, 2141-2149. doi: 10.1016/j.biomaterials.2005.10.026.
-
(2006)
Biomaterials
, vol.27
, pp. 2141-2149
-
-
Bäckdahl, H.1
Helenius, G.2
Bodin, A.3
Nannmark, U.4
Johansson, B.R.5
Risberg, B.6
-
3
-
-
78649629596
-
Observations on bacterial cellulose tube formation for application as vascular graft
-
Bäckdahl, H., Risberg, B., and Gatenholm, P. (2011). Observations on bacterial cellulose tube formation for application as vascular graft. Mater. Sci. Eng. C Mater. Biol. Appl. 31, 14-21. doi: 10.1016/j.msec.2010.07.010.
-
(2011)
Mater. Sci. Eng. C Mater. Biol. Appl
, vol.31
, pp. 14-21
-
-
Bäckdahl, H.1
Risberg, B.2
Gatenholm, P.3
-
4
-
-
77957575140
-
Tissue-engineered conduit using urine-derived stem cells seeded bacterial cellulose polymer in urinary reconstruction and diversion
-
Bodin, A., Bharadwaj, S., Wu, S., Gatenholm, P., Atala, A., and Zhang, Y. (2010). Tissue-engineered conduit using urine-derived stem cells seeded bacterial cellulose polymer in urinary reconstruction and diversion. Biomaterials 31, 8889-8901. doi: 10.1016/j.biomaterials.2010.07.108.
-
(2010)
Biomaterials
, vol.31
, pp. 8889-8901
-
-
Bodin, A.1
Bharadwaj, S.2
Wu, S.3
Gatenholm, P.4
Atala, A.5
Zhang, Y.6
-
5
-
-
79955774129
-
Never-dried bacterial cellulose/fibrin composites: preparation, morphology and mechanical properties
-
Brown, E., Zhang, J., and Laborie, M.-P. (2011). Never-dried bacterial cellulose/fibrin composites: preparation, morphology and mechanical properties. Cellulose 18, 631-641. doi: 10.1007/s10570-011-9500-8.
-
(2011)
Cellulose
, vol.18
, pp. 631-641
-
-
Brown, E.1
Zhang, J.2
Laborie, M.-P.3
-
6
-
-
77952880781
-
Bacterial cellulose/poly(ethylene glycol) composite: characterization and first evaluation of biocompatibility
-
Cai, Z., and Kim, J. (2010). Bacterial cellulose/poly(ethylene glycol) composite: characterization and first evaluation of biocompatibility. Cellulose 17, 83-91. doi: 10.1007/s10570-009-9362-5.
-
(2010)
Cellulose
, vol.17
, pp. 83-91
-
-
Cai, Z.1
Kim, J.2
-
7
-
-
80855132734
-
In situ modification of bacterial cellulose nanostructure by adding CMC during the growth of Gluconacetobacter xylinus
-
Chen, H. H., Chen, L. C., Huang, H. C., and Lin, S. B. (2011). In situ modification of bacterial cellulose nanostructure by adding CMC during the growth of Gluconacetobacter xylinus. Cellulose 18, 1573-1583. doi: 10.1007/s10570-011-9594-z.
-
(2011)
Cellulose
, vol.18
, pp. 1573-1583
-
-
Chen, H.H.1
Chen, L.C.2
Huang, H.C.3
Lin, S.B.4
-
8
-
-
68949208655
-
Enhanced production of bacterial cellulose by using a biofilm reactor and its material property analysis
-
Cheng, K. C., Catchmark, J., and Demirci, A. (2009). Enhanced production of bacterial cellulose by using a biofilm reactor and its material property analysis. J. Biol. Eng. 3:12. doi: 10.1186/1754-1611-3-12.
-
(2009)
J. Biol. Eng
, vol.3
, pp. 12
-
-
Cheng, K.C.1
Catchmark, J.2
Demirci, A.3
-
9
-
-
13444258720
-
Multifunctional bacterial cellulose/chitosan composite materials for medical applications
-
Ciechanska, D. (2004). Multifunctional bacterial cellulose/chitosan composite materials for medical applications. Fibers Text. East. Eur. 12, 69-72. Available online at: https://www.infona.pl/resource/bwmeta1.element.baztech-c326df6d-d738-4e23-ad3b-7157813ebde9/tab/summary.
