메뉴 건너뛰기




Volumn 73, Issue , 2014, Pages 351-358

A stable and optimized neural network model for crash injury severity prediction

Author keywords

Convex combination algorithm; Crash injury severity; Neural network; Structure optimization

Indexed keywords

APPROXIMATION ALGORITHMS; BACKPROPAGATION; FORECASTING; HIGHWAY ACCIDENTS; HIGHWAY ENGINEERING; SENSITIVITY ANALYSIS; STRUCTURAL OPTIMIZATION;

EID: 84907842827     PISSN: 00014575     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.aap.2014.09.006     Document Type: Article
Times cited : (119)

References (46)
  • 1
    • 0035689114 scopus 로고    scopus 로고
    • Development of artificial neural network models to predict driver injury severity in traffic accidents at signalized intersections
    • H.T. Abdelwahab, and M.A. Abdel-Aty Development of artificial neural network models to predict driver injury severity in traffic accidents at signalized intersections Transport. Res. Rec. 2001 6 13
    • (2001) Transport. Res. Rec. , pp. 6-13
    • Abdelwahab, H.T.1    Abdel-Aty, M.A.2
  • 2
    • 0036957692 scopus 로고    scopus 로고
    • Artificial neural networks and logit models for traffic safety analysis of toll plazas
    • H.T. Abdelwahab, and M.A. Abdel-Aty Artificial neural networks and logit models for traffic safety analysis of toll plazas Transport. Res. Rec. 1784 2002 115 125
    • (2002) Transport. Res. Rec. , vol.1784 , pp. 115-125
    • Abdelwahab, H.T.1    Abdel-Aty, M.A.2
  • 4
    • 33745753402 scopus 로고    scopus 로고
    • Analysis of traffic injury severity: An application of nonparametric classification tree techniques
    • L.-Y. Chang, and H. Wang Analysis of traffic injury severity: an application of nonparametric classification tree techniques Accid. Anal. Prev. 38 5 2006 1019 1027
    • (2006) Accid. Anal. Prev. , vol.38 , Issue.5 , pp. 1019-1027
    • Chang, L.-Y.1    Wang, H.2
  • 5
    • 77955984741 scopus 로고    scopus 로고
    • The prediction of highway traffic accident injury severity with neuromorphic techniques
    • D. Chimba, and T. Sando The prediction of highway traffic accident injury severity with neuromorphic techniques Adv. Transport. Stud. 19 1 2009 17 26
    • (2009) Adv. Transport. Stud. , vol.19 , Issue.1 , pp. 17-26
    • Chimba, D.1    Sando, T.2
  • 6
    • 33644889643 scopus 로고    scopus 로고
    • Identifying significant predictors of injury severity in traffic accidents using a series of artificial neural networks
    • D. Delen, R. Sharda, and M. Bessonov Identifying significant predictors of injury severity in traffic accidents using a series of artificial neural networks Accid. Anal. Prev. 38 3 2006 434 444
    • (2006) Accid. Anal. Prev. , vol.38 , Issue.3 , pp. 434-444
    • Delen, D.1    Sharda, R.2    Bessonov, M.3
  • 7
    • 34548509192 scopus 로고    scopus 로고
    • A joint econometric analysis of seat belt use and crash-related injury severity
    • N. Eluru, and C. Bhat A joint econometric analysis of seat belt use and crash-related injury severity Accid. Anal. Prev. 39 5 2007 1037 1049
    • (2007) Accid. Anal. Prev. , vol.39 , Issue.5 , pp. 1037-1049
    • Eluru, N.1    Bhat, C.2
  • 8
    • 33644906732 scopus 로고    scopus 로고
    • A visual method for determining variable importance in an artificial neural network model: An empirical bench mark study
    • K.E. Fish, and J.G. Blodgett A visual method for determining variable importance in an artificial neural network model: an empirical bench mark study J. Target. Measure. Anal. Market. 11 3 2003 244 254
    • (2003) J. Target. Measure. Anal. Market. , vol.11 , Issue.3 , pp. 244-254
    • Fish, K.E.1    Blodgett, J.G.2
  • 9
    • 0028748949 scopus 로고
