메뉴 건너뛰기




Volumn 12, Issue 4, 2016, Pages 330-345

Predicting crash frequency using an optimised radial basis function neural network model

Author keywords

Crash frequency prediction; nonlinear relationship; radial basis function neural network; sensitivity analysis

Indexed keywords

BACKPROPAGATION; FORECASTING; FUNCTIONS; MOTOR TRANSPORTATION; NEURAL NETWORKS; NONLINEAR ANALYSIS; RADIAL BASIS FUNCTION NETWORKS; RISK ASSESSMENT; ROADS AND STREETS; SAFETY ENGINEERING; SENSITIVITY ANALYSIS; TRANSPORTATION;

EID: 84958773153     PISSN: 23249935     EISSN: 23249943     Source Type: Journal    
DOI: 10.1080/23249935.2015.1136008     Document Type: Article
Times cited : (54)

References (34)
  • 1
    • 79952440600 scopus 로고    scopus 로고
    • 1st ed, Washington D.C.: Transportation Research Board
    • AASHTO. 2010. Highway Safety Manual. 1st ed. Washington D.C.: Transportation Research Board.
    • (2010) Highway Safety Manual.
  • 2
    • 0036957692 scopus 로고    scopus 로고
    • Artificial Neural Networks and Logit Models for Traffic Safety Analysis of Toll Plazas
    • H.T.Abdelwahab,, and M.A.Abdel-Aty. 2002. “Artificial Neural Networks and Logit Models for Traffic Safety Analysis of Toll Plazas.” Transportation Research Record 1784: 115–125. doi: 10.3141/1784-15
    • (2002) Transportation Research Record , vol.1784 , pp. 115-125
    • Abdelwahab, H.T.1    Abdel-Aty, M.A.2
  • 3
    • 56749177617 scopus 로고    scopus 로고
    • Analysis of Road Crash Frequency with Spatial Models
    • J.Aguero-Valverde,, and P.P.Jovanis. 2008. “Analysis of Road Crash Frequency with Spatial Models.” Transportation Research Record 2061: 55–63. doi: 10.3141/2061-07
    • (2008) Transportation Research Record , vol.2061 , pp. 55-63
    • Aguero-Valverde, J.1    Jovanis, P.P.2
  • 4
    • 57849139673 scopus 로고    scopus 로고
    • A Note on Modeling Vehicle Accident Frequencies with Random-Parameters Count Models
    • P.C.Anastasopoulos,, and F.L.Mannering. 2009. “A Note on Modeling Vehicle Accident Frequencies with Random-Parameters Count Models.” Accident Analysis and Prevention 41 (1): 153–159. doi: 10.1016/j.aap.2008.10.005
    • (2009) Accident Analysis and Prevention , vol.41 , Issue.1 , pp. 153-159
    • Anastasopoulos, P.C.1    Mannering, F.L.2
  • 6
    • 27544497495 scopus 로고    scopus 로고
    • Analysis of Freeway Accident Frequencies: Negative Binomial Regression Versus Artificial Neural Network
    • L.Chang, 2005. “Analysis of Freeway Accident Frequencies: Negative Binomial Regression Versus Artificial Neural Network.” Safety Science 43 (8): 541–557. doi: 10.1016/j.ssci.2005.04.004
    • (2005) Safety Science , vol.43 , Issue.8 , pp. 541-557
    • Chang, L.1
  • 7
    • 84918441630 scopus 로고
    • Geometrical and Statistical Properties of Systems of Linear Inequalities with Applications in Pattern Recognition
    • T.M.Cover, 1965. “Geometrical and Statistical Properties of Systems of Linear Inequalities with Applications in Pattern Recognition.” IEEE Transaction on Electronic Computers 14: 326–334. doi: 10.1109/PGEC.1965.264137
    • (1965) IEEE Transaction on Electronic Computers , vol.14 , pp. 326-334
    • Cover, T.M.1
  • 8
    • 33644889643 scopus 로고    scopus 로고
    • Identifying Significant Predictors of Injury Severity in Traffic Accidents using a Series of Artificial Neural Networks