-
(2004)
Fibers Text. East. Eur
, vol.12
, pp. 69-72
-
-
Ciechanska, D.1
-
10
-
-
33847056568
-
Effects of different drying processes on the material properties of bacterial cellulose membranes
-
Clasen, C., Sultanova, B., Wilhelms, T., Heisig, P., and Kulicke, W. M. (2006). Effects of different drying processes on the material properties of bacterial cellulose membranes. Macromol. Symp. 244, 48-58. doi: 10.1002/masy.200651204.
-
(2006)
Macromol. Symp
, vol.244
, pp. 48-58
-
-
Clasen, C.1
Sultanova, B.2
Wilhelms, T.3
Heisig, P.4
Kulicke, W.M.5
-
11
-
-
24644517577
-
Microbial cellulose-the natural power to heal wounds
-
Czaja, W., Krystynowicz, A., Bielecki, S., and Brown, J. R. M. (2006). Microbial cellulose-the natural power to heal wounds. Biomaterials 27, 145-151. doi: 10.1016/j.biomaterials.2005.07.035.
-
(2006)
Biomaterials
, vol.27
, pp. 145-151
-
-
Czaja, W.1
Krystynowicz, A.2
Bielecki, S.3
Brown, J.R.M.4
-
12
-
-
78951483240
-
"Biomedical applications of microbial cellulose in burn wound recovery, "
-
eds R. Brown and J. Saxena (Houten: Springer)
-
Czaja, W., Krystynowicz, A., Kawecki, M., Wysota, K., Sakiel, S., Wróblewski, P., et al. (2007). "Biomedical applications of microbial cellulose in burn wound recovery, " in Cellulose: Molecular and Structural Biology, eds R. Brown and J. Saxena (Houten: Springer), 307-321.
-
(2007)
Cellulose: Molecular and Structural Biology
, pp. 307-321
-
-
Czaja, W.1
Krystynowicz, A.2
Kawecki, M.3
Wysota, K.4
Sakiel, S.5
Wróblewski, P.6
-
13
-
-
71549150939
-
Novel transparent nanocomposite films based on chitosan and bacterial cellulose
-
Fernandes, S. C. M., Oliveira, L., Freire, C. S. R., Silvestre, A. J. D., Neto, C. P., Gandini, A., et al. (2009). Novel transparent nanocomposite films based on chitosan and bacterial cellulose. Green Chem. 11, 2023-2029, doi: 10.1039/b919112g.
-
(2009)
Green Chem
, vol.11
, pp. 2023-2029
-
-
Fernandes, S.C.M.1
Oliveira, L.2
Freire, C.S.R.3
Silvestre, A.J.D.4
Neto, C.P.5
Gandini, A.6
-
14
-
-
0025110979
-
Acetobacter cellulose pellicle as a temporary skin substitute
-
Fontana, J. D., Souza, A. M., Fontana, C. K., Torriani, I. L., Moreschi, J. C., Gallotti, B. J., et al. (1990). Acetobacter cellulose pellicle as a temporary skin substitute. Appl. Biochem. Biotechnol. 24-25, 253-264. doi: 10.1007/BF02920250.
-
(1990)
Appl. Biochem. Biotechnol
, vol.24-25
, pp. 253-264
-
-
Fontana, J.D.1
Souza, A.M.2
Fontana, C.K.3
Torriani, I.L.4
Moreschi, J.C.5
Gallotti, B.J.6
-
15
-
-
84870298635
-
Present status and applications of bacterial cellulose-based materials for skin tissue repair
-
Fu, L., Zhang, J., and Yang, G. (2013). Present status and applications of bacterial cellulose-based materials for skin tissue repair. Carbohydr. Polym. 92, 1432-1442. doi: 10.1016/j.carbpol.2012.10.071.
-
(2013)
Carbohydr. Polym
, vol.92
, pp. 1432-1442
-
-
Fu, L.1
Zhang, J.2
Yang, G.3
-
16
-
-
84862225050
-
Skin tissue repair materials from bacterial cellulose by a multilayer fermentation method
-
Fu, L., Zhang, Y., Li, C., Wu, Z., Zhuo, Q., Huang, X., et al. (2012). Skin tissue repair materials from bacterial cellulose by a multilayer fermentation method. J. Mater. Chem. 22, 12349-12357. doi: 10.1039/C2JM00134A.
