메뉴 건너뛰기




Volumn 143, Issue , 2015, Pages 472-488

The study and application of a novel hybrid forecasting model - A case study of wind speed forecasting in China

Author keywords

Grey relational analysis; Hypothesis test; Least Square Support Vector Machine (LSSVM); PSOSA algorithm; Wavelet packet transform

Indexed keywords

ELECTRIC POWER TRANSMISSION NETWORKS; ELECTRIC UTILITIES; ENERGY POLICY; ENERGY RESOURCES; FORECASTING; PACKET NETWORKS; PARTICLE SWARM OPTIMIZATION (PSO); PHASE SPACE METHODS; RANDOM PROCESSES; RENEWABLE ENERGY RESOURCES; SIMULATED ANNEALING; SPEED; STATISTICAL TESTS; SUPPORT VECTOR MACHINES; WAVELET TRANSFORMS; WIND EFFECTS; WIND POWER;

EID: 84922362244     PISSN: 03062619     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.apenergy.2015.01.038     Document Type: Article
Times cited : (159)

References (44)
  • 1
    • 84922385397 scopus 로고    scopus 로고
    • Technology Roadmap: China Wind Energy Development Roadmap 2050. Source OECD Energy
    • International Energy Agency. Technology Roadmap: China Wind Energy Development Roadmap 2050. Source OECD Energy; 2012.
    • (2012)
  • 2
    • 21844477547 scopus 로고    scopus 로고
    • Wind speed and generated power forecasting in wind farm
    • Yang X., Xiao Y., Chen S. Wind speed and generated power forecasting in wind farm. Proc Chinese Soc Elect Eng 2005, 25:1-5.
    • (2005) Proc Chinese Soc Elect Eng , vol.25 , pp. 1-5
    • Yang, X.1    Xiao, Y.2    Chen, S.3
  • 3
    • 79959733948 scopus 로고    scopus 로고
    • A case study on a hybrid wind speed forecasting model using BP neural network
    • Guo Z.H., Wu J., Lu H.Y., Wang J.Z. A case study on a hybrid wind speed forecasting model using BP neural network. Knowledge-Based Syst 2011, 24:1048-1056.
    • (2011) Knowledge-Based Syst , vol.24 , pp. 1048-1056
    • Guo, Z.H.1    Wu, J.2    Lu, H.Y.3    Wang, J.Z.4
  • 4
    • 84892960976 scopus 로고    scopus 로고
    • Current status and future advances for wind speed and power forecasting
    • Jung J., Broadwater R.P. Current status and future advances for wind speed and power forecasting. Renew Sustain Energy Rev 2014, 31:762-777.
    • (2014) Renew Sustain Energy Rev , vol.31 , pp. 762-777
    • Jung, J.1    Broadwater, R.P.2
  • 5
    • 84892441792 scopus 로고    scopus 로고
    • Optimal parameters selection for BP neural network based on particle swarm optimization: a case study of wind speed forecasting
    • Ren C., An N., Wang J.Z., Li L., Hu B., Shang D. Optimal parameters selection for BP neural network based on particle swarm optimization: a case study of wind speed forecasting. Knowl-Based Syst 2014, 56:226-239.
    • (2014) Knowl-Based Syst , vol.56 , pp. 226-239
    • Ren, C.1    An, N.2    Wang, J.Z.3    Li, L.4    Hu, B.5    Shang, D.6
  • 6
    • 79952187703 scopus 로고    scopus 로고
    • Extraction of synoptic pressure patterns for long-term wind speed estimation in wind farms using evolutionary computing
    • Carro-Calvo L., Salcedo-Sanz S., Kirchner-Bossi N., Portilla-Figueras A., Prieto L., Garcia-Herrera R., et al. Extraction of synoptic pressure patterns for long-term wind speed estimation in wind farms using evolutionary computing. Energy 2011, 36:1571-1581.
