메뉴 건너뛰기




Volumn 52, Issue 1, 2012, Pages 38-50

Erratum: Improved machine learning models for predicting selective compounds (Journal of Chemical Information and Modeling (2012) 52:1 (38-50) DOI: 10.1021/ci200346b);Improved machine learning models for predicting selective compounds

Author keywords

[No Author keywords available]

Indexed keywords

FORECASTING; MULTI-TASK LEARNING;

EID: 84858033532     PISSN: 15499596     EISSN: 1549960X     Source Type: Journal    
DOI: 10.1021/ci300201j     Document Type: Erratum
Times cited : (25)

References (26)
  • 1
    • 38049018155 scopus 로고    scopus 로고
    • A quantitative analysis of kinase inhibitor selectivity
    • Karaman, M. W. A Quantitative Analysis of Kinase Inhibitor Selectivity. Nat. Biotechnol. 2008, 26, 127-132.
    • (2008) Nat. Biotechnol. , vol.26 , pp. 127-132
    • Karaman, M.W.1
  • 2
    • 34447521097 scopus 로고
    • Correlation of biological activity of phenoxyacetic acids with hammett substituent constants and partition coefficients
    • Hansch, C.; Maloney, P. P.; Fujita, T.; Muir, R. M. Correlation of Biological Activity of Phenoxyacetic Acids with Hammett Substituent Constants and Partition Coefficients. Nature 1962, 194, 178-180.
    • (1962) Nature , vol.194 , pp. 178-180
    • Hansch, C.1    Maloney, P.P.2    Fujita, T.3    Muir, R.M.4
  • 3
    • 0005910987 scopus 로고
    • The correlation of biological activity of plant growth-regulators and chloromycetin derivatives with hammett constants and partition coefficients
    • Hansch, C.; Muir, R. M.; Fujita, T.; Maloney, P. P.; Geiger, F.; Streich, M. The Correlation of Biological Activity of Plant Growth-Regulators and Chloromycetin Derivatives with Hammett Constants and Partition Coefficients. J. Am. Chem. Soc. 1963, 85, 2817-1824.
    • (1963) J. Am. Chem. Soc. , vol.85 , pp. 2817-1824
    • Hansch, C.1    Muir, R.M.2    Fujita, T.3    Maloney, P.P.4    Geiger, F.5    Streich, M.6
  • 4
    • 73449112311 scopus 로고    scopus 로고
    • From structure-activity to structure-selectivity relationships: Quantitative assessment, selectivity cliffs, and key compounds
    • Peltason, L.; Hu, Y.; Bajorath, J. From Structure-Activity to Structure-Selectivity Relationships: Quantitative Assessment, Selectivity Cliffs, and Key Compounds. ChemMedChem 2009, 4, 1864-1873.
    • (2009) ChemMedChem , vol.4 , pp. 1864-1873
    • Peltason, L.1    Hu, Y.2    Bajorath, J.3
  • 5
    • 34548168343 scopus 로고    scopus 로고
    • Methods for computer-aided chemical biology. Part 2: Evaluation of compound selectivity using 2D molecular fingerprints
    • DOI 10.1111/j.1747-0285.2007.00555.x
    • Vogt, I.; Stumpfe, D.; Ahmed, H. E. A.; Bajorath, J. Methods for Computer-Aided Chemical Biology. Part 2: Evaluation of Compound Selectivity Using 2D Molecular Fingerprints. Chem. Biol. Drug Des. 2007, 70, 195-205. (Pubitemid 47305403)
    • (2007) Chemical Biology and Drug Design , vol.70 , Issue.3 , pp. 195-205
    • Vogt, I.1    Stumpfe, D.2    Ahmed, H.E.A.3    Bajorath, J.4
  • 6
    • 43949101012 scopus 로고    scopus 로고
    • Methods for computer-aided chemical biology. Part 3: Analysis of structure-selectivity relationships through single- or dual-step selectivity searching and Bayesian classification
    • DOI 10.1111/j.1747-0285.2008.00670.x
    • Stumpfe, D.; Geppert, H.; Bajorath, J. Methods for Computer-Aided Chemical Biology. Part 3: Analysis of Structure-Selectivity Relationships through Single-or Dual-Step Selectivity Searching and Bayesian Classification. Chem. Biol. Drug Des. 2008, 71, 518-528. (Pubitemid 351704058)
    • (2008) Chemical Biology and Drug Design , vol.71 , Issue.6 , pp. 518-528
    • Stumpfe, D.1    Geppert, H.2    Bajorath, J.3
  • 7
    • 65249163404 scopus 로고    scopus 로고
    • Searching for target-selective compounds using different combinations of multiclass support vector machine ranking methods, kernel functions, and fingerprint descriptors
    • Wassermann, A. M.; Geppert, H.; Bajorath, J. Searching for Target-Selective Compounds Using Different Combinations of Multiclass Support Vector Machine Ranking Methods, Kernel Functions, and Fingerprint Descriptors. J. Chem. Inf. Model. 2009, 49, 582-592.