-
(2012)
J. Mater. Chem
, vol.22
, pp. 12349-12357
-
-
Fu, L.1
Zhang, Y.2
Li, C.3
Wu, Z.4
Zhuo, Q.5
Huang, X.6
-
17
-
-
84877115803
-
Disruption of protein synthesis as antifungal mode of action by chitosan
-
Galván Márquez, I., Akuaku, J., Cruz, I., Cheetham, J., Golshani, A., and Smith, M. L. (2013). Disruption of protein synthesis as antifungal mode of action by chitosan. Int. J. Food Microbiol. 164, 108-112. doi: 10.1016/j.ijfoodmicro.2013.03.025.
-
(2013)
Int. J. Food Microbiol
, vol.164
, pp. 108-112
-
-
Galván Márquez, I.1
Akuaku, J.2
Cruz, I.3
Cheetham, J.4
Golshani, A.5
Smith, M.L.6
-
18
-
-
77950286169
-
Bacterial nanocellulose as a renewable material for biomedical applications
-
Gatenholm, P., and Klemm, D. (2010). Bacterial nanocellulose as a renewable material for biomedical applications. MRS Bull. 35, 208-213. doi: 10.1557/mrs2010.653.
-
(2010)
MRS Bull
, vol.35
, pp. 208-213
-
-
Gatenholm, P.1
Klemm, D.2
-
19
-
-
77952878723
-
Ligament-like tough double-network hydrogel based on bacterial cellulose
-
Hagiwara, Y., Putra, A., Kakugo, A., Furukawa, H., and Gong, J. (2010). Ligament-like tough double-network hydrogel based on bacterial cellulose. Cellulose 17, 93-101. doi: 10.1007/s10570-009-9357-2.
-
(2010)
Cellulose
, vol.17
, pp. 93-101
-
-
Hagiwara, Y.1
Putra, A.2
Kakugo, A.3
Furukawa, H.4
Gong, J.5
-
20
-
-
70349138080
-
Alteration of bacterial nanocellulose structure by in situ modification using polyethylene glycol and carbohydrate additives
-
HeBler, N., and Klemm, D. (2009). Alteration of bacterial nanocellulose structure by in situ modification using polyethylene glycol and carbohydrate additives. Cellulose 16, 899-910. doi: 10.1007/s10570-009-9301-5.
-
(2009)
Cellulose
, vol.16
, pp. 899-910
-
-
HeBler, N.1
Klemm, D.2
-
22
-
-
84964381953
-
-
China, Patent
-
Hong, F., Tang, S., and Yang, X. (2012a). Device for Quickly Preparing Bacterial Cellulose Composite Material in Large Scale. China, Patent CN202830006/CN2012221360U. Available online at: http://worldwide.espacenet.com/publicationDetails/biblio?DB=EPODOC&II=0&ND=3&adjacent=true&locale=en_EP&FT=D&date=20130327&CC=CN&NR=202830006U&KC=U.
-
(2012)
Device for Quickly Preparing Bacterial Cellulose Composite Material in Large Scale
-
-
Hong, F.1
Tang, S.2
Yang, X.3
-
23
-
-
84930660320
-
Preliminary study on biosynthesis of bacterial nanocellulose tubes in a novel double-silicone-tube bioreactor for potential vascular prosthesis
-
Hong, F., Wei, B., and Chen, L. (2015). Preliminary study on biosynthesis of bacterial nanocellulose tubes in a novel double-silicone-tube bioreactor for potential vascular prosthesis. Biomed. Res. Int. 9:560365. doi: 10.1155/2015/560365.
-
(2015)
Biomed. Res. Int
, vol.9
-
-
Hong, F.1
Wei, B.2
Chen, L.3
-
24
-
-
33845758102
-
Optimizing the production of bacterial cellulose in surface culture: evaluation of substrate mass transfer influences on the bioreaction (Part 1)
-
Hornung, M., Ludwig, M., Gerrard, A., and Schmauder, H. P. (2006). Optimizing the production of bacterial cellulose in surface culture: evaluation of substrate mass transfer influences on the bioreaction (Part 1). Eng. Life Sci. 6, 537-545. doi: 10.1002/elsc.200620162.
-
(2006)
Eng. Life Sci
, vol.6
, pp. 537-545
-
-
Hornung, M.1
Ludwig, M.2
Gerrard, A.3
Schmauder, H.P.4
-
25
-
-
79959763877
-
Preparation and characterization of a Bacterial cellulose/chitosan composite for potential biomedical application
-
Kim, J., Cai, Z., Lee, H. S., Choi, G. S., Lee, D. H., and Jo, C. (2011). Preparation and characterization of a Bacterial cellulose/chitosan composite for potential biomedical application. J. Polym. Res. 18, 739-744. doi: 10.1007/s10965-010-9470-9.
