메뉴 건너뛰기




Volumn 10, Issue , 2016, Pages 12-25

Modeling nonlinear relationship between crash frequency by severity and contributing factors by neural networks

Author keywords

Crash frequency by severity; Neural network; Over fitting; Rule extraction; Structure optimization

Indexed keywords

ABILITY TESTING; CODES (SYMBOLS); EXTRACTION; HEALTH RISKS; MOTOR TRANSPORTATION; NEURAL NETWORKS; ROADS AND STREETS; SHAPE OPTIMIZATION;

EID: 84964078450     PISSN: 22136657     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.amar.2016.03.002     Document Type: Article
Times cited : (95)

References (37)
  • 1
    • 0035689114 scopus 로고    scopus 로고
    • Development of artificial neural network models to predict driver injury severity in traffic accidents at signalized intersections
    • H.T. Abdelwahab, and M.A. Abdel-Aty Development of artificial neural network models to predict driver injury severity in traffic accidents at signalized intersections Transportation Research Record 1746 2001 6 13
    • (2001) Transportation Research Record , vol.1746 , pp. 6-13
    • Abdelwahab, H.T.1    Abdel-Aty, M.A.2
  • 2
    • 76749111608 scopus 로고    scopus 로고
    • Bayesian multivariate Poisson lognormal models for crash severity modeling and site ranking
    • J. Aguero-Valverde, and P.P. Jovanis Bayesian multivariate Poisson lognormal models for crash severity modeling and site ranking Transportation Research Record 2136 2009 82 91
    • (2009) Transportation Research Record , vol.2136 , pp. 82-91
    • Aguero-Valverde, J.1    Jovanis, P.P.2
  • 4
    • 84910103667 scopus 로고    scopus 로고
    • A full Bayesian multivariate count data model of collision severity with spatial correlation
    • S. Barua, K. El-Basyouny, and M.T. Islam A full Bayesian multivariate count data model of collision severity with spatial correlation Analytic Methods in Accident Research 3 2014 28 43
    • (2014) Analytic Methods in Accident Research , vol.3 , pp. 28-43
    • Barua, S.1    El-Basyouny, K.2    Islam, M.T.3
  • 5
    • 84949524138 scopus 로고    scopus 로고
    • Multivariate random parameters collision count data models with spatial heterogeneity
    • S. Barua, K. El-Basyouny, and M.T. Islam Multivariate random parameters collision count data models with spatial heterogeneity Analytic Methods in Accident Research 9 2016 1 15
    • (2016) Analytic Methods in Accident Research , vol.9 , pp. 1-15
    • Barua, S.1    El-Basyouny, K.2    Islam, M.T.3
  • 6
    • 19944368482 scopus 로고    scopus 로고
    • The covariance between the number of accidents and the number of victims in multivariate analysis of accident related outcomes
    • F.D. Bijleveld The covariance between the number of accidents and the number of victims in multivariate analysis of accident related outcomes Accident Analysis and Prevention 37 4 2005 591 600
    • (2005) Accident Analysis and Prevention , vol.37 , Issue.4 , pp. 591-600
    • Bijleveld, F.D.1
  • 7
    • 27544497495 scopus 로고    scopus 로고
    • Analysis of freeway accident frequencies: Negative binomial regression versus artificial neural network
    • L. Chang Analysis of freeway accident frequencies: negative binomial regression versus artificial neural network Safety Science 43 8 2005 541 557
    • (2005) Safety Science , vol.43 , Issue.8 , pp. 541-557
    • Chang, L.1
  • 8
    • 84870301896 scopus 로고    scopus 로고
    • Modeling crash frequency and severity using multinomial-generalized Poisson model with error components
    • Y.C. Chiou, and C. Fu Modeling crash frequency and severity using multinomial-generalized Poisson model with error components Accident Analysis and Prevention 50 2013 73 82
    • (2013) Accident Analysis and Prevention , vol.50 , pp. 73-82
    • Chiou, Y.C.1    Fu, C.2
  • 9
