메뉴 건너뛰기




Volumn 6, Issue 8, 2014, Pages 5339-5353

Building behavior simulation by means of artificial neural network in summer conditions

Author keywords

Artificial neural network (ANN); building envelope behaviour; Cooling conditions; Unsteady simulations

Indexed keywords

AIR TEMPERATURE; ARTIFICIAL NEURAL NETWORK; BUILDING; CLIMATE CONDITIONS; COOLING; ENERGY CONSERVATION; ENERGY USE; INDOOR AIR; INNOVATION; PERFORMANCE ASSESSMENT; SUMMER;

EID: 84906232211     PISSN: 20711050     EISSN: None     Source Type: Journal    
DOI: 10.3390/su6085339     Document Type: Article
Times cited : (27)

References (30)
  • 2
    • 84906246365 scopus 로고    scopus 로고
    • Odyssee-Mure.(accessed on 1 January 2013)
    • Odyssee-Mure. Available online: http://www.odyssee-mure.eu/publications/br/energy-efficiencytrends-in-Europe.html (accessed on 1 January 2013).
  • 3
    • 84888616939 scopus 로고    scopus 로고
    • The thermal effect of an innovative cool roof on residential buildings in Italy: Results from two years of continuous monitoring
    • Pisello, A.L.; Cotana, F. The thermal effect of an innovative cool roof on residential buildings in Italy: Results from two years of continuous monitoring. Energ. Buildings 2014, 69, 154-164.
    • (2014) Energ. Buildings , vol.69 , pp. 154-164
    • Pisello, A.L.1    Cotana, F.2
  • 4
    • 84887354861 scopus 로고    scopus 로고
    • Analysis of retro-reflective surfaces for urban heat island mitigation: A new analytical model
    • Rossi, F.; Pisello, A.L.; Nicolini, A.; Filipponi, M.; Palombo, M. Analysis of retro-reflective surfaces for urban heat island mitigation: A new analytical model. Appl. Energ. 2014, 114, 621-631.
    • (2014) Appl. Energ. , vol.114 , pp. 621-631
    • Rossi, F.1    Pisello, A.L.2    Nicolini, A.3    Filipponi, M.4    Palombo, M.5
  • 5
    • 84872287577 scopus 로고    scopus 로고
    • A building energy efficiency optimization method by evaluating the effective thermal zones occupancy
    • Pisello, A.L.; Bobker, M.; Cotana, F. A building energy efficiency optimization method by evaluating the effective thermal zones occupancy. Energies 2012, 5, 5257-5278.
    • (2012) Energies , vol.5 , pp. 5257-5278
    • Pisello, A.L.1    Bobker, M.2    Cotana, F.3
  • 6
    • 84896879621 scopus 로고    scopus 로고
    • Evolutive Housing System: Refurbishment with new technologies and unsteady simulations of energy performance
    • Buratti, C.; Belloni, E.; Palladino, D. Evolutive Housing System: Refurbishment with new technologies and unsteady simulations of energy performance. Energ. Buildings 2014, 74, 173-181.
    • (2014) Energ. Buildings , vol.74 , pp. 173-181
    • Buratti, C.1    Belloni, E.2    Palladino, D.3
  • 7
    • 84855996195 scopus 로고    scopus 로고
    • Artificial neural networks for predicting indoor temperature using roof passive cooling techniques in buildings in different climatic conditions
    • Pandey, S.; Hindoliya, D.A.; Mod, R. Artificial neural networks for predicting indoor temperature using roof passive cooling techniques in buildings in different climatic conditions. Appl. Soft Comput. 2012, 12, 1214-1226.
    • (2012) Appl. Soft Comput. , vol.12 , pp. 1214-1226
    • Pandey, S.1    Hindoliya, D.A.2    Mod, R.3
  • 8
    • 77952953206 scopus 로고    scopus 로고
    • Thermal behaviour prediction utilizing artificial neural networks for an open office
    • Mustafaraj, G.; Chena, J.; Lowry, G. Thermal behaviour prediction utilizing artificial neural networks for an open office. Appl. Math. Model. 2010, 34, 3216-3230.
    • (2010) Appl. Math. Model. , vol.34 , pp. 3216-3230
    • Mustafaraj, G.1    Chena, J.2    Lowry, G.3
  • 9
    • 84889069374 scopus 로고    scopus 로고