-
(2011)
J. Polym. Res
, vol.18
, pp. 739-744
-
-
Kim, J.1
Cai, Z.2
Lee, H.S.3
Choi, G.S.4
Lee, D.H.5
Jo, C.6
-
26
-
-
20444400628
-
Cellulose: fascinating biopolymer and sustainable raw material
-
Klemm, D., Heublein, B., Fink, H.-P., and Bohn, A. (2005). Cellulose: fascinating biopolymer and sustainable raw material. Angew. Chem. Int. Edit. 44, 3358-3393. doi: 10.1002/anie.200460587.
-
(2005)
Angew. Chem. Int. Edit
, vol.44
, pp. 3358-3393
-
-
Klemm, D.1
Heublein, B.2
Fink, H.-P.3
Bohn, A.4
-
27
-
-
78149470032
-
Antimicrobial properties of chitosan and mode of action: a state of the art review
-
Kong, M., Chen, X. G., Xing, K., and Park, H. J. (2010). Antimicrobial properties of chitosan and mode of action: a state of the art review. Int. J. Food Microbiol. 144, 51-63. doi: 10.1016/j.ijfoodmicro.2010.09.012.
-
(2010)
Int. J. Food Microbiol
, vol.144
, pp. 51-63
-
-
Kong, M.1
Chen, X.G.2
Xing, K.3
Park, H.J.4
-
28
-
-
70149115238
-
Adding enzymatically modified gelatin to enhance the rehydration abilities and mechanical properties of bacterial cellulose
-
Lin, S. B., Hsu, C.-P., Chen, L.-C., and Chen, H.-H. (2009). Adding enzymatically modified gelatin to enhance the rehydration abilities and mechanical properties of bacterial cellulose. Food Hydrocolloids 23, 2195-2203. doi: 10.1016/j.foodhyd.2009.05.011.
-
(2009)
Food Hydrocolloids
, vol.23
, pp. 2195-2203
-
-
Lin, S.B.1
Hsu, C.-P.2
Chen, L.-C.3
Chen, H.-H.4
-
29
-
-
84875799674
-
Bacterial cellulose and bacterial cellulose-chitosan membranes for wound dressing applications
-
Lin, W. C., Lien, C. C., Yeh, H. J., Yu, C. M., and Hsu, S. H. (2013). Bacterial cellulose and bacterial cellulose-chitosan membranes for wound dressing applications. Carbohydr. Polym. 94, 603-611. doi: 10.1016/j.carbpol.2013.01.076.
-
(2013)
Carbohydr. Polym
, vol.94
, pp. 603-611
-
-
Lin, W.C.1
Lien, C.C.2
Yeh, H.J.3
Yu, C.M.4
Hsu, S.H.5
-
30
-
-
79960657605
-
Friction and wear behaviour of bacterial cellulose against articular cartilage
-
Lopes, J. L., Machado, J. M., Castanheira, L., Granja, P. L., Gama, F. M., Dourado, F., et al. (2011). Friction and wear behaviour of bacterial cellulose against articular cartilage. Wear 271, 2328-2333. doi: 10.1016/j.wear.2010.12.042.
-
(2011)
Wear
, vol.271
, pp. 2328-2333
-
-
Lopes, J.L.1
Machado, J.M.2
Castanheira, L.3
Granja, P.L.4
Gama, F.M.5
Dourado, F.6
-
31
-
-
84920989114
-
Microbial biofilms in biotechnological processes
-
Maksimova, Y. G. (2014). Microbial biofilms in biotechnological processes. Appl. Biochem. Microbiol. 50, 750-760. doi: 10.1134/S0003683814080043.
-
(2014)
Appl. Biochem. Microbiol
, vol.50
, pp. 750-760
-
-
Maksimova, Y.G.1
-
32
-
-
0009569163
-
Experiments with an alkali swelling-centrifuge test applied to cotton fiber
-
Marsh, P. B., Merola, G. V., and Simpson, M. E. (1953). Experiments with an alkali swelling-centrifuge test applied to cotton fiber. Text. Res. J. 23, 831-841. doi: 10.1177/004051755302301111.