    • 84929087929 scopus 로고    scopus 로고
    • Modeling crash frequency and severity with spatiotemporal dependence
    • Y.C. Chiou, and C. Fu Modeling crash frequency and severity with spatiotemporal dependence Analytic Methods in Accident Research 5 2015 43 58
    • (2015) Analytic Methods in Accident Research , vol.5 , pp. 43-58
    • Chiou, Y.C.1    Fu, C.2
  • 10
    • 84897805378 scopus 로고    scopus 로고
    • Incorporating spatial dependence in simultaneously modeling crash frequency and severity
    • Y.C. Chiou, C. Fu, and H. Chih-Wei Incorporating spatial dependence in simultaneously modeling crash frequency and severity Analytic Methods in Accident Research 2 2014 1 11
    • (2014) Analytic Methods in Accident Research , vol.2 , pp. 1-11
    • Chiou, Y.C.1    Fu, C.2    Chih-Wei, H.3
  • 11
    • 33644899093 scopus 로고    scopus 로고
    • Predicting the frequency of median barrier crashes on Pennsylvania interstate highways
    • E.T. Donnell, and J.M. Mason Jr. Predicting the frequency of median barrier crashes on Pennsylvania interstate highways Accident Analysis and Prevention 38 3 2006 590 599
    • (2006) Accident Analysis and Prevention , vol.38 , Issue.3 , pp. 590-599
    • Donnell, E.T.1    Mason, J.M.2
  • 12
    • 67349231302 scopus 로고    scopus 로고
    • Collision prediction models using multivariate Poisson-lognormal regression
    • K. El-Basyouny, and T. Sayed Collision prediction models using multivariate Poisson-lognormal regression Accident Analysis and Prevention 41 4 2009 820 828
    • (2009) Accident Analysis and Prevention , vol.41 , Issue.4 , pp. 820-828
    • El-Basyouny, K.1    Sayed, T.2
  • 13
    • 84907349852 scopus 로고    scopus 로고
    • Investigation of time and weather effects on crash types using full Bayesian multivariate Poisson lognormal models
    • K. El-Basyouny, S. Barua, and M.T. Islam Investigation of time and weather effects on crash types using full Bayesian multivariate Poisson lognormal models Accident Analysis and Prevention 73 2014 91 99
    • (2014) Accident Analysis and Prevention , vol.73 , pp. 91-99
    • El-Basyouny, K.1    Barua, S.2    Islam, M.T.3
  • 15
    • 79952440600 scopus 로고    scopus 로고
    • 1st edition. AASHTO, Washington D.C.
    • Highway Safety Manual, 1st edition, 2010. AASHTO, Washington D.C.
    • (2010) Highway Safety Manual
  • 16
    • 84958773153 scopus 로고    scopus 로고
    • Predicting crash frequency using an optimized radial basis function neural network model
    • H. Huang, Q. Zeng, X. Pei, S.C. Wong, and P. Xu Predicting crash frequency using an optimized radial basis function neural network model Transportmetrica A 12 4 2016 330 345
    • (2016) Transportmetrica A , vol.12 , Issue.4 , pp. 330-345
    • Huang, H.1    Zeng, Q.2    Pei, X.3    Wong, S.C.4    Xu, P.5
  • 17
    • 79951775181 scopus 로고    scopus 로고
    • Statistical methods versus neural networks in transportation research: Differences, similarities and some insights
    • M.G. Karlaftis, and E.I. Vlahogianni Statistical methods versus neural networks in transportation research: Differences, similarities and some insights Transportation Research Part C 19 3 2011 387 399
    • (2011) Transportation Research Part C , vol.19 , Issue.3 , pp. 387-399
    • Karlaftis, M.G.1    Vlahogianni, E.I.2
  • 18
    • 84864647768 scopus 로고    scopus 로고
    • Evaluation of multivariate Poisson log normal Bayesian methods for before-after road safety evaluations
    • B. Lan, and B. Persaud Evaluation of multivariate Poisson log normal Bayesian methods for before-after road safety evaluations Journal of Transportation Safety and Security 4 3 2012 193 210
    • (2012) Journal of Transportation Safety and Security , vol.4 , Issue.3 , pp. 193-210
    • Lan, B.1    Persaud, B.2
  • 19
    • 46149126623 scopus 로고    scopus 로고