    • Growing cell structures - A self-organizing network for unsupervised and supervised learning
    • B. Fritzke Growing cell structures - a self-organizing network for unsupervised and supervised learning Neural Networks 7 9 1994 1441 1460
    • (1994) Neural Networks , vol.7 , Issue.9 , pp. 1441-1460
    • Fritzke, B.1
  • 10
    • 0001234705 scopus 로고
    • Second-order-derivatives for network pruning: Optimal brain surgeon
    • B. Hassibi, and D.G. Stork Second-order-derivatives for network pruning: optimal brain surgeon Adv. Neural Inform. Process. Syst. 5 1993 164 171
    • (1993) Adv. Neural Inform. Process. Syst. , vol.5 , pp. 164-171
    • Hassibi, B.1    Stork, D.G.2
  • 12
    • 38349014191 scopus 로고    scopus 로고
    • Severity of driver injury and vehicle damage in traffic crashes at intersections: A Bayesian hierarchical analysis
    • H. Huang, C. Chin, and M. Haque Severity of driver injury and vehicle damage in traffic crashes at intersections: a Bayesian hierarchical analysis Accid. Anal. Prev. 40 1 2008 45 54
    • (2008) Accid. Anal. Prev. , vol.40 , Issue.1 , pp. 45-54
    • Huang, H.1    Chin, C.2    Haque, M.3
  • 13
    • 79955574305 scopus 로고    scopus 로고
    • Indexing crash worthiness and crash aggressivity by vehicle type
    • H. Huang, C. Siddiqui, and M. Abdel-Aty Indexing crash worthiness and crash aggressivity by vehicle type Accid. Anal. Prev. 43 4 2011 1364 1370
    • (2011) Accid. Anal. Prev. , vol.43 , Issue.4 , pp. 1364-1370
    • Huang, H.1    Siddiqui, C.2    Abdel-Aty, M.3
  • 14
    • 0003612692 scopus 로고
    • Back-propagation learning for multi-layer feedforward neural networks using the conjugate gradient method
    • Lawrence Livemore National Laboratory CA
    • E.M. Johansson, F.U. Dowla, and D.M. Goodman Back-propagation learning for multi-layer feedforward neural networks using the conjugate gradient method Report UCRL-JC-104850 1990 Lawrence Livemore National Laboratory CA
    • (1990) Report UCRL-JC-104850
    • Johansson, E.M.1    Dowla, F.U.2    Goodman, D.M.3
  • 15
    • 79951775181 scopus 로고    scopus 로고
    • Statistical methods versus neural networks in transportation research: Differences, similarities and some insights
    • M.G. Karlaftis, and E.I. Vlahogianni Statistical methods versus neural networks in transportation research: differences, similarities and some insights Transport. Res. C: Emerg. Technol. 19 3 2011 387 399
    • (2011) Transport. Res. C: Emerg. Technol. , vol.19 , Issue.3 , pp. 387-399
    • Karlaftis, M.G.1    Vlahogianni, E.I.2
  • 16
    • 0032289019 scopus 로고    scopus 로고
    • Role of adverse weather in key crash types on limited-access: Roadways implications for advanced weather systems
    • A. Khattak, P. Kantor, and F. Council Role of adverse weather in key crash types on limited-access: roadways implications for advanced weather systems Transport. Res. Rec. 1621 1998 10 19
    • (1998) Transport. Res. Rec. , vol.1621 , pp. 10-19
    • Khattak, A.1    Kantor, P.2    Council, F.3
  • 17
    • 33749557387 scopus 로고    scopus 로고
    • An orthogonal array based genetic algorithm for developing neural network based process models of fluid dispensing
    • C.K. Kwong, K.Y. Chan, M.E. Aydin, and T.C. Fogarty An orthogonal array based genetic algorithm for developing neural network based process models of fluid dispensing Int. J. Product. Res. 44 22 2006 4815 4836
    • (2006) Int. J. Product. Res. , vol.44 , Issue.22 , pp. 4815-4836
    • Kwong, C.K.1    Chan, K.Y.2    Aydin, M.E.3    Fogarty, T.C.4
  • 18
    • 49949106431 scopus 로고    scopus 로고
    • Presence of passengers: Does it increase or reduce driver's crash potential?