    • (2009) J. Chem. Inf. Model. , vol.49 , pp. 582-592
    • Wassermann, A.M.1    Geppert, H.2    Bajorath, J.3
  • 8
    • 79952116048 scopus 로고    scopus 로고
    • Application of support vector machine-based ranking strategies to search for target-Selective compounds
    • Wassermann, A. M.; Geppert, H.; Bajorath, J. Application of Support Vector Machine-Based Ranking Strategies to Search for Target-Selective Compounds. Methods Mol. Biol. 2011, 672, 517-530.
    • (2011) Methods Mol. Biol. , vol.672 , pp. 517-530
    • Wassermann, A.M.1    Geppert, H.2    Bajorath, J.3
  • 12
    • 85153936556 scopus 로고
    • Learning many related tasks at the same time with backpropagation
    • Caruana, R. Learning Many Related Tasks at the Same Time with Backpropagation. Adv. Neural Inf. Process. Syst. 1995, 22, 657-664.
    • (1995) Adv. Neural Inf. Process. Syst. , vol.22 , pp. 657-664
    • Caruana, R.1
  • 17
    • 52749098733 scopus 로고    scopus 로고
    • Virtual screening of GPCRs: An in silico chemogenomics approach
    • Jacob, L.;Hoffmann, B.; Stoven, V.; Vert, J.-P. Virtual Screening of GPCRs: An in Silico Chemogenomics Approach. BMC Bioinf. 2008, 9, 363.
    • (2008) BMC Bioinf. , vol.9 , pp. 363
    • Jacob, L.1    Hoffmann, B.2    Stoven, V.3    Vert, J.-P.4
  • 18
    • 72949114936 scopus 로고    scopus 로고
    • Multi-assay-based structure-Activity relationship models: Improving structure-activity relationship models by incorporatingactivity information from relatedtargets
    • Ning, X.; Rangwala, H.; Karypis, G.Multi-Assay-Based Structure-Activity Relationship Models: Improving Structure-Activity Relationship Models by IncorporatingActivity Information from RelatedTargets. J. Chem. Inf. Model. 2009, 49, 2444-2456.
    • (2009) J. Chem. Inf. Model. , vol.49 , pp. 2444-2456
    • Ning, X.1    Rangwala, H.2    Karypis, G.3
  • 21
    • 34548180374 scopus 로고    scopus 로고
    • Methods for computer-aided chemical biology. Part 1: Design of a benchmark system for the evaluation of compound selectivity
    • DOI 10.1111/j.1747-0285.2007.00554.x
    • Stumpfe, D.; Ahmed, H. E. A.; Vogt, I.; Bajorath, J. Methods for Ccomputer-Aided Chemical Biology. Part 1: Design of a Benchmark System for the Evaluation of Compound Selectivity. Chem. Biol. Drug Des. 2007, 70, 182-194. (Pubitemid 47305402)
    • (2007) Chemical Biology and Drug Design , vol.70 , Issue.3 , pp. 182-194
    • Stumpfe, D.1    Ahmed, H.E.A.2    Vogt, I.3    Bajorath, J.4
  • 22
    • 79952117971 scopus 로고    scopus 로고
    • Molecular test systems for computational selectivity studies and systematic analysis of compound selectivity profiles
    • Stumpfe, D.; Lounkine, E.; Bajorath, J. Molecular Test Systems for Computational Selectivity Studies and Systematic Analysis of Compound Selectivity Profiles. Methods Mol. Biol. 2011, 672, 503-515.
    • (2011) Methods Mol. Biol. , vol.672 , pp. 503-515
    • Stumpfe, D.1    Lounkine, E.2    Bajorath, J.3
  • 23
    • 84858033363 scopus 로고    scopus 로고
    • Trends in chemical graph data mining
    • Aggarwal, C. C., Wang, H., Eds.; Springer: New York
    • Wale, N.; Ning, X.; Karypis, G. Trends in Chemical Graph Data Mining. In Managing and Mining Graph Data; Aggarwal, C. C., Wang, H., Eds.; Springer: New York, 2010; Vol. 40, pp 581-606.
    • (2010) Managing and Mining Graph Data , vol.40 , pp. 581-606
    • Wale, N.1    Ning, X.2    Karypis, G.3
  • 24
    • 37549029793 scopus 로고    scopus 로고
    • The properties of high-dimensional data spaces: Implications for exploring gene and protein expression data
    • Clarke, R.; Ressom, H. W.; Wang, A.; Xuan, J.; Liu, M. C.; Gehan, E. A.; Wang, Y. The Properties of High-Dimensional Data Spaces: Implications for Exploring Gene and Protein Expression Data. Nat. Rev. Cancer 2008, 8, 37-49.
    • (2008) Nat. Rev. Cancer , vol.8 , pp. 37-49
    • Clarke, R.1    Ressom, H.W.2    Wang, A.3    Xuan, J.4    Liu, M.C.5    Gehan, E.A.6    Wang, Y.7


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.