-
(1953)
Text. Res. J
, vol.23
, pp. 831-841
-
-
Marsh, P.B.1
Merola, G.V.2
Simpson, M.E.3
-
33
-
-
84906946389
-
Biocompatibility evaluation of densified bacterial nanocellulose hydrogel as an implant material for auricular cartilage regeneration
-
Martínez Ávila, H., Schwarz, S., Feldmann, E. M., Mantas, A., von Bomhard, A., Gatenholm, P., et al. (2014). Biocompatibility evaluation of densified bacterial nanocellulose hydrogel as an implant material for auricular cartilage regeneration. Appl. Microbiol. Biotechnol. 98, 7423-7435. doi: 10.1007/s00253-014-5819-z.
-
(2014)
Appl. Microbiol. Biotechnol
, vol.98
, pp. 7423-7435
-
-
Martínez Ávila, H.1
Schwarz, S.2
Feldmann, E.M.3
Mantas, A.4
von Bomhard, A.5
Gatenholm, P.6
-
34
-
-
72849132136
-
Mechanical and structural properties of native and alkali-treated bacterial cellulose produced by Gluconacetobacter xylinus strain ATCC 53524
-
McKenna, B., Mikkelsen, D., Wehr, J., Gidley, M., and Menzies, N. (2009). Mechanical and structural properties of native and alkali-treated bacterial cellulose produced by Gluconacetobacter xylinus strain ATCC 53524. Cellulose 16, 1047-1055. doi: 10.1007/s10570-009-9340-y.
-
(2009)
Cellulose
, vol.16
, pp. 1047-1055
-
-
McKenna, B.1
Mikkelsen, D.2
Wehr, J.3
Gidley, M.4
Menzies, N.5
-
35
-
-
77952876073
-
The effects of cotton gauze coating with microbial cellulose
-
Meftahi, A., Khajavi, R., Rashidi, A., Sattari, M., Yazdanshenas, M., and Torabi, M. (2010). The effects of cotton gauze coating with microbial cellulose. Cellulose 17, 199-204. doi: 10.1007/s10570-009-9377-y.
-
(2010)
Cellulose
, vol.17
, pp. 199-204
-
-
Meftahi, A.1
Khajavi, R.2
Rashidi, A.3
Sattari, M.4
Yazdanshenas, M.5
Torabi, M.6
-
36
-
-
10644224495
-
High mechanical strength double-network hydrogel with bacterial cellulose
-
Nakayama, A., Kakugo, A., Gong, J. P., Osada, Y., Takai, M., Erata, T., et al. (2004). High mechanical strength double-network hydrogel with bacterial cellulose. Adv. Funct.Mater. 14, 1124-1128. doi: 10.1002/adfm.200305197.
-
(2004)
Adv. Funct.Mater
, vol.14
, pp. 1124-1128
-
-
Nakayama, A.1
Kakugo, A.2
Gong, J.P.3
Osada, Y.4
Takai, M.5
Erata, T.6
-
37
-
-
77952426243
-
Microstructure and mechanical properties of bacterial cellulose/chitosan porous scaffold
-
Nge, T., Nogi, M., Yano, H., and Sugiyama, J. (2010). Microstructure and mechanical properties of bacterial cellulose/chitosan porous scaffold. Cellulose 17, 349-363. doi: 10.1007/s10570-009-9394-x.
-
(2010)
Cellulose
, vol.17
, pp. 349-363
-
-
Nge, T.1
Nogi, M.2
Yano, H.3
Sugiyama, J.4
-
38
-
-
80052638686
-
Bacterial cellulose-based materials and medical devices: current state and perspectives
-
Petersen, N., and Gatenholm, P. (2011). Bacterial cellulose-based materials and medical devices: current state and perspectives. App. Microbiol. Biotechnol. 91, 1277-1286. doi: 10.1007/s00253-011-3432-y.
-
(2011)
App. Microbiol. Biotechnol
, vol.91
, pp. 1277-1286
-
-
Petersen, N.1
Gatenholm, P.2
-
39
-
-
49149096105
-
Biosynthesis and characterization of bacteria cellulose-chitosan film
-
Phisalaphong, M., and Jatupaiboon, N. (2008). Biosynthesis and characterization of bacteria cellulose-chitosan film. Carbohydr. Polym. 74, 482-488. doi: 10.1016/j.carbpol.2008.04.004.
