메뉴 건너뛰기




Volumn 10, Issue , 2009, Pages 2715-2740

Learning halfspaces with malicious noise

Author keywords

Agnostic learning; Halfspace learning; Label noise; Linear classifiers; Malicious noise; Noise tolerance; Pac learning

Indexed keywords

AGNOSTIC LEARNING; HALF-SPACE; HALFSPACE LEARNING; LINEAR CLASSIFIERS; NOISE TOLERANCE; PAC LEARNING;

EID: 75249095624     PISSN: 15324435     EISSN: 15337928     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (122)

References (32)
  • 2
    • 0001926474 scopus 로고    scopus 로고
    • A polynomial time algorithm for learning noisy linear threshold functions
    • A. Blum, A. Frieze, R. Kannan, and S. Vempala. A polynomial time algorithm for learning noisy linear threshold functions. Algorithmica, 22(l/2):35-52, 1997.
    • (1997) Algorithmica , vol.22 , Issue.1-2 , pp. 35-52
    • Blum, A.1    Frieze, A.2    Kannan, R.3    Vempala, S.4
  • 5
    • 67349151635 scopus 로고    scopus 로고
    • Using the doubling dimension to analyze the generalization of learning algorithms
    • N. H. Bshouty, Y. Li, and P. M. Long. Using the doubling dimension to analyze the generalization of learning algorithms. Journal of Computer & System Sciences, 75(6):323-335, 2009.
    • (2009) Journal of Computer & System Sciences , vol.75 , Issue.6 , pp. 323-335
    • Bshouty, N.H.1    Li, Y.2    Long, P.M.3
  • 6
    • 1842510599 scopus 로고    scopus 로고
    • Optimal outlier removal in high-dimensional spaces
    • J. Dunagan and S. Vempala. Optimal outlier removal in high-dimensional spaces. J. Computer & System Sciences, 68(2):335-373, 2004.
    • (2004) J. Computer & System Sciences , vol.68 , Issue.2 , pp. 335-373
    • Dunagan, J.1    Vempala, S.2
  • 8
    • 0033281425 scopus 로고    scopus 로고
    • Large margin classification using the perceptron algorithm
    • DOI 10.1023/A:1007662407062
    • Y. Freund and R. E. Schapire. Large margin classification using the perceptron algorithm. Machine Learning, 37(3):277-296, 1999. (Pubitemid 32210619)
    • (1999) Machine Learning , vol.37 , Issue.3 , pp. 277-296
    • Freund, Y.1    Schapire, R.E.2
  • 9
    • 2342482532 scopus 로고    scopus 로고
    • Optimally-smooth adaptive boosting and application to agnostic learning
    • D. Gavinsky. Optimally-smooth adaptive boosting and application to agnostic learning. Journal of Machine Learning Research, 4:101-117, 2003.
    • (2003) Journal of Machine Learning Research , vol.4 , pp. 101-117
    • Gavinsky, D.1
  • 14
    • 0027640858 scopus 로고
    • Learning in the presence of malicious errors
    • M. Kearns and M. Li. Learning in the presence of malicious errors. SIAM Journal on Computing, 22(4): 807-837, 1993.
    • (1993) SIAM Journal on Computing , vol.22 , Issue.4 , pp. 807-837
    • Kearns, M.1    Li, M.2
  • 15
    • 0001553979 scopus 로고
    • Toward efficient agnostic learning
    • M. Kearns, R. Schapire, and L. Sellie. Toward Efficient Agnostic Learning. Machine Learning, 17 (2/3): 115-141, 1994.
    • (1994) Machine Learning , vol.17 , Issue.2-3 , pp. 115-141
    • Kearns, M.1    Schapire, R.2    Sellie, L.3
  • 16
  • 17
    • 34250091945 scopus 로고
    • Learning quickly when irrelevant attributes abound: A new linear-threshold algorithm
    • N. Littlestone. Learning quickly when irrelevant attributes abound: a new linear-threshold algorithm. Machine Learning, 2:285-318, 1987.
    • (1987) Machine Learning , vol.2 , pp. 285-318
    • Littlestone, N.1
  • 19
    • 34247517393 scopus 로고    scopus 로고
    • The geometry of logconcave functions and sampling algorithms
    • L. Lovász and S. Vempala. The geometry of logconcave functions and sampling algorithms. Random Structures and Algorithms, 30(3):307-358, 2007.
    • (2007) Random Structures and Algorithms , vol.30 , Issue.3 , pp. 307-358
    • Lovász, L.1    Vempala, S.2
  • 21
    • 0041763189 scopus 로고    scopus 로고
    • Learning conjunctions with noise under product distributions
    • Y. Mansour and M. Parnas. Learning conjunctions with noise under product distributions. Information Processing Letters, 68(4): 189-196, 1998.
    • (1998) Information Processing Letters , vol.68 , Issue.4 , pp. 189-196
    • Mansour, Y.1    Parnas, M.2
  • 24
    • 11144273669 scopus 로고
    • The Perceptron: A probabilistic model for information storage and organization in the brain
    • F. Rosenblatt. The Perceptron: a probabilistic model for information storage and organization in the brain. Psychological Review, 65:386-407, 1958.
    • (1958) Psychological Review , vol.65 , pp. 386-407
    • Rosenblatt, F.1
  • 25
    • 0033281701 scopus 로고    scopus 로고
    • Improved boosting algorithms using confidence-rated predictions
    • DOI 10.1023/A:1007614523901
    • R. Schapire and Y Singer. Improved boosting algorithms using confidence-rated predictions. Machine Learning, 37:297-336, 1999. (Pubitemid 32210620)
    • (1999) Machine Learning , vol.37 , Issue.3 , pp. 297-336
    • Schapire, R.E.1    Singer, Y.2
  • 27
    • 0036568031 scopus 로고    scopus 로고
    • PAC analogues of perceptron and winnow via boosting the margin
    • R. Servedio. PAC analogues of Perceptron and Winnow via boosting the margin. Machine Learning, 47(2/3): 133-151, 2002.
    • (2002) Machine Learning , vol.47 , Issue.2-3 , pp. 133-151
    • Servedio, R.1
  • 28
    • 2542488394 scopus 로고    scopus 로고
    • Smooth boosting and learning with malicious noise
    • R. Servedio. Smooth boosting and learning with malicious noise. Journal of Machine Learning Research, 4:633-648, 2003.
    • (2003) Journal of Machine Learning Research , vol.4 , pp. 633-648
    • Servedio, R.1
  • 30
    • 0001957366 scopus 로고
    • Sharper bounds for Gaussian and empirical processes
    • M. Talagrand. Sharper bounds for Gaussian and empirical processes. Annals of Probability, 22: 28-76, 1994.
    • (1994) Annals of Probability , vol.22 , pp. 28-76
    • Talagrand, M.1
  • 32
    • 70449098615 scopus 로고    scopus 로고
    • Principal component analysis with contaminated data: The high dimensional case
    • To appear
    • H. Xu, C. Caramanis, and S. Mannor. Principal component analysis with contaminated data: The high dimensional case. Journal of Machine Learning Research, 2009. To appear.
    • (2009) Journal of Machine Learning Research
    • Xu, H.1    Caramanis, C.2    Mannor, S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.