    • D.Delen,, R.Sharda, and M.Bessonov. 2006. “Identifying Significant Predictors of Injury Severity in Traffic Accidents using a Series of Artificial Neural Networks.” Accident Analysis and Prevention 38 (3): 434–444. doi: 10.1016/j.aap.2005.06.024
    • (2006) Accident Analysis and Prevention , vol.38 , Issue.3 , pp. 434-444
    • Delen, D.1    Sharda, R.2    Bessonov, M.3
  • 9
    • 33644906732 scopus 로고    scopus 로고
    • A Visual Method for Determining Variable Importance in an Artificial Neural Network Model: An Empirical Benchmark Study
    • K.E.Fish,, and J.G.Blodgett. 2003. “A Visual Method for Determining Variable Importance in an Artificial Neural Network Model: An Empirical Benchmark Study.” Journal of Targeting, Measurement and Analysis for Marketing 11 (3): 244–254. doi: 10.1057/palgrave.jt.5740081
    • (2003) Journal of Targeting, Measurement and Analysis for Marketing , vol.11 , Issue.3 , pp. 244-254
    • Fish, K.E.1    Blodgett, J.G.2
  • 11
    • 77955984221 scopus 로고    scopus 로고
    • Multilevel Data and Bayesian Analysis in Traffic Safety
    • H.Huang,, and M.Abdel-Aty. 2010. “Multilevel Data and Bayesian Analysis in Traffic Safety.” Accident Analysis and Prevention 42 (6): 1556–1565. doi: 10.1016/j.aap.2010.03.013
    • (2010) Accident Analysis and Prevention , vol.42 , Issue.6 , pp. 1556-1565
    • Huang, H.1    Abdel-Aty, M.2
  • 12
    • 79951775181 scopus 로고    scopus 로고
    • Statistical Methods Versus Neural Networks in Transportation Research: Differences, Similarities, and Some Insights
    • M.G.Karlaftis,, and E.I.Vlahogianni. 2011. “Statistical Methods Versus Neural Networks in Transportation Research: Differences, Similarities, and Some Insights.” Transportation Research Part C: Emerging Technologies 19 (3): 387–399. doi: 10.1016/j.trc.2010.10.004
    • (2011) Transportation Research Part C: Emerging Technologies , vol.19 , Issue.3 , pp. 387-399
    • Karlaftis, M.G.1    Vlahogianni, E.I.2
  • 13
    • 80054879413 scopus 로고    scopus 로고
    • Efficacies of Roadway Safety Improvements Across Functional Subclasses of Rural two-Lane Highways
    • S.Labi, 2011. “Efficacies of Roadway Safety Improvements Across Functional Subclasses of Rural two-Lane Highways.” Journal of Safety Research 42 (4): 231–239. doi: 10.1016/j.jsr.2011.01.008
    • (2011) Journal of Safety Research , vol.42 , Issue.4 , pp. 231-239
    • Labi, S.1
  • 14
    • 46149126623 scopus 로고    scopus 로고
    • Predicting Motor Vehicle Crashes Using Support Vector Machine Models
    • X.Li,, D.Lord, Y.Zhang, and Y.Xie. 2008. “Predicting Motor Vehicle Crashes Using Support Vector Machine Models.” Accident Analysis and Prevention 40 (4): 1611–1618. doi: 10.1016/j.aap.2008.04.010
    • (2008) Accident Analysis and Prevention , vol.40 , Issue.4 , pp. 1611-1618
    • Li, X.1    Lord, D.2    Zhang, Y.3    Xie, Y.4
  • 15
    • 77955889152 scopus 로고    scopus 로고
    • Extension of the Application of Conway-Maxwell-Poisson Models: Analyzing Traffic Crash Data Exhibiting Under-dispersion
    • D.Lord,, S.R.Geedipally, and S.D.Guikema. 2010. “Extension of the Application of Conway-Maxwell-Poisson Models: Analyzing Traffic Crash Data Exhibiting Under-dispersion.” Risk Analysis 30 (8): 1268–1276. doi: 10.1111/j.1539-6924.2010.01417.x
    • (2010) Risk Analysis , vol.30 , Issue.8 , pp. 1268-1276
    • Lord, D.1    Geedipally, S.R.2    Guikema, S.D.3
  • 16
    • 77952089434 scopus 로고    scopus 로고
    • The Statistical Analysis of Crash-Frequency Data: A Review and Assessment of Methodological Alternatives