    • (2011) Energy , vol.36 , pp. 1571-1581
    • Carro-Calvo, L.1    Salcedo-Sanz, S.2    Kirchner-Bossi, N.3    Portilla-Figueras, A.4    Prieto, L.5    Garcia-Herrera, R.6
  • 7
    • 29444457388 scopus 로고    scopus 로고
    • Locally recurrent neural networks for long-term wind speed and power prediction
    • Barbounis T.G., Theocharis J.B. Locally recurrent neural networks for long-term wind speed and power prediction. Neurocomputing 2006, 69:466-496.
    • (2006) Neurocomputing , vol.69 , pp. 466-496
    • Barbounis, T.G.1    Theocharis, J.B.2
  • 9
    • 21844461695 scopus 로고    scopus 로고
    • The state of the art in short-term prediction of wind power-from an offshore perspective
    • 2004 Sea Tech Week;
    • Kariniotakis G, Pinson P, Siebert N, Giebel G, Barthelmie R. The state of the art in short-term prediction of wind power-from an offshore perspective. 2004 Sea Tech Week; 2004.
    • (2004)
    • Kariniotakis, G.1    Pinson, P.2    Siebert, N.3    Giebel, G.4    Barthelmie, R.5
  • 11
    • 78650562310 scopus 로고    scopus 로고
    • ARMA based approaches for forecasting the tuple of wind speed and direction
    • Erdem E., Shi J. ARMA based approaches for forecasting the tuple of wind speed and direction. Appl Energy 2011, 88:1405-1414.
    • (2011) Appl Energy , vol.88 , pp. 1405-1414
    • Erdem, E.1    Shi, J.2
  • 12
    • 58949103845 scopus 로고    scopus 로고
    • Day-ahead wind speed forecasting using f-ARIMA models
    • Kavasseri R.G., Seetharaman K. Day-ahead wind speed forecasting using f-ARIMA models. Renewable Energy 2009, 34:1388-1393.
    • (2009) Renewable Energy , vol.34 , pp. 1388-1393
    • Kavasseri, R.G.1    Seetharaman, K.2
  • 13
    • 1642310555 scopus 로고    scopus 로고
    • Correlation of wind speed between neighboring measuring stations
    • Bechrakis D.A., Sparis P.D. Correlation of wind speed between neighboring measuring stations. IEEE Trans Energy Convers 2004, 19:400-406.
    • (2004) IEEE Trans Energy Convers , vol.19 , pp. 400-406
    • Bechrakis, D.A.1    Sparis, P.D.2
  • 14
    • 2942570109 scopus 로고    scopus 로고
    • A fuzzy model for wind speed prediction and power generation in wind parks using spatial correlation
    • Damousis I.G., Alexiadis M.C., Theocharis J.B., Dokopoulos P.S. A fuzzy model for wind speed prediction and power generation in wind parks using spatial correlation. IEEE Trans Energy Convers 2004, 19:352-361.
    • (2004) IEEE Trans Energy Convers , vol.19 , pp. 352-361
    • Damousis, I.G.1    Alexiadis, M.C.2    Theocharis, J.B.3    Dokopoulos, P.S.4
  • 15
    • 77953137822 scopus 로고    scopus 로고
    • On comparing three artificial neural networks for wind speed forecasting
    • Li G., Shi J. On comparing three artificial neural networks for wind speed forecasting. Appl Energy 2010, 87:2313-2320.
    • (2010) Appl Energy , vol.87 , pp. 2313-2320
    • Li, G.1    Shi, J.2
  • 16
    • 77958190421 scopus 로고    scopus 로고
    • Very short-term wind power forecasting with neural networks and adaptive Bayesian learning
    • Blonbou R. Very short-term wind power forecasting with neural networks and adaptive Bayesian learning. Renew Energy 2011, 36:1118-1124.
    • (2011) Renew Energy , vol.36 , pp. 1118-1124
    • Blonbou, R.1
  • 17
    • 29444457388 scopus 로고    scopus 로고
    • Locally recurrent neural networks for long-term wind speed and power prediction
    • Barbounis T., Theocharis J. Locally recurrent neural networks for long-term wind speed and power prediction. Neurocomputing 2006, 69:466-496.