    • Predicting motor vehicle crashes using support vector machine models
    • X. Li, D. Lord, Y. Zhang, and Y. Xie Predicting motor vehicle crashes using support vector machine models Accident Analysis and Prevention 40 4 2008 1611 1618
    • (2008) Accident Analysis and Prevention , vol.40 , Issue.4 , pp. 1611-1618
    • Li, X.1    Lord, D.2    Zhang, Y.3    Xie, Y.4
  • 20
    • 33749632756 scopus 로고    scopus 로고
    • Bayesian multivariate Poisson regression for models of injury count, by severity
    • J. Ma, and K.M. Kockelman Bayesian multivariate Poisson regression for models of injury count, by severity Transportation Research Record 1950 2006 24 34
    • (2006) Transportation Research Record , vol.1950 , pp. 24-34
    • Ma, J.1    Kockelman, K.M.2
  • 21
    • 42749088635 scopus 로고    scopus 로고
    • A multivariate Poisson-lognormal regression model for prediction of crash counts by severity, using Bayesian methods
    • J. Ma, K.M. Kockelman, and P. Damien A multivariate Poisson-lognormal regression model for prediction of crash counts by severity, using Bayesian methods Accident Analysis and Prevention 40 3 2008 964 975
    • (2008) Accident Analysis and Prevention , vol.40 , Issue.3 , pp. 964-975
    • Ma, J.1    Kockelman, K.M.2    Damien, P.3
  • 22
    • 19944393621 scopus 로고    scopus 로고
    • Bayesian ranking of sites for engineering safety improvements: Decision parameter, treatability concept, statistical criterion, and spatial dependence
    • S.P. Miaou, and J.J. Song Bayesian ranking of sites for engineering safety improvements: decision parameter, treatability concept, statistical criterion, and spatial dependence Accident Analysis and Prevention 37 4 2005 699 720
    • (2005) Accident Analysis and Prevention , vol.37 , Issue.4 , pp. 699-720
    • Miaou, S.P.1    Song, J.J.2
  • 23
    • 0032215995 scopus 로고    scopus 로고
    • The relationship among highway geometrics, traffic-related elements and motor-vehicle accident frequencies
    • J. Milton, and F. Mannering The relationship among highway geometrics, traffic-related elements and motor-vehicle accident frequencies Transportation 25 4 1998 395 413
    • (1998) Transportation , vol.25 , Issue.4 , pp. 395-413
    • Milton, J.1    Mannering, F.2
  • 24
    • 41549126806 scopus 로고    scopus 로고
    • Multivariate Poisson-lognormal models for jointly modeling crash frequency by severity
    • E.S. Park, and D. Lord Multivariate Poisson-lognormal models for jointly modeling crash frequency by severity Transportation Research Record 2019 2007 1 6
    • (2007) Transportation Research Record , vol.2019 , pp. 1-6
    • Park, E.S.1    Lord, D.2
  • 25
    • 79952438774 scopus 로고    scopus 로고
    • A joint-probability approach to crash prediction models
    • X. Pei, S.C. Wong, and N.N. Sze A joint-probability approach to crash prediction models Accident Analysis and Prevention 43 3 2011 1160 1166
    • (2011) Accident Analysis and Prevention , vol.43 , Issue.3 , pp. 1160-1166
    • Pei, X.1    Wong, S.C.2    Sze, N.N.3
  • 26
    • 84861899720 scopus 로고    scopus 로고
    • The roles of exposure and speed in road safety analysis
    • X. Pei, S.C. Wong, and N.N. Sze The roles of exposure and speed in road safety analysis Accident Analysis and Prevention 48 2012 464 471
    • (2012) Accident Analysis and Prevention , vol.48 , pp. 464-471
    • Pei, X.1    Wong, S.C.2    Sze, N.N.3
  • 29
    • 0346279920 scopus 로고    scopus 로고
    • An approach to generate rules from neural networks for regression problems
    • R. Setiono, and J.Y. Thong An approach to generate rules from neural networks for regression problems European Journal of Operational Research 155 2004 239 250
    • (2004) European Journal of Operational Research , vol.155 , pp. 239-250
