메뉴 건너뛰기




Volumn 155, Issue 1, 2004, Pages 239-250

An approach to generate rules from neural networks for regression problems

Author keywords

Curve fitting; Knowledge based systems; Machine learning; Neural networks; Nonlinear regression

Indexed keywords

CURVE FITTING; KNOWLEDGE ACQUISITION; KNOWLEDGE BASED SYSTEMS; LEARNING SYSTEMS; LINEAR EQUATIONS; NEURAL NETWORKS; OPERATIONS RESEARCH; PROBLEM SOLVING;

EID: 0346279920     PISSN: 03772217     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0377-2217(02)00792-0     Document Type: Article
Times cited : (43)

References (27)
  • 3
    • 0024861871 scopus 로고
    • Approximation by superpositions of a sigmoidal function
    • Cybenko G. Approximation by superpositions of a sigmoidal function. Mathematics of Control, Signals, and Systems. 2:1989;303-314.
    • (1989) Mathematics of Control, Signals, and Systems , vol.2 , pp. 303-314
    • Cybenko, G.1
  • 5
    • 0032392191 scopus 로고    scopus 로고
    • The efficacy of neural networks in predicting returns on stock and bond indices
    • Desai V.S., Bharati R. The efficacy of neural networks in predicting returns on stock and bond indices. Decision Sciences. 29(2):1998;527-544.
    • (1998) Decision Sciences , vol.29 , Issue.2 , pp. 527-544
    • Desai, V.S.1    Bharati, R.2
  • 6
    • 0028446878 scopus 로고
    • Decision support in non-conservative domains: Generalization with neural networks
    • Dutta S., Shekhar S., Wong W.Y. Decision support in non-conservative domains: Generalization with neural networks. Decision Support Systems. 11(5):1994;527-544.
    • (1994) Decision Support Systems , vol.11 , Issue.5 , pp. 527-544
    • Dutta, S.1    Shekhar, S.2    Wong, W.Y.3
  • 7
    • 0023331453 scopus 로고
    • Attributes of the performance of central processing units: A relative performance prediction model
    • Ein-Dor P., Feldmesser J. Attributes of the performance of central processing units: A relative performance prediction model. Communications of the ACM. 30(4):1987;308-317.
    • (1987) Communications of the ACM , vol.30 , Issue.4 , pp. 308-317
    • Ein-Dor, P.1    Feldmesser, J.2
  • 8
    • 0025751820 scopus 로고
    • Approximation capabilities of multilayer feedforward networks
    • Hornik K. Approximation capabilities of multilayer feedforward networks. Neural Networks. 4:1991;251-257.
    • (1991) Neural Networks , vol.4 , pp. 251-257
    • Hornik, K.1
  • 12
    • 84974697688 scopus 로고    scopus 로고
    • Relative unsupervised discretization for regression problems
    • R.A. Mantaras, E. Plaza (Eds.), Lecture Notes in AI 1810, Springer, Barcelona
    • M.-C. Ludl, G. Widmer, Relative unsupervised discretization for regression problems, in: R.A. Mantaras, E. Plaza (Eds.), Proceedings of the 11th European Conference on Machine Learning, ECML 2000, Lecture Notes in AI 1810, Springer, Barcelona, 2000, pp. 246-253.
    • (2000) Proceedings of the 11th European Conference on Machine Learning, ECML 2000 , pp. 246-253
    • Ludl, M.-C.1    Widmer, G.2
  • 15
    • 84988828223 scopus 로고
    • Neural networks: A new tool for predicting thrift failures
    • Salchenberger L.M., Cinar E.M., Lash N.A. Neural networks: A new tool for predicting thrift failures. Decision Sciences. 23(4):1992;899-916.
    • (1992) Decision Sciences , vol.23 , Issue.4 , pp. 899-916
    • Salchenberger, L.M.1    Cinar, E.M.2    Lash, N.A.3
  • 16
    • 0030633575 scopus 로고    scopus 로고
    • A penalty function approach for pruning feedforward neural networks
    • Setiono R. A penalty function approach for pruning feedforward neural networks. Neural Computation. 9(1):1997;185-204.
