-
1
-
-
1842532337
-
Chemogenomics: An emerging strategy for rapid target and drug discovery
-
Bredel, M. and Jacoby, E. (2004) Chemogenomics: an emerging strategy for rapid target and drug discovery. Nat. Rev. Genet. 5, 262–275.
-
(2004)
Nat. Rev. Genet.
, vol.5
, pp. 262-275
-
-
Bredel, M.1
Jacoby, E.2
-
2
-
-
11144298973
-
Exploring biology with small organic molecules
-
Stockwell, B. R. (2004) Exploring biology with small organic molecules. Nature 432, 846–854.
-
(2004)
Nature
, vol.432
, pp. 846-854
-
-
Stockwell, B.R.1
-
3
-
-
43949145741
-
Computational analysis of ligand relationships within target families
-
Bajorath, J. (2008) Computational analysis of ligand relationships within target families. Curr. Opin. Chem. Biol. 12, 352–358.
-
(2008)
Curr. Opin. Chem. Biol.
, vol.12
, pp. 352-358
-
-
Bajorath, J.1
-
4
-
-
43949101012
-
Methods for computer-aided chemical biology, part 3: Analysis of structure-selectivity relationships through single-or dual-step selectivity searching and Bayesian classification
-
Stumpfe, D., Geppert, H., and Bajorath, J. (2008) Methods for computer-aided chemical biology, part 3: analysis of structure-selectivity relationships through single-or dual-step selectivity searching and Bayesian classification. Chem. Biol. Drug. Des. 71, 518–528.
-
(2008)
Chem. Biol. Drug. Des.
, vol.71
, pp. 518-528
-
-
Stumpfe, D.1
Geppert, H.2
Bajorath, J.3
-
5
-
-
65249163404
-
Searching for target-selective compounds using different combinations of multiclass support vector machine ranking methods, kernel functions, and fingerprint descriptors
-
Wassermann, A. M., Geppert, H., and Bajorath, J. (2009) Searching for target-selective compounds using different combinations of multiclass support vector machine ranking methods, kernel functions, and fingerprint descriptors. J. Chem. Inf. Model. 49, 582–592.
-
(2009)
J. Chem. Inf. Model.
, vol.49
, pp. 582-592
-
-
Wassermann, A.M.1
Geppert, H.2
Bajorath, J.3
-
6
-
-
27144489164
-
A tutorial on support vector machines for pattern recognition
-
Burges, C. J. C. (1998) A tutorial on support vector machines for pattern recognition. Data Min. Knowl. Discov. 2, 121–167.
-
(1998)
Data Min. Knowl. Discov
, vol.2
, pp. 121-167
-
-
Burges, C.J.C.1
-
8
-
-
0026966646
-
A training algorithm for optimal margin classifiers
-
ACM: New York
-
Boser, B. E., Guyon, I. M., and Vapnik, V. A training algorithm for optimal margin classifiers. In Proceedings of the 5th Annual Workshop on Computational Learning Theory, Pittsburgh, Pennsylvania, 1992; ACM: New York, 1992; pp 144–152.
-
(1992)
Proceedings of the 5Th Annual Workshop on Computational Learning Theory, Pittsburgh, Pennsylvania
, vol.1992
, pp. 144-152
-
-
Boser, B.E.1
Guyon, I.M.2
Vapnik, V.3
-
9
-
-
0034740222
-
Drug design by machine learning: Support vector machines for pharmaceutical data analysis
-
Burbidge, R., Trotter, M., Buxton, B., and Holden, S. (2001) Drug design by machine learning: support vector machines for pharmaceutical data analysis. Comput. Chem. 26, 5–14.
-
(2001)
Comput. Chem.