    • (2006) Neurocomputing , vol.69 , pp. 466-496
    • Barbounis, T.1    Theocharis, J.2
  • 18
    • 34648852323 scopus 로고    scopus 로고
    • Locally recurrent neural networks for wind speed prediction using spatial correlation
    • Barbounis T., Theocharis J. Locally recurrent neural networks for wind speed prediction using spatial correlation. Inf Sci 2007, 177:5775-5797.
    • (2007) Inf Sci , vol.177 , pp. 5775-5797
    • Barbounis, T.1    Theocharis, J.2
  • 19
    • 79961127156 scopus 로고    scopus 로고
    • Multi-step forecasting for wind speed using a modified EMD-based artificial neural network model
    • Guo Z.H., Zhao W.G., Lu H.Y., Wang J.Z. Multi-step forecasting for wind speed using a modified EMD-based artificial neural network model. Renewable Energy 2012, 37:241-249.
    • (2012) Renewable Energy , vol.37 , pp. 241-249
    • Guo, Z.H.1    Zhao, W.G.2    Lu, H.Y.3    Wang, J.Z.4
  • 20
    • 78650944534 scopus 로고    scopus 로고
    • Fine tuning support vector machines for short-term wind speed forecasting
    • Zhou J.Y., Shi J., Li G. Fine tuning support vector machines for short-term wind speed forecasting. Energy Convers Manage 2011, 52:1990-1998.
    • (2011) Energy Convers Manage , vol.52 , pp. 1990-1998
    • Zhou, J.Y.1    Shi, J.2    Li, G.3
  • 23
    • 77955279506 scopus 로고    scopus 로고
    • Hour-ahead wind power and speed forecasting using simultaneous perturbation stochastic approximation (SPSA) algorithm and neural network with fuzzy inputs
    • Hong Y.Y., Chang H.L., Chiu C.S. Hour-ahead wind power and speed forecasting using simultaneous perturbation stochastic approximation (SPSA) algorithm and neural network with fuzzy inputs. Energy 2010, 35:3870-3876.
    • (2010) Energy , vol.35 , pp. 3870-3876
    • Hong, Y.Y.1    Chang, H.L.2    Chiu, C.S.3
  • 24
    • 33947303690 scopus 로고    scopus 로고
    • An advanced statistical method for wind power forecasting
    • Sideratos G., Hatziargyriou N.D. An advanced statistical method for wind power forecasting. IEEE Trans Power Syst 2007, 22:258-265.
    • (2007) IEEE Trans Power Syst , vol.22 , pp. 258-265
    • Sideratos, G.1    Hatziargyriou, N.D.2
  • 25
    • 84859416828 scopus 로고    scopus 로고
    • Evaluation of hybrid forecasting approaches for wind speed and power generation time series
    • Shi J., Guo J., Zheng S. Evaluation of hybrid forecasting approaches for wind speed and power generation time series. Renew Sustain Energy Rev 2012, 16:3471-3480.
    • (2012) Renew Sustain Energy Rev , vol.16 , pp. 3471-3480
    • Shi, J.1    Guo, J.2    Zheng, S.3
  • 26
    • 77954315872 scopus 로고    scopus 로고
    • Wind speed forecasting in three different regions of Mexico, using a hybrid ARIMA-ANN model
    • Cadenas E., Rivera W. Wind speed forecasting in three different regions of Mexico, using a hybrid ARIMA-ANN model. Renew Energy 2010, 35:2732-2738.
    • (2010) Renew Energy , vol.35 , pp. 2732-2738
    • Cadenas, E.1    Rivera, W.2
  • 27
    • 84862213628 scopus 로고    scopus 로고
    • Comparison of two new ARIMA-ANN and ARIMA-Kalman hybrid methods for wind speed prediction
    • Liu H., Tian H.Q., Li Y.F. Comparison of two new ARIMA-ANN and ARIMA-Kalman hybrid methods for wind speed prediction. Appl Energy 2012, 98:415-424.