    • (1997) Neural Computation , vol.9 , Issue.1 , pp. 185-204
    • Setiono, R.1
  • 17
    • 0346679260 scopus 로고    scopus 로고
    • Generating concise sets of linear regression rules from artificial neural networks
    • Setiono R., Azcarraga A. Generating concise sets of linear regression rules from artificial neural networks. International Journal of Artificial Intelligence Tools. 11(2):2002;189-202.
    • (2002) International Journal of Artificial Intelligence Tools , vol.11 , Issue.2 , pp. 189-202
    • Setiono, R.1    Azcarraga, A.2
  • 19
    • 0036565303 scopus 로고    scopus 로고
    • Extraction of rules from artificial neural networks for nonlinear regression
    • Setiono R., Leow W.K., Zurada J. Extraction of rules from artificial neural networks for nonlinear regression. IEEE Transactions on Neural Networks. 13(3):2002;564-577.
    • (2002) IEEE Transactions on Neural Networks , vol.13 , Issue.3 , pp. 564-577
    • Setiono, R.1    Leow, W.K.2    Zurada, J.3
  • 20
    • 84997479670 scopus 로고
    • Managerial applications of neural networks: The case of bank failure predictions
    • Tam K.Y., Kiang M.Y. Managerial applications of neural networks: The case of bank failure predictions. Management Science. 38(7):1992;926-948.
    • (1992) Management Science , vol.38 , Issue.7 , pp. 926-948
    • Tam, K.Y.1    Kiang, M.Y.2
  • 21
    • 0343248556 scopus 로고
    • A multi-layer perceptron model of credit scoring for assessing default risk in charge card applicants
    • Tana S.S., Koh H.C. A multi-layer perceptron model of credit scoring for assessing default risk in charge card applicants. International Journal of Management. 14(2):1992;250-255.
    • (1992) International Journal of Management , vol.14 , Issue.2 , pp. 250-255
    • Tana, S.S.1    Koh, H.C.2
  • 22
    • 0032208720 scopus 로고    scopus 로고
    • The truth will come to light: Directions and challenges in extracting the knowledge embedded within trained artificial neural networks
    • Tickle A.B., Andrews R., Golea M., Diederich J. The truth will come to light: Directions and challenges in extracting the knowledge embedded within trained artificial neural networks. IEEE Transactions on Neural Networks. 9(6):1998;1057-1068.
    • (1998) IEEE Transactions on Neural Networks , vol.9 , Issue.6 , pp. 1057-1068
    • Tickle, A.B.1    Andrews, R.2    Golea, M.3    Diederich, J.4
  • 24
    • 84883706347 scopus 로고    scopus 로고
    • Search-based class discretization
    • M. van Someren, G. Widmer (Eds.), Lecture Notes in AI 1224, Springer, Prague
    • L. Torgo, J. Gama, Search-based class discretization, in: M. van Someren, G. Widmer (Eds.), Proceedings of the Ninth European Conference on Machine Learning, ECML-97, Lecture Notes in AI 1224, Springer, Prague, 1997, pp. 266-273.
    • (1997) Proceedings of the Ninth European Conference on Machine Learning, ECML-97 , pp. 266-273
    • Torgo, L.1    Gama, J.2
  • 26
    • 0027242791 scopus 로고
    • Backpropagation neural nets with one and two hidden layers
    • Villiers J., Barnard E. Backpropagation neural nets with one and two hidden layers. IEEE Transactions on Neural Networks. 4(1):1993;136-141.
    • (1993) IEEE Transactions on Neural Networks , vol.4 , Issue.1 , pp. 136-141
    • Villiers, J.1    Barnard, E.2
  • 27
    • 0028444978 scopus 로고
    • Bankruptcy prediction using neural networks
    • Wilson R.L., Sharda R. Bankruptcy prediction using neural networks. Decision Support Systems. 11(5):1994;545-557.
    • (1994) Decision Support Systems , vol.11 , Issue.5 , pp. 545-557
    • Wilson, R.L.1    Sharda, R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.