    • Setiono, R.1    Thong, J.Y.2
  • 30
    • 84880143707 scopus 로고    scopus 로고
    • Random parameter models of interstate crash frequencies by severity, number of vehicles involved, collision and location type
    • N. Venkataraman, G.F. Ulfarsson, and V.N. Shankar Random parameter models of interstate crash frequencies by severity, number of vehicles involved, collision and location type Accident Analysis and Prevention 59 2013 309 318
    • (2013) Accident Analysis and Prevention , vol.59 , pp. 309-318
    • Venkataraman, N.1    Ulfarsson, G.F.2    Shankar, V.N.3
  • 31
    • 79961171942 scopus 로고    scopus 로고
    • Predicting accident frequency at their severity levels and its application in site ranking using a two-stage mixed multivariate model
    • C. Wang, M.A. Quddus, and S.G. Ison Predicting accident frequency at their severity levels and its application in site ranking using a two-stage mixed multivariate model Accident Analysis and Prevention 43 6 2011 1979 1990
    • (2011) Accident Analysis and Prevention , vol.43 , Issue.6 , pp. 1979-1990
    • Wang, C.1    Quddus, M.A.2    Ison, S.G.3
  • 32
    • 34548502433 scopus 로고    scopus 로고
    • Predicting motor vehicle collisions using Bayesian neural networks: An empirical analysis
    • Y. Xie, D. Lord, and Y. Zhang Predicting motor vehicle collisions using Bayesian neural networks: an empirical analysis Accident Analysis and Prevention 39 5 2007 922 933
    • (2007) Accident Analysis and Prevention , vol.39 , Issue.5 , pp. 922-933
    • Xie, Y.1    Lord, D.2    Zhang, Y.3
  • 33
    • 84908461241 scopus 로고    scopus 로고
    • A two-stage bivariate logistic-Tobit model for the safety analysis of signalized intersections
    • X. Xu, S.C. Wong, and K. Choi A two-stage bivariate logistic-Tobit model for the safety analysis of signalized intersections Analytic Methods in Accident Research 3-4 2014 1 10
    • (2014) Analytic Methods in Accident Research , vol.3-4 , pp. 1-10
    • Xu, X.1    Wong, S.C.2    Choi, K.3
  • 34
    • 84877736556 scopus 로고    scopus 로고
    • A simultaneous equations model of crash frequency by severity level for freeway sections
    • X. Ye, R.M. Pendyala, V. Shankar, and K.C. Konduri A simultaneous equations model of crash frequency by severity level for freeway sections Accident Analysis and Prevention 57 2013 140 149
    • (2013) Accident Analysis and Prevention , vol.57 , pp. 140-149
    • Ye, X.1    Pendyala, R.M.2    Shankar, V.3    Konduri, K.C.4
  • 35
    • 58249129130 scopus 로고    scopus 로고
    • A simultaneous equations model of crash frequency by collision type for rural intersections
    • X. Ye, R.M. Pendyala, S.P. Washington, K. Konduri, and J. Oh A simultaneous equations model of crash frequency by collision type for rural intersections Safety Science 47 3 2009 443 452
    • (2009) Safety Science , vol.47 , Issue.3 , pp. 443-452
    • Ye, X.1    Pendyala, R.M.2    Washington, S.P.3    Konduri, K.4    Oh, J.5
  • 36
    • 84896540539 scopus 로고    scopus 로고
    • Bayesian spatial joint modeling of traffic crashes on an urban road network
    • Q. Zeng, and H. Huang Bayesian spatial joint modeling of traffic crashes on an urban road network Accident Analysis and Prevention 67 2014 105 112
    • (2014) Accident Analysis and Prevention , vol.67 , pp. 105-112
    • Zeng, Q.1    Huang, H.2
  • 37
    • 84907842827 scopus 로고    scopus 로고
    • A stable and optimized neural network model for crash injury severity prediction
    • Q. Zeng, and H. Huang A stable and optimized neural network model for crash injury severity prediction Accident Analysis and Prevention 73 2014 351 358
    • (2014) Accident Analysis and Prevention , vol.73 , pp. 351-358
    • Zeng, Q.1    Huang, H.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.