    • Determining optimum control of double skin envelope for indoor thermal environment based on artificial neural network
    • Moon, J.W.; Lee, J.H.; Yoon, Y.; Kim, S. Determining optimum control of double skin envelope for indoor thermal environment based on artificial neural network. Energ. Buildings 2014, 69, 175-183.
    • (2014) Energ. Buildings , vol.69 , pp. 175-183
    • Moon, J.W.1    Lee, J.H.2    Yoon, Y.3    Kim, S.4
  • 10
    • 84884313016 scopus 로고    scopus 로고
    • Multi-objective optimization of a building envelope for thermal performance using genetic algorithms and artificial neural network
    • Gossard, D.; Lartigue, B.; Thellier, F. Multi-objective optimization of a building envelope for thermal performance using genetic algorithms and artificial neural network. Energ. Buildings 2013, 67, 253-260.
    • (2013) Energ. Buildings , vol.67 , pp. 253-260
    • Gossard, D.1    Lartigue, B.2    Thellier, F.3
  • 11
    • 70350586743 scopus 로고    scopus 로고
    • Multiobjective optimization of building design using TRNSYS simulations; genetic algorithm; and Artificial Neural Network
    • Magnier, L.; Haghighat, F. Multiobjective optimization of building design using TRNSYS simulations; genetic algorithm; and Artificial Neural Network. Build. Environ. 2010, 45, 739-746.
    • (2010) Build. Environ. , vol.45 , pp. 739-746
    • Magnier, L.1    Haghighat, F.2
  • 12
    • 33645384891 scopus 로고    scopus 로고
    • Prediction of building's temperature using neural networks models
    • Ruano, A.E.; Crispim, E.M.; Conceicao, E.Z.E.; Lucio, M. Prediction of building's temperature using neural networks models. Energ. Buildings 2006, 38, 682-694.
    • (2006) Energ. Buildings , vol.38 , pp. 682-694
    • Ruano, A.E.1    Crispim, E.M.2    Conceicao, E.Z.E.3    Lucio, M.4
  • 13
    • 77649231266 scopus 로고    scopus 로고
    • ANN-based thermal control models for residential buildings
    • Moon, J.W.; Kim, J.J. ANN-based thermal control models for residential buildings. Build. Environ. 2010, 45, 1612-1625.
    • (2010) Build. Environ. , vol.45 , pp. 1612-1625
    • Moon, J.W.1    Kim, J.J.2
  • 14
    • 84870577828 scopus 로고    scopus 로고
    • Neural networks based predictive control for thermal comfort and energy savings in public buildings
    • Ferreira, P.M.; Ruano, A.E.; Silva, S.; Conceicao, E.Z.E. Neural networks based predictive control for thermal comfort and energy savings in public buildings. Energ. Buildings 2012, 55, 238-251.
    • (2012) Energ. Buildings , vol.55 , pp. 238-251
    • Ferreira, P.M.1    Ruano, A.E.2    Silva, S.3    Conceicao, E.Z.E.4
  • 15
    • 84894040890 scopus 로고    scopus 로고
    • An original tool for checking energy performance and certification of buildings by means of Artificial Neural Networks
    • Buratti, C.; Barbanera, M.; Palladino, D. An original tool for checking energy performance and certification of buildings by means of Artificial Neural Networks. Appl. Energ. 2014, 120, 125-132.
    • (2014) Appl. Energ. , vol.120 , pp. 125-132
    • Buratti, C.1    Barbanera, M.2    Palladino, D.3
  • 16
    • 80054796723 scopus 로고    scopus 로고
    • Forecasting building energy consumption using neural networks and hybrid neuro-fuzzy system: A comparative study
    • Li, K.; Sua, H.; Chua, J. Forecasting building energy consumption using neural networks and hybrid neuro-fuzzy system: A comparative study. Energ. Buildings 2011, 43, 2893-2899.
    • (2011) Energ. Buildings , vol.43 , pp. 2893-2899
    • Li, K.1    Sua, H.2    Chua, J.3
  • 17
    • 76649131245 scopus 로고    scopus 로고
    • Greek long-term energy consumption prediction using artificial neural networks
    • Ekonomou, L. Greek long-term energy consumption prediction using artificial neural networks. Energy 2010, 35, 512-517.
    • (2010) Energy , vol.35 , pp. 512-517