-
(2008)
Carbohydr. Polym
, vol.74
, pp. 482-488
-
-
Phisalaphong, M.1
Jatupaiboon, N.2
-
40
-
-
46849109098
-
Surface modification of natural fibers using bacteria: depositing bacterial cellulose onto natural fibers to create hierarchical fiber reinforced nanocomposites
-
Pommet, M., Juntaro, J., Heng, J. Y. Y., Mantalaris, A., Lee, A. F., Wilson, K., et al. (2008). Surface modification of natural fibers using bacteria: depositing bacterial cellulose onto natural fibers to create hierarchical fiber reinforced nanocomposites. Biomacromolecules 9, 1643-1651. doi: 10.1021/bm800169g.
-
(2008)
Biomacromolecules
, vol.9
, pp. 1643-1651
-
-
Pommet, M.1
Juntaro, J.2
Heng, J.Y.Y.3
Mantalaris, A.4
Lee, A.F.5
Wilson, K.6
-
41
-
-
0346735355
-
Absorption characteristics of alginate wound dressings
-
Qin, Y. (2004). Absorption characteristics of alginate wound dressings. J. Appl. Polym. Sci. 91, 953-957. doi: 10.1002/app.13291.
-
(2004)
J. Appl. Polym. Sci
, vol.91
, pp. 953-957
-
-
Qin, Y.1
-
42
-
-
39149086021
-
The gel swelling properties of alginate fibers and their applications in wound management
-
Qin, Y. (2008). The gel swelling properties of alginate fibers and their applications in wound management. Polym. Adv. Technol. 19, 6-14. doi: 10.1002/pat.960.
-
(2008)
Polym. Adv. Technol
, vol.19
, pp. 6-14
-
-
Qin, Y.1
-
43
-
-
79957996726
-
Cross-linked bacterial cellulose networks using glyoxalization
-
Quero, F., Nogi, M., Lee, K. Y., Poel, G. V., Bismarck, A., Mantalaris, A., et al. (2011). Cross-linked bacterial cellulose networks using glyoxalization. ACS Appl. Mater. Interfaces 3, 490-499. doi: 10.1021/am101065p.
-
(2011)
ACS Appl. Mater. Interfaces
, vol.3
, pp. 490-499
-
-
Quero, F.1
Nogi, M.2
Lee, K.Y.3
Poel, G.V.4
Bismarck, A.5
Mantalaris, A.6
-
44
-
-
45749108316
-
Insights into the mode of action of chitosan as an antibacterial compound
-
Raafat, D., Bargen, K., Haas, A., and Sahl, H. G. (2008). Insights into the mode of action of chitosan as an antibacterial compound. Appl. Environ. Microbiol. 74, 3764-3773. doi: 10.1128/AEM.00453-08.
-
(2008)
Appl. Environ. Microbiol
, vol.74
, pp. 3764-3773
-
-
Raafat, D.1
Bargen, K.2
Haas, A.3
Sahl, H.G.4
-
45
-
-
77952427620
-
Bacterial cellulose films with controlled microstructure-mechanical property relationships
-
Retegi, A., Gabilondo, N., Pena, C., Zuluaga, R., Castro, C., Ganan, P., et al. (2010). Bacterial cellulose films with controlled microstructure-mechanical property relationships. Cellulose 17, 661-669. doi: 10.1007/s10570-009-9389-7.
-
(2010)
Cellulose
, vol.17
, pp. 661-669
-
-
Retegi, A.1
Gabilondo, N.2
Pena, C.3
Zuluaga, R.4
Castro, C.5
Ganan, P.6
-
46
-
-
84938058115
-
-
US Patent. Washington, DC: U.S. Patent and Trademark Office
-
Serafica, G., Mormino, R., Oster, G. A., Lentz, K. E., and Koehler, K. (2010). Microbial Cellulose Wound Dressing for Treating Chronic Wounds. US Patent, US 7390499. Washington, DC: U.S. Patent and Trademark Office.
-
(2010)
Microbial Cellulose Wound Dressing for Treating Chronic Wounds
-
-
Serafica, G.1
Mormino, R.2
Oster, G.A.3
Lentz, K.E.4
Koehler, K.5
-
47
-
-
0036245343
-
Inclusion of solid particles in bacterial cellulose
-
Serafica, G. S., Mormino, R. M., and Bungay, H. B. (2002). Inclusion of solid particles in bacterial cellulose. Appl. Microbiol. Biotechnol. 58, 756-760. doi: 10.1007/s00253-002-0978-8.