    • (2012) Appl Energy , vol.98 , pp. 415-424
    • Liu, H.1    Tian, H.Q.2    Li, Y.F.3
  • 28
    • 79952183962 scopus 로고    scopus 로고
    • A corrected hybrid approach for wind speed prediction in Hexi Corridor of China
    • Guo Z.H., Zhao J., Zhang W.Y., Wang J.Z. A corrected hybrid approach for wind speed prediction in Hexi Corridor of China. Energy 2011, 36:1668-1679.
    • (2011) Energy , vol.36 , pp. 1668-1679
    • Guo, Z.H.1    Zhao, J.2    Zhang, W.Y.3    Wang, J.Z.4
  • 29
    • 84884126948 scopus 로고    scopus 로고
    • Short-term wind speed forecasting using wavelet transform and support vector machines optimized by genetic algorithm
    • Liu D., Niu D.X., Wang H., Fan L.L. Short-term wind speed forecasting using wavelet transform and support vector machines optimized by genetic algorithm. Renewable Energy 2014, 62:592-597.
    • (2014) Renewable Energy , vol.62 , pp. 592-597
    • Liu, D.1    Niu, D.X.2    Wang, H.3    Fan, L.L.4
  • 30
    • 78649450621 scopus 로고    scopus 로고
    • Short-term wind power forecasting in portugal by neural networks and wavelet transform
    • Catalao J.P.S., Pousinho H.M.I., Mendes V.M.F. Short-term wind power forecasting in portugal by neural networks and wavelet transform. Renewable Energy 2011, 36:1245-1251.
    • (2011) Renewable Energy , vol.36 , pp. 1245-1251
    • Catalao, J.P.S.1    Pousinho, H.M.I.2    Mendes, V.M.F.3
  • 31
    • 80053082143 scopus 로고    scopus 로고
    • Hybrid intelligent approach for short-term wind power forecasting in Portugal
    • Catalao J.P.S., Pousinho H.M.I., Mendes V.M.F. Hybrid intelligent approach for short-term wind power forecasting in Portugal. IET Renew Power Gener 2011, 5:251-257.
    • (2011) IET Renew Power Gener , vol.5 , pp. 251-257
    • Catalao, J.P.S.1    Pousinho, H.M.I.2    Mendes, V.M.F.3
  • 32
    • 84863508830 scopus 로고    scopus 로고
    • A hybrid model for wind speed prediction using empirical mode decomposition and artificial neural networks
    • Liu H., Tian H.Q., Chen C., Li Y.F. A hybrid model for wind speed prediction using empirical mode decomposition and artificial neural networks. Renewable Energy 2012, 48:545-556.
    • (2012) Renewable Energy , vol.48 , pp. 545-556
    • Liu, H.1    Tian, H.Q.2    Chen, C.3    Li, Y.F.4
  • 33
    • 84878854403 scopus 로고    scopus 로고
    • A hybrid forecasting approach applied to wind speed time series
    • Hu J.M., Wang J.Z., Zeng G.W. A hybrid forecasting approach applied to wind speed time series. Renewable Energy 2013, 60:185-194.
    • (2013) Renewable Energy , vol.60 , pp. 185-194
    • Hu, J.M.1    Wang, J.Z.2    Zeng, G.W.3
  • 34
    • 84055177678 scopus 로고    scopus 로고
    • A solar radiation prediction based on phase space reconstruction of wavelet neural network
    • Wang J.P., Xie Y.L., Zhu C.H., Xu X.B. A solar radiation prediction based on phase space reconstruction of wavelet neural network. Proc Eng 2011, 15:4603-4607.
