-
1
-
-
0027795348
-
The hardness of approximate optima in lattices, codes, and systems of linear equations
-
S. Arora, L. Babai, J. Stern, and Z. Sweedyk. The hardness of approximate optima in lattices, codes, and systems of linear equations. Proceedings of the 34th Annual Symposium on Foundations of Computer Science, pages 724-733, 1993.
-
(1993)
Proceedings of the 34th Annual Symposium on Foundations of Computer Science
, pp. 724-733
-
-
Arora, S.1
Babai, L.2
Stern, J.3
Sweedyk, Z.4
-
2
-
-
0001926474
-
A polynomial time algorithm for learning noisy linear threshold functions
-
A. Blum, A. Frieze, R. Kannan, and S. Vempala. A polynomial time algorithm for learning noisy linear threshold functions. Algorithmica, 22(l/2):35-52, 1997.
-
(1997)
Algorithmica
, vol.22
, Issue.1-2
, pp. 35-52
-
-
Blum, A.1
Frieze, A.2
Kannan, R.3
Vempala, S.4
-
3
-
-
0024750852
-
Learnability and the Vapnik Chervonenkis dimension
-
A. Blumer, A. Ehrenfeucht, D. Haussler, and M. Warmuth. Learnability and the VapnikChervonenkis dimension. Journal of the ACM, 36(4):929-965, 1989.
-
(1989)
Journal of the ACM
, vol.36
, Issue.4
, pp. 929-965
-
-
Blumer, A.1
Ehrenfeucht, A.2
Haussler, D.3
Warmuth, M.4
-
5
-
-
67349151635
-
Using the doubling dimension to analyze the generalization of learning algorithms
-
N. H. Bshouty, Y. Li, and P. M. Long. Using the doubling dimension to analyze the generalization of learning algorithms. Journal of Computer & System Sciences, 75(6):323-335, 2009.
-
(2009)
Journal of Computer & System Sciences
, vol.75
, Issue.6
, pp. 323-335
-
-
Bshouty, N.H.1
Li, Y.2
Long, P.M.3
-
6
-
-
1842510599
-
Optimal outlier removal in high-dimensional spaces
-
J. Dunagan and S. Vempala. Optimal outlier removal in high-dimensional spaces. J. Computer & System Sciences, 68(2):335-373, 2004.
-
(2004)
J. Computer & System Sciences
, vol.68
, Issue.2
, pp. 335-373
-
-
Dunagan, J.1
Vempala, S.2
-
7
-
-
34547698378
-
New results for learning noisy parities and halfspaces
-
V. Feldman, P. Gopalan, S. Khot, and A. Ponnuswami. New results for learning noisy parities and halfspaces. In Proc. 47th IEEE Symposium on Foundations of Computer Science (FOCS), pages 563-576, 2006.
-
(2006)
Proc. 47th IEEE Symposium on Foundations of Computer Science (FOCS)
, pp. 563-576
-
-
Feldman, V.1
Gopalan, P.2
Khot, S.3
Ponnuswami, A.4
-
8
-
-
0033281425
-
Large margin classification using the perceptron algorithm
-
DOI 10.1023/A:1007662407062
-
Y. Freund and R. E. Schapire. Large margin classification using the perceptron algorithm. Machine Learning, 37(3):277-296, 1999. (Pubitemid 32210619)
-
(1999)
Machine Learning
, vol.37
, Issue.3
, pp. 277-296
-
-
Freund, Y.1
Schapire, R.E.2
-
9
-
-
2342482532
-
Optimally-smooth adaptive boosting and application to agnostic learning
-
D. Gavinsky. Optimally-smooth adaptive boosting and application to agnostic learning. Journal of Machine Learning Research, 4:101-117, 2003.
-
(2003)
Journal of Machine Learning Research
, vol.4
, pp. 101-117
-
-
Gavinsky, D.1
-
11
-
-
0026371910
-
Equivalence of models for polynomial learnability
-
D. Haussler, M. Kearns, N. Littlestone, and M. Warmuth. Equivalence of models for polynomial learnability. Information and Computation, 95(2):.129-161, 1991.
-
(1991)
Information and Computation
, vol.95
, Issue.2
, pp. 129-161
-
-
Haussler, D.1
Kearns, M.2
Littlestone, N.3
Warmuth, M.4
-
13
-
-
55249114173
-
Agnostically learning halfspaces
-
A. Kalai, A. Klivans, Y. Mansour, and R. Servedio. Agnostically learning halfspaces. SIAM Journal on Computing, 37(6): 1777 - 1805, 2008.