-
(2002)
Appl. Microbiol. Biotechnol
, vol.58
, pp. 756-760
-
-
Serafica, G.S.1
Mormino, R.M.2
Bungay, H.B.3
-
48
-
-
84877837818
-
Evaluation of antibacterial activity of ZnO nanoparticles coated sonochemically onto textile fabrics
-
Singh, G., Joyce, E. M., Beddow, J., and Mason, T. J. (2012). Evaluation of antibacterial activity of ZnO nanoparticles coated sonochemically onto textile fabrics. J. Microbiol. Biotechnol. Food Sci. 2, 106-120. Available online at: http://www.jmbfs.org/issue/august-september-2012-vol-2-no-1/jmbfs-0117-singh/?issue_id=1307&article_id=6.
-
(2012)
J. Microbiol. Biotechnol. Food Sci
, vol.2
, pp. 106-120
-
-
Singh, G.1
Joyce, E.M.2
Beddow, J.3
Mason, T.J.4
-
49
-
-
84946112242
-
Potential of PVA-doped bacterial nano-cellulose tubular composites for artificial blood vessels
-
Tang, J., Bao, L., Li, X., Chen, L., and Hong, F. F. (2015). Potential of PVA-doped bacterial nano-cellulose tubular composites for artificial blood vessels. J. Mater. Chem. B 3, 8537-8547. doi: 10.1039/c5tb01144b.
-
(2015)
J. Mater. Chem. B
, vol.3
, pp. 8537-8547
-
-
Tang, J.1
Bao, L.2
Li, X.3
Chen, L.4
Hong, F.F.5
-
50
-
-
79961029323
-
Effect of chitosan penetration on physico-chemical and mechanical properties of bacterial cellulose
-
Ul-Islam, M., Shah, N., Ha, J., and Park, J. (2011). Effect of chitosan penetration on physico-chemical and mechanical properties of bacterial cellulose. Korean J. Chem. Eng. 28, 1736-1743. doi: 10.1007/s11814-011-0042-4.
-
(2011)
Korean J. Chem. Eng
, vol.28
, pp. 1736-1743
-
-
Ul-Islam, M.1
Shah, N.2
Ha, J.3
Park, J.4
-
51
-
-
0033933132
-
Location and limitation of cellulose production by Acetobacter xylinum established from oxygen profiles
-
Verschuren, P. G., Cardona, T. D., Nout, M. J. R., De Gooijer, K. D., and Van den Heuvel, J. C. (2000). Location and limitation of cellulose production by Acetobacter xylinum established from oxygen profiles. J. Biosci. Bioeng. 89, 414-419. doi: 10.1016/s1389-1723(00)89089-1.
-
(2000)
J. Biosci. Bioeng
, vol.89
, pp. 414-419
-
-
Verschuren, P.G.1
Cardona, T.D.2
Nout, M.J.R.3
De Gooijer, K.D.4
Van den Heuvel, J.C.5
-
52
-
-
78951480500
-
Preparation and evaluation of a kind of bacterial cellulose dry films with antibacterial properties
-
Wei, B., Yang, G. A., and Hong, F. (2011). Preparation and evaluation of a kind of bacterial cellulose dry films with antibacterial properties. Carbohydr. Polym. 84, 533-538. doi: 10.1016/j.carbpol.2010.12.017.
-
(2011)
Carbohydr. Polym
, vol.84
, pp. 533-538
-
-
Wei, B.1
Yang, G.A.2
Hong, F.3
-
53
-
-
84866401327
-
In situ synthesis of photocatalytically active hybrids consisting of bacterial nanocellulose and anatase nanoparticles
-
Wesarg, F., Schlott, F., Grabow, J., Kurland, H.-D., Hebler, N., Kralisch, D., et al. (2012). In situ synthesis of photocatalytically active hybrids consisting of bacterial nanocellulose and anatase nanoparticles. Langmuir 28, 13518-13525. doi: 10.1021/la302787z.
-
(2012)
Langmuir
, vol.28
, pp. 13518-13525
-
-
Wesarg, F.1
Schlott, F.2
Grabow, J.3
Kurland, H.-D.4
Hebler, N.5
Kralisch, D.6
-
54
-
-
4344613644
-
Preparation and characterization on mechanical and antibacterial properties of chitosan/cellulose blends
-
Wu, Y. B., Yu, S. H., Mi, F. L., Wu, C. W., Shyu, S. S., Peng, C. K., et al. (2004). Preparation and characterization on mechanical and antibacterial properties of chitosan/cellulose blends. Carbohydr. Polym. 57, 435-440. doi: 10.1016/j.carbpol.2004.05.013.