    • C. Lee, and M. Abdel-Aty Presence of passengers: does it increase or reduce driver's crash potential? Accid. Anal. Prev. 40 5 2008 1703 1712
    • (2008) Accid. Anal. Prev. , vol.40 , Issue.5 , pp. 1703-1712
    • Lee, C.1    Abdel-Aty, M.2
  • 19
    • 0032795250 scopus 로고    scopus 로고
    • Modelling with constructive backpropagation
    • M. Lehtokangas Modelling with constructive backpropagation Neural Networks 12 4 1999 707 716
    • (1999) Neural Networks , vol.12 , Issue.4 , pp. 707-716
    • Lehtokangas, M.1
  • 20
    • 0030938114 scopus 로고    scopus 로고
    • Alcohol and injury severity: Reappraisal of the continuing controversy
    • G. Li, P.M. Keyl, G.S. Smith, and S.P. Baker Alcohol and injury severity: reappraisal of the continuing controversy J. Trauma-Inj. Infect. Crit. Care 42 3 1997 562 569
    • (1997) J. Trauma-Inj. Infect. Crit. Care , vol.42 , Issue.3 , pp. 562-569
    • Li, G.1    Keyl, P.M.2    Smith, G.S.3    Baker, S.P.4
  • 21
    • 84856080826 scopus 로고    scopus 로고
    • Using support vector machine models for crash injury severity analysis
    • Z. Li, P. Liu, W. Wang, and C. Xu Using support vector machine models for crash injury severity analysis Accid. Anal. Prev. 45 2012 478 486
    • (2012) Accid. Anal. Prev. , vol.45 , pp. 478-486
    • Li, Z.1    Liu, P.2    Wang, W.3    Xu, C.4
  • 22
    • 84885640902 scopus 로고    scopus 로고
    • A new optimization algorithm for single hidden layer feedforward neural networks
    • L.K. Li, S. Shao, and K.F.C. Yiu A new optimization algorithm for single hidden layer feedforward neural networks Appl. Soft Comp. 13 5 2013 2857 2862
    • (2013) Appl. Soft Comp. , vol.13 , Issue.5 , pp. 2857-2862
    • Li, L.K.1    Shao, S.2    Yiu, K.F.C.3
  • 23
    • 0037379783 scopus 로고    scopus 로고
    • A new strategy for adaptively constructing multilayer feedforward neural networks
    • L. Ma, and K. Khorasani A new strategy for adaptively constructing multilayer feedforward neural networks Neurocomputing 51 2003 361 385
    • (2003) Neurocomputing , vol.51 , pp. 361-385
    • Ma, L.1    Khorasani, K.2
  • 24
    • 67349162432 scopus 로고    scopus 로고
    • Markov switching multinomial logit model: An application to accident-injury severities
    • N. Malyshkina, and F. Mannering Markov switching multinomial logit model: an application to accident-injury severities Accid. Anal. Prev. 41 4 2009 829 838
    • (2009) Accid. Anal. Prev. , vol.41 , Issue.4 , pp. 829-838
    • Malyshkina, N.1    Mannering, F.2
  • 26
    • 38149090972 scopus 로고    scopus 로고
    • Highway accident severities and the mixed logit model: An exploratory empirical analysis
    • J. Milton, V. Shankar, and F. Mannering Highway accident severities and the mixed logit model: an exploratory empirical analysis Accid. Anal. Prev. 40 1 2008 260 266
    • (2008) Accid. Anal. Prev. , vol.40 , Issue.1 , pp. 260-266
    • Milton, J.1    Shankar, V.2    Mannering, F.3
  • 27
    • 44649169676 scopus 로고    scopus 로고
    • Structure learning by pruning in independent component analysis
    • A.B. Nielsen, and L.K. Hansen Structure learning by pruning in independent component analysis Neurocomputing 71 10 2008 2281 2290
    • (2008) Neurocomputing , vol.71 , Issue.10 , pp. 2281-2290
    • Nielsen, A.B.1    Hansen, L.K.2
  • 28
    • 0036949358 scopus 로고    scopus 로고
    • Modeling the simultaneity in injury causation in multi-vehicle collisions