    • (2011) Proc Eng , vol.15 , pp. 4603-4607
    • Wang, J.P.1    Xie, Y.L.2    Zhu, C.H.3    Xu, X.B.4
  • 35
    • 84876731436 scopus 로고    scopus 로고
    • An experimental investigation of two Wavelet-MLP hybrid frameworks for wind speed prediction using GA and PSO optimization
    • Liu H., Tian H.Q., Chen C., Li Y.F. An experimental investigation of two Wavelet-MLP hybrid frameworks for wind speed prediction using GA and PSO optimization. Int J Electr Power Energy Syst 2013, 52:161-173.
    • (2013) Int J Electr Power Energy Syst , vol.52 , pp. 161-173
    • Liu, H.1    Tian, H.Q.2    Chen, C.3    Li, Y.F.4
  • 36
    • 33646130599 scopus 로고    scopus 로고
    • Software reliability forecasting by support vector machines with simulated annealing algorithms
    • Pai P.F., Hong W.C. Software reliability forecasting by support vector machines with simulated annealing algorithms. J Syst Softw 2006, 79:747-755.
    • (2006) J Syst Softw , vol.79 , pp. 747-755
    • Pai, P.F.1    Hong, W.C.2
  • 37
    • 18544377981 scopus 로고    scopus 로고
    • Support vector machines with simulated annealing algorithms in electricity load forecasting
    • Pai P.F., Hong W.C. Support vector machines with simulated annealing algorithms in electricity load forecasting. Energy Convers Manage 2005, 46:2669-2688.
    • (2005) Energy Convers Manage , vol.46 , pp. 2669-2688
    • Pai, P.F.1    Hong, W.C.2
  • 38
    • 70449525203 scopus 로고    scopus 로고
    • Power load forecasting using support vector machine and ant colony optimization
    • Niu D.X., Wang Y.L., Wu D.D. Power load forecasting using support vector machine and ant colony optimization. Expert Syst Appl 2010, 37:2531-2539.
    • (2010) Expert Syst Appl , vol.37 , pp. 2531-2539
    • Niu, D.X.1    Wang, Y.L.2    Wu, D.D.3
  • 39
    • 84893739853 scopus 로고    scopus 로고
    • Genetic ensemble of extreme learning machine
    • Xue X.W., Yao M., Wu Z.H., Yang J.H. Genetic ensemble of extreme learning machine. Neurocomputing 2014, 129:175-184.
    • (2014) Neurocomputing , vol.129 , pp. 175-184
    • Xue, X.W.1    Yao, M.2    Wu, Z.H.3    Yang, J.H.4
  • 40
    • 84874018336 scopus 로고    scopus 로고
    • On extreme learning machine for ε-insensitive regression in the primal by Newton method
    • Balasundaram S. On extreme learning machine for ε-insensitive regression in the primal by Newton method. Neural Comput Appl 2013, 22:559-567.
    • (2013) Neural Comput Appl , vol.22 , pp. 559-567
    • Balasundaram, S.1
  • 41
    • 84896498038 scopus 로고    scopus 로고
    • Approximating support vector machine with artificial neural network for fast prediction
    • Kang S., Cho S. Approximating support vector machine with artificial neural network for fast prediction. Expert Syst Appl 2014, 41:4989-4990.
    • (2014) Expert Syst Appl , vol.41 , pp. 4989-4990
    • Kang, S.1    Cho, S.2
  • 42
    • 0040315167 scopus 로고    scopus 로고
    • Nonlinear dynamics, delay times, and embedding windows
    • Kim H.S., Eykholt R., Salas J.D. Nonlinear dynamics, delay times, and embedding windows. Physica D 1999, 127:48-60.
    • (1999) Physica D , vol.127 , pp. 48-60
    • Kim, H.S.1    Eykholt, R.2    Salas, J.D.3
  • 44
    • 84922359557 scopus 로고    scopus 로고
    • [Accessed 02.08.14].
    • Introduction of the Statistical Hypothesis Testing, <>. [Accessed 02.08.14]. http://www.phdtutor.com/stat_course/Hypothesis_Testing.aspx.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.