-
(2008)
SIAM Journal on Computing
, vol.37
, Issue.6
, pp. 1777-1805
-
-
Kalai, A.1
Klivans, A.2
Mansour, Y.3
Servedio, R.4
-
14
-
-
0027640858
-
Learning in the presence of malicious errors
-
M. Kearns and M. Li. Learning in the presence of malicious errors. SIAM Journal on Computing, 22(4): 807-837, 1993.
-
(1993)
SIAM Journal on Computing
, vol.22
, Issue.4
, pp. 807-837
-
-
Kearns, M.1
Li, M.2
-
15
-
-
0001553979
-
Toward efficient agnostic learning
-
M. Kearns, R. Schapire, and L. Sellie. Toward Efficient Agnostic Learning. Machine Learning, 17 (2/3): 115-141, 1994.
-
(1994)
Machine Learning
, vol.17
, Issue.2-3
, pp. 115-141
-
-
Kearns, M.1
Schapire, R.2
Sellie, L.3
-
17
-
-
34250091945
-
Learning quickly when irrelevant attributes abound: A new linear-threshold algorithm
-
N. Littlestone. Learning quickly when irrelevant attributes abound: a new linear-threshold algorithm. Machine Learning, 2:285-318, 1987.
-
(1987)
Machine Learning
, vol.2
, pp. 285-318
-
-
Littlestone, N.1
-
19
-
-
34247517393
-
The geometry of logconcave functions and sampling algorithms
-
L. Lovász and S. Vempala. The geometry of logconcave functions and sampling algorithms. Random Structures and Algorithms, 30(3):307-358, 2007.
-
(2007)
Random Structures and Algorithms
, vol.30
, Issue.3
, pp. 307-358
-
-
Lovász, L.1
Vempala, S.2
-
21
-
-
0041763189
-
Learning conjunctions with noise under product distributions
-
Y. Mansour and M. Parnas. Learning conjunctions with noise under product distributions. Information Processing Letters, 68(4): 189-196, 1998.
-
(1998)
Information Processing Letters
, vol.68
, Issue.4
, pp. 189-196
-
-
Mansour, Y.1
Parnas, M.2
-
24
-
-
11144273669
-
The Perceptron: A probabilistic model for information storage and organization in the brain
-
F. Rosenblatt. The Perceptron: a probabilistic model for information storage and organization in the brain. Psychological Review, 65:386-407, 1958.
-
(1958)
Psychological Review
, vol.65
, pp. 386-407
-
-
Rosenblatt, F.1
-
25
-
-
0033281701
-
Improved boosting algorithms using confidence-rated predictions
-
DOI 10.1023/A:1007614523901
-
R. Schapire and Y Singer. Improved boosting algorithms using confidence-rated predictions. Machine Learning, 37:297-336, 1999. (Pubitemid 32210620)
-
(1999)
Machine Learning
, vol.37
, Issue.3
, pp. 297-336
-
-
Schapire, R.E.1
Singer, Y.2
-
27
-
-
0036568031
-
PAC analogues of perceptron and winnow via boosting the margin
-
R. Servedio. PAC analogues of Perceptron and Winnow via boosting the margin. Machine Learning, 47(2/3): 133-151, 2002.
-
(2002)
Machine Learning
, vol.47
, Issue.2-3
, pp. 133-151
-
-
Servedio, R.1
-
28
-
-
2542488394
-
Smooth boosting and learning with malicious noise
-
R. Servedio. Smooth boosting and learning with malicious noise. Journal of Machine Learning Research, 4:633-648, 2003.
-
(2003)
Journal of Machine Learning Research
, vol.4
, pp. 633-648
-
-
Servedio, R.1
-
30
-
-
0001957366
-
Sharper bounds for Gaussian and empirical processes
-
M. Talagrand. Sharper bounds for Gaussian and empirical processes. Annals of Probability, 22: 28-76, 1994.
-
(1994)
Annals of Probability
, vol.22
, pp. 28-76
-
-
Talagrand, M.1
-
32
-
-
70449098615
-
Principal component analysis with contaminated data: The high dimensional case
-
To appear
-
H. Xu, C. Caramanis, and S. Mannor. Principal component analysis with contaminated data: The high dimensional case. Journal of Machine Learning Research, 2009. To appear.
-
(2009)
Journal of Machine Learning Research
-
-
Xu, H.1
Caramanis, C.2
Mannor, S.3
|