-
(2004)
Carbohydr. Polym
, vol.57
, pp. 435-440
-
-
Wu, Y.B.1
Yu, S.H.2
Mi, F.L.3
Wu, C.W.4
Shyu, S.S.5
Peng, C.K.6
-
55
-
-
49149128334
-
Biosynthesis of bacterial cellulose/multi-walled carbon nanotubes in agitated culture
-
Yan, Z., Chen, S., Wang, H., Wang, B., and Jiang, J. (2008). Biosynthesis of bacterial cellulose/multi-walled carbon nanotubes in agitated culture. Carbohydr. Polym. 74, 659-665. doi: 10.1016/j.carbpol.2008.04.028.
-
(2008)
Carbohydr. Polym
, vol.74
, pp. 659-665
-
-
Yan, Z.1
Chen, S.2
Wang, H.3
Wang, B.4
Jiang, J.5
-
56
-
-
84901820744
-
Beneficial effect of acetic acid on the xylose utilization and bacterial cellulose production by Gluconacetobacter xylinus
-
Yang, X. Y., Huang, C., Guo, H. J., Xiong, L., Luo, J., Wang, B., et al. (2014). Beneficial effect of acetic acid on the xylose utilization and bacterial cellulose production by Gluconacetobacter xylinus. Indian J. Microbiol. 54, 268-273. doi: 10.1007/s12088-014-0450-3.
-
(2014)
Indian J. Microbiol
, vol.54
, pp. 268-273
-
-
Yang, X.Y.1
Huang, C.2
Guo, H.J.3
Xiong, L.4
Luo, J.5
Wang, B.6
-
57
-
-
34247136271
-
The effect of different sterilization procedures on chitosan dried powder
-
Yang, Y. M., Zhao, Y. H., Liu, X. H., Ding, F., and Gu, X. S. (2007). The effect of different sterilization procedures on chitosan dried powder. J. Appl. Polym. Sci. 104, 1968-1972. doi: 10.1002/app.25906.
-
(2007)
J. Appl. Polym. Sci
, vol.104
, pp. 1968-1972
-
-
Yang, Y.M.1
Zhao, Y.H.2
Liu, X.H.3
Ding, F.4
Gu, X.S.5
-
58
-
-
0032190708
-
High-strength, ultra-thin and fiber-reinforced pHEMA artificial skin
-
Young, C. D., Wu, J. R., and Tsou, T. L. (1998). High-strength, ultra-thin and fiber-reinforced pHEMA artificial skin. Biomaterials 19, 1745-1752. doi: 10.1016/S0142-9612(98)00083-0.
-
(1998)
Biomaterials
, vol.19
, pp. 1745-1752
-
-
Young, C.D.1
Wu, J.R.2
Tsou, T.L.3
-
59
-
-
77955914594
-
Microporous bacterial cellulose as a potential scaffold for bone regeneration
-
Zaborowska, M., Bodin, A., Bäckdahl, H., Popp, J., Goldstein, A., and Gatenholm, P. (2010). Microporous bacterial cellulose as a potential scaffold for bone regeneration. Acta Biomater. 6, 2540-2547. doi: 10.1016/j.actbio.2010.01.004.
-
(2010)
Acta Biomater
, vol.6
, pp. 2540-2547
-
-
Zaborowska, M.1
Bodin, A.2
Bäckdahl, H.3
Popp, J.4
Goldstein, A.5
Gatenholm, P.6
-
60
-
-
84964365864
-
Production of a bacterial cellulose-cotton gauze blended composite film in a horizontal rotating bioreactor
-
Zhang, P., Tang, S. J., and Hong, F. (2013). Production of a bacterial cellulose-cotton gauze blended composite film in a horizontal rotating bioreactor. Abstr. Pap. Am. Chem. Soc. 245. Available online at: http://acselb-529643017.us-west-2.elb.amazonaws.com/chem/245nm/program/view.php?obj_id=172649&terms=.
-
(2013)
Abstr. Pap. Am. Chem. Soc
, pp. 245
-
-
Zhang, P.1
Tang, S.J.2
Hong, F.3
|