, vol.26
, pp. 5-14
-
-
Burbidge, R.1
Trotter, M.2
Buxton, B.3
Holden, S.4
-
10
-
-
0037365194
-
R€atsch, G., Mathieson, M., Putta, S., and Lemmen, C
-
Warmuth, M. K., Liao, J., R€atsch, G., Mathieson, M., Putta, S., and Lemmen, C. (2003) Active learning with support vector machines in the drug discovery process. J. Chem Inf. Comput. Sci. 43, 667–673.
-
(2003)
Active Learning with Support Vector Machines in the Drug Discovery Process. J. Chem Inf. Comput. Sci.
, vol.43
, pp. 667-673
-
-
Warmuth, M.K.1
Liao, J.2
-
11
-
-
20444410410
-
Virtual screening of molecular databases using a support vector machine
-
Jorissen, R. N. and Gilson, M. K. (2005) Virtual screening of molecular databases using a support vector machine. J. Chem. Inf. Model. 45, 549–561.
-
(2005)
J. Chem. Inf. Model.
, vol.45
, pp. 549-561
-
-
Jorissen, R.N.1
Gilson, M.K.2
-
12
-
-
44449107147
-
G€artner, T., Wrobel, S., and Bajorath, J
-
Geppert, H., Horváth, T., G€artner, T., Wrobel, S., and Bajorath, J. (2008) Support-vector-machine-based ranking significantly improves the effectiveness of similarity searching using 2D fingerprints and multiple reference compounds. J. Chem. Inf. Model. 48, 742–746.
-
(2008)
Support-Vector-Machine-Based Ranking Significantly Improves the Effectiveness of Similarity Searching Using 2D Fingerprints and Multiple Reference Compounds. J. Chem. Inf. Model.
, vol.48
, pp. 742-746
-
-
Geppert, H.1
Horváth, T.2
-
14
-
-
0242456822
-
Optimizing search engines using clickthrough data
-
ACM: New York
-
Joachims, T. Optimizing search engines using clickthrough data. In Proceedings of the 8th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Edmonton, Alberta, Canada, 2002; ACM: New York, 2002; pp 133–142.
-
(2002)
Proceedings of the 8Th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Edmonton, Alberta, Canada
, vol.2002
, pp. 133-142
-
-
Joachims, T.1
-
15
-
-
0001355838
-
Radial basis functions for multivariable interpolation: A review
-
Mason, J. C., and Cox, M. G., Clarendon Press, Oxford
-
Powell, M. J. D. Radial basis functions for multivariable interpolation: a review. In Mason, J. C., and Cox, M. G. (eds). Algorithms for Approximation; Clarendon Press, Oxford: 1987; pp 143–167.
-
(1987)
Algorithms for Approximation
, pp. 143-167
-
-
Powell, M.J.D.1
-
17
-
-
48849101866
-
-
Quebec, Canada
-
MOE (Molecular Operating Environment); Chemical Computing Group Inc.: Montreal, Quebec, Canada, 2007.
-
(2007)
Montreal
-
-
-
18
-
-
23844480138
-
Graph kernels for chemical informatics
-
Ralaivola, L., Swamidass, S. J., Saigo, H., and Baldi, P. (2005) Graph kernels for chemical informatics. Neural Netw. 18, 1093–1110.
-
(2005)
Neural Netw
, vol.18
, pp. 1093-1110
-
-
Ralaivola, L.1
Swamidass, S.J.2
Saigo, H.3
Baldi, P.4
-
19
-
-
1842690601
-
Molecular similarity searching using atom environments, information-based feature selection, and a naïve Bayesian classifier
-
Bender, A., Mussa, H. Y., Glen, R. C., and Reiling, S. (2004) Molecular similarity searching using atom environments, information-based feature selection, and a naïve Bayesian classifier. J. Chem. Inf. Comput. Sci. 44, 170–178.
-
(2004)
J. Chem. Inf. Comput. Sci.
, vol.44
, pp. 170-178
-
-
Bender, A.1
Mussa, H.Y.2
Glen, R.C.3
Reiling, S.4
|