    • D.Lord,, and F.Mannering. 2010. “The Statistical Analysis of Crash-Frequency Data: A Review and Assessment of Methodological Alternatives.” Transportation Research Part A: Policy and Practice 44 (5): 291–305.
    • (2010) Transportation Research Part A: Policy and Practice , vol.44 , Issue.5 , pp. 291-305
    • Lord, D.1    Mannering, F.2
  • 17
    • 0000621802 scopus 로고
    • Multi-variable Functional Interpolation and Adaptive Networks
    • D.Lowe, 1988. “Multi-variable Functional Interpolation and Adaptive Networks.” Complex Systems 2: 321–355.
    • (1988) Complex Systems , vol.2 , pp. 321-355
    • Lowe, D.1
  • 18
    • 0037379783 scopus 로고    scopus 로고
    • A New Strategy for Adaptively Constructing Multilayer Feedforward Neural Networks
    • L.Ma,, and K.Khorasani. 2003. “A New Strategy for Adaptively Constructing Multilayer Feedforward Neural Networks.” Neurocomputing 51: 361–385. doi: 10.1016/S0925-2312(02)00597-0
    • (2003) Neurocomputing , vol.51 , pp. 361-385
    • Ma, L.1    Khorasani, K.2
  • 19
    • 84893489445 scopus 로고    scopus 로고
    • Analytic Methods in Accident Research: Methodological Frontier and Future Directions
    • F.L.Mannering,, and C.R.Bhat. 2014. “Analytic Methods in Accident Research: Methodological Frontier and Future Directions.” Analytic Methods in Accident Research 1: 1–22. doi: 10.1016/j.amar.2013.09.001
    • (2014) Analytic Methods in Accident Research , vol.1 , pp. 1-22
    • Mannering, F.L.1    Bhat, C.R.2
  • 20
    • 0028486329 scopus 로고
    • The Relationship Between Truck Accidents and Geometric Design of Road Sections: Poisson Versus Negative Binomial Regressions
    • S.P.Miaou, 1994. “The Relationship Between Truck Accidents and Geometric Design of Road Sections: Poisson Versus Negative Binomial Regressions.” Accident Analysis and Prevention 26 (4): 471–482. doi: 10.1016/0001-4575(94)90038-8
    • (1994) Accident Analysis and Prevention , vol.26 , Issue.4 , pp. 471-482
    • Miaou, S.P.1
  • 21
    • 0032215995 scopus 로고    scopus 로고
    • The Relationship among Highway Geometrics, Traffic-related Elements and Motor-vehicle Accident Frequencies
    • J.Milton,, and F.Mannering. 1998. “The Relationship among Highway Geometrics, Traffic-related Elements and Motor-vehicle Accident Frequencies.” Transportation 25 (4): 395–413. doi: 10.1023/A:1005095725001
    • (1998) Transportation , vol.25 , Issue.4 , pp. 395-413
    • Milton, J.1    Mannering, F.2
  • 22
    • 44649169676 scopus 로고    scopus 로고
    • Structure Learning by Pruning in Independent Component Analysis
    • A.B.Nielsen,, and L.K.Hansen. 2008. “Structure Learning by Pruning in Independent Component Analysis.” Neurocomputing 71 (10): 2281–2290. doi: 10.1016/j.neucom.2007.09.016
    • (2008) Neurocomputing , vol.71 , Issue.10 , pp. 2281-2290
    • Nielsen, A.B.1    Hansen, L.K.2
  • 23
    • 31044449725 scopus 로고    scopus 로고
    • Accident Prediction Model for Railway-Highway Interfaces
    • J.Oh,, S.P.Washington, and D.Nam. 2006. “Accident Prediction Model for Railway-Highway Interfaces.” Accident Analysis and Prevention 38 (2): 346–356. doi: 10.1016/j.aap.2005.10.004
    • (2006) Accident Analysis and Prevention , vol.38 , Issue.2 , pp. 346-356
    • Oh, J.1    Washington, S.P.2    Nam, D.3
  • 24
    • 84861899720 scopus 로고    scopus 로고
    • The Roles of Exposure and Speed in Road Safety Analysis
    • X.Pei,, S.C.Wong, and N.N.Sze. 2012. “The Roles of Exposure and Speed in Road Safety Analysis.” Accident Analysis and Prevention 48: 464–471. doi: 10.1016/j.aap.2012.03.005