    • Y. Ouyang, V. Shankar, and T. Yamamoto Modeling the simultaneity in injury causation in multi-vehicle collisions Transport. Res. Rec. 1784 2002 143 152
    • (2002) Transport. Res. Rec. , vol.1784 , pp. 143-152
    • Ouyang, Y.1    Shankar, V.2    Yamamoto, T.3
  • 29
    • 0033788785 scopus 로고    scopus 로고
    • Alcohol and injury in adolescents
    • R.S. Porter Alcohol and injury in adolescents Pediatr. Emerg. Care 16 5 2000 316 320
    • (2000) Pediatr. Emerg. Care , vol.16 , Issue.5 , pp. 316-320
    • Porter, R.S.1
  • 30
    • 77955597039 scopus 로고    scopus 로고
    • Road traffic congestion and crash severity: Econometric analysis using ordered response models
    • M.A. Quddus, C. Wang, and S.G. Ison Road traffic congestion and crash severity: econometric analysis using ordered response models J. Transport. Eng. 136 5 2009 424 435
    • (2009) J. Transport. Eng. , vol.136 , Issue.5 , pp. 424-435
    • Quddus, M.A.1    Wang, C.2    Ison, S.G.3
  • 31
    • 79952195647 scopus 로고    scopus 로고
    • Uniformly stable backpropagation algorithm to train a feedforward neural network
    • J. Rubio, P. Angelov, and J. Pacheco Uniformly stable backpropagation algorithm to train a feedforward neural network IEEE Trans. Neural Networks 22 3 2011 356 366
    • (2011) IEEE Trans. Neural Networks , vol.22 , Issue.3 , pp. 356-366
    • Rubio, J.1    Angelov, P.2    Pacheco, J.3
  • 32
    • 79958186110 scopus 로고    scopus 로고
    • The statistical analysis of highway crash-injury severities: A review and assessment of methodological alternatives
    • P.T. Savolainen, F.L. Mannering, D. Lord, and M.A. Quddus The statistical analysis of highway crash-injury severities: a review and assessment of methodological alternatives Accid. Anal. Prev. 43 5 2011 1666 1676
    • (2011) Accid. Anal. Prev. , vol.43 , Issue.5 , pp. 1666-1676
    • Savolainen, P.T.1    Mannering, F.L.2    Lord, D.3    Quddus, M.A.4
  • 34
    • 0000248293 scopus 로고    scopus 로고
    • An exploratory multinomial logit analysis of single-vehicle motorcycle accident severity
    • V. Shankar, and F. Mannering An exploratory multinomial logit analysis of single-vehicle motorcycle accident severity J. Saf. Res. 27 3 1996 183 194
    • (1996) J. Saf. Res. , vol.27 , Issue.3 , pp. 183-194
    • Shankar, V.1    Mannering, F.2
  • 35
    • 0030138155 scopus 로고    scopus 로고
    • Statistical analysis of accident severity on rural freeways
    • V. Shankar, F. Mannering, and W. Barfield Statistical analysis of accident severity on rural freeways Accid. Anal. Prev. 28 3 1996 391 401
    • (1996) Accid. Anal. Prev. , vol.28 , Issue.3 , pp. 391-401
    • Shankar, V.1    Mannering, F.2    Barfield, W.3
  • 36
    • 0028450469 scopus 로고
    • Risk factors of fatality in motor vehicle traffic accidents
    • A. Shibata, and K. Fukuda Risk factors of fatality in motor vehicle traffic accidents Accid. Anal. Prev. 26 3 1994 391 397
    • (1994) Accid. Anal. Prev. , vol.26 , Issue.3 , pp. 391-397
    • Shibata, A.1    Fukuda, K.2
  • 38
    • 33144466864 scopus 로고    scopus 로고
    • Tuning the structure and parameters of a neural network by using hybrid Taguchi-genetic algorithm
    • J.T. Tsai, J.H. Chou, and T.K. Liu Tuning the structure and parameters of a neural network by using hybrid Taguchi-genetic algorithm IEEE Trans. Neural Networks 17 1 2006 69 80
    • (2006) IEEE Trans. Neural Networks , vol.17 , Issue.1 , pp. 69-80