    • Ekonomou, L.1
  • 18
    • 34250170125 scopus 로고    scopus 로고
    • Predicting electricity energy consumption: A comparison of regression analysis; decision tree and neural networks
    • Tso, G.K.F.; Yau, K.K.W. Predicting electricity energy consumption: A comparison of regression analysis; decision tree and neural networks. Energy 2007, 32, 1761-1768.
    • (2007) Energy , vol.32 , pp. 1761-1768
    • Tso, G.K.F.1    Yau, K.K.W.2
  • 19
    • 56349138129 scopus 로고    scopus 로고
    • Prediction of energy demands using neural network with model identification by global optimization
    • Yokoyama, R.; Wakui, T.; Satake, R. Prediction of energy demands using neural network with model identification by global optimization. Energ. Convers. Manag. 2009, 50, 319-327.
    • (2009) Energ. Convers. Manag. , vol.50 , pp. 319-327
    • Yokoyama, R.1    Wakui, T.2    Satake, R.3
  • 20
    • 84876346648 scopus 로고    scopus 로고
    • Modeling of the energy demand of the residential sector in the United States using regression models and artificial neural networks
    • Kialashaki, A.; Reisel, J.R. Modeling of the energy demand of the residential sector in the United States using regression models and artificial neural networks. Appl. Energ. 2013, 108, 271-280.
    • (2013) Appl. Energ. , vol.108 , pp. 271-280
    • Kialashaki, A.1    Reisel, J.R.2
  • 21
    • 69949163587 scopus 로고    scopus 로고
    • Energy demand estimation of South Korea using artificial neural network
    • Geem, Z.W.; Roper, W.E. Energy demand estimation of South Korea using artificial neural network. Energ. Pol. 2009, 37, 4049-4054.
    • (2009) Energ. Pol. , vol.37 , pp. 4049-4054
    • Geem, Z.W.1    Roper, W.E.2
  • 22
    • 44649152880 scopus 로고    scopus 로고
    • A simulated-based neural network algorithm for forecasting electrical energy consumption in Iran
    • Azadeh, A.; Ghaderi, S.; Sohrabkhani, S. A simulated-based neural network algorithm for forecasting electrical energy consumption in Iran. Energ. Pol. 2008, 36, 2637-2644.
    • (2008) Energ. Pol. , vol.36 , pp. 2637-2644
    • Azadeh, A.1    Ghaderi, S.2    Sohrabkhani, S.3
  • 23
    • 52349093047 scopus 로고    scopus 로고
    • Comparison between detailed model simulation and artificial neural network for forecasting building energy consumption
    • Neto, H.A.; Fiorelli, F.A.S. Comparison between detailed model simulation and artificial neural network for forecasting building energy consumption. Energ. Buildings 2008, 40, 2169-2176.
    • (2008) Energ. Buildings , vol.40 , pp. 2169-2176
    • Neto, H.A.1    Fiorelli, F.A.S.2
  • 24
    • 84862328262 scopus 로고    scopus 로고
    • Experimental performance evaluation of aerogel glazing systems
    • Buratti, C.; Moretti, E. Experimental performance evaluation of aerogel glazing systems. Appl. Energ. 2012, 97, 430-437.
    • (2012) Appl. Energ. , vol.97 , pp. 430-437
    • Buratti, C.1    Moretti, E.2
  • 25
    • 84862189711 scopus 로고    scopus 로고
    • Glazing systems with silica aerogel for energy savings in buildings
    • Buratti, C.; Moretti, E. Glazing systems with silica aerogel for energy savings in buildings. Appl. Energ. 2012, 98, 396-403.
    • (2012) Appl. Energ. , vol.98 , pp. 396-403
    • Buratti, C.1    Moretti, E.2
  • 26
    • 84890846137 scopus 로고    scopus 로고
    • Polycarbonate panels for buildings: experimental investigation of thermal and optical performance
    • Moretti, E.; Zinzi, M.; Belloni, E. Polycarbonate panels for buildings: experimental investigation of thermal and optical performance. Energ. Buildings 2014, 70, 23-35.
    • (2014) Energ. Buildings , vol.70 , pp. 23-35
    • Moretti, E.1    Zinzi, M.2    Belloni, E.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.