    • (2012) Accident Analysis and Prevention , vol.48 , pp. 464-471
    • Pei, X.1    Wong, S.C.2    Sze, N.N.3
  • 25
    • 0344552474 scopus 로고    scopus 로고
    • Selecting Exposure Measures in Crash Rate Prediction for Two-lane Highway Segments
    • X.Qin,, J.N.Ivan, and N.Ravishanker. 2004. “Selecting Exposure Measures in Crash Rate Prediction for Two-lane Highway Segments.” Accident Analysis and Prevention 36 (2): 183–191. doi: 10.1016/S0001-4575(02)00148-3
    • (2004) Accident Analysis and Prevention , vol.36 , Issue.2 , pp. 183-191
    • Qin, X.1    Ivan, J.N.2    Ravishanker, N.3
  • 27
    • 84855941545 scopus 로고    scopus 로고
    • Empirical Bayes Method in the Study of Traffic Safety via Heterogeneous Negative Multinomial Model
    • K.Shin,, and S.P.Washington. 2012. “Empirical Bayes Method in the Study of Traffic Safety via Heterogeneous Negative Multinomial Model.” Transportmetrica 8 (2): 131–147. doi: 10.1080/18128601003680976
    • (2012) Transportmetrica , vol.8 , Issue.2 , pp. 131-147
    • Shin, K.1    Washington, S.P.2
  • 28
    • 84876068430 scopus 로고    scopus 로고
    • A Spatio-Temporal Analysis of the Impact of Congestion on Traffic Safety on Major Roads in the UK
    • C.Wang,, M.Quddus, and S.Ison. 2013. “A Spatio-Temporal Analysis of the Impact of Congestion on Traffic Safety on Major Roads in the UK.” Transportmetrica A: Transport Science 9 (2): 124–148. doi: 10.1080/18128602.2010.538871
    • (2013) Transportmetrica A: Transport Science , vol.9 , Issue.2 , pp. 124-148
    • Wang, C.1    Quddus, M.2    Ison, S.3
  • 31
    • 34548502433 scopus 로고    scopus 로고
    • Predicting Motor Vehicle Collisions using Bayesian Neural Networks: An Empirical Analysis
    • Y.Xie,, D.Lord, and Y.Zhang. 2007. “Predicting Motor Vehicle Collisions using Bayesian Neural Networks: An Empirical Analysis.” Accident Analysis and Prevention 39 (5): 922–933. doi: 10.1016/j.aap.2006.12.014
    • (2007) Accident Analysis and Prevention , vol.39 , Issue.5 , pp. 922-933
    • Xie, Y.1    Lord, D.2    Zhang, Y.3
  • 32
    • 84911901180 scopus 로고    scopus 로고
    • Modeling Crash Spatial Heterogeneity: Random Parameter Versus Geographically Weighting
    • P.Xu,, and H.Huang. 2015. “Modeling Crash Spatial Heterogeneity: Random Parameter Versus Geographically Weighting.” Accident Analysis and Prevention 75: 16–25. doi: 10.1016/j.aap.2014.10.020
    • (2015) Accident Analysis and Prevention , vol.75 , pp. 16-25
    • Xu, P.1    Huang, H.2
  • 33
    • 84896540539 scopus 로고    scopus 로고
    • Bayesian Spatial Joint Modeling of Traffic Crashes on an Urban Road Network
    • Q.Zeng,, and H.Huang. 2014a. “Bayesian Spatial Joint Modeling of Traffic Crashes on an Urban Road Network.” Accident Analysis and Prevention 67: 105–112. doi: 10.1016/j.aap.2014.02.018
    • (2014) Accident Analysis and Prevention , vol.67 , pp. 105-112
    • Zeng, Q.1    Huang, H.2
  • 34
    • 84907842827 scopus 로고    scopus 로고
    • A Stable and Optimized Neural Network Model for Crash Injury Severity Prediction
    • Q.Zeng,, and H.Huang. 2014b. “A Stable and Optimized Neural Network Model for Crash Injury Severity Prediction.” Accident Analysis and Prevention 73: 351–358. doi: 10.1016/j.aap.2014.09.006
    • (2014) Accident Analysis and Prevention , vol.73 , pp. 351-358
    • Zeng, Q.1    Huang, H.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.