    • Tsai, J.T.1    Chou, J.H.2    Liu, T.K.3
  • 39
    • 0027242791 scopus 로고
    • Backpropagation neural nets with one and two hidden layers
    • J.D. Villiers, and E. Barnard Backpropagation neural nets with one and two hidden layers IEEE Trans. Neural Networks 4 1 1993 136 141
    • (1993) IEEE Trans. Neural Networks , vol.4 , Issue.1 , pp. 136-141
    • Villiers, J.D.1    Barnard, E.2
  • 40
    • 23844513726 scopus 로고    scopus 로고
    • Optimized and meta-optimized neural networks for short-term traffic flow prediction: A genetic approach
    • E.I. Vlahogianni, M.G. Karlaftis, and J.C. Golias Optimized and meta-optimized neural networks for short-term traffic flow prediction: a genetic approach Transport. Res. C: Emerg. Technol. 13 3 2005 211 234
    • (2005) Transport. Res. C: Emerg. Technol. , vol.13 , Issue.3 , pp. 211-234
    • Vlahogianni, E.I.1    Karlaftis, M.G.2    Golias, J.C.3
  • 41
    • 33646713472 scopus 로고    scopus 로고
    • An exploration of the offset hypothesis using disaggregate data: The case of airbags and antilock brakes
    • C. Winston, V. Maheshri, and F. Mannering An exploration of the offset hypothesis using disaggregate data: the case of airbags and antilock brakes J. Risk Uncertainty 32 2 2006 83 99
    • (2006) J. Risk Uncertainty , vol.32 , Issue.2 , pp. 83-99
    • Winston, C.1    Maheshri, V.2    Mannering, F.3
  • 42
    • 34548502433 scopus 로고    scopus 로고
    • Predicting motor vehicle collisions using Bayesian neural network models: An empirical analysis
    • Y. Xie, D. Lord, and Y. Zhang Predicting motor vehicle collisions using Bayesian neural network models: an empirical analysis Accid. Anal. Prev. 39 5 2007 922 933
    • (2007) Accid. Anal. Prev. , vol.39 , Issue.5 , pp. 922-933
    • Xie, Y.1    Lord, D.2    Zhang, Y.3
  • 43
    • 57949096181 scopus 로고    scopus 로고
    • Crash injury severity analysis using Bayesian ordered probit models
    • Y. Xie, Y. Zhang, and F. Liang Crash injury severity analysis using Bayesian ordered probit models J. Transport. Eng. 135 1 2009 18 25
    • (2009) J. Transport. Eng. , vol.135 , Issue.1 , pp. 18-25
    • Xie, Y.1    Zhang, Y.2    Liang, F.3
  • 44
    • 33750378348 scopus 로고    scopus 로고
    • A new training and pruning algorithm based on node dependence and Jacobian rank deficiency
    • J. Xu, and D.W. Ho A new training and pruning algorithm based on node dependence and Jacobian rank deficiency Neurocomputing 70 1 2006 544 558
    • (2006) Neurocomputing , vol.70 , Issue.1 , pp. 544-558
    • Xu, J.1    Ho, D.W.2
  • 45
    • 33845302645 scopus 로고    scopus 로고
    • An artificial neural network method for length-based vehicle classification using single-loop outputs
    • G. Zhang, Y. Wang, and H. Wei An artificial neural network method for length-based vehicle classification using single-loop outputs Transport. Res. Rec. 1945 2006 100 108
    • (2006) Transport. Res. Rec. , vol.1945 , pp. 100-108
    • Zhang, G.1    Wang, Y.2    Wei, H.3
  • 46
    • 77955981011 scopus 로고    scopus 로고
    • Vehicle occupant injury severity on highways: An empirical investigation
    • C. Zoi, S. Cohen, and M.G. Karlaftis Vehicle occupant injury severity on highways: an empirical investigation Accid. Anal. Prev. 42 6 2010 1606 1620
    • (2010) Accid. Anal. Prev. , vol.42 , Issue.6 , pp. 1606-1620
    • Zoi, C.1    Cohen, S.2    Karlaftis, M.G.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.