메뉴 건너뛰기




Volumn 15, Issue 13, 2014, Pages

Feature selection and classifier performance on diverse bio- logical datasets

Author keywords

[No Author keywords available]

Indexed keywords

BIOINFORMATICS; BIOMARKERS; CELL CULTURE; CELLS; CLUSTERING ALGORITHMS; DATA MINING; DISEASES; FEATURE EXTRACTION; GENE EXPRESSION; GENES; PROTEINS; RNA;

EID: 84961615850     PISSN: None     EISSN: 14712105     Source Type: Journal    
DOI: 10.1186/1471-2105-15-S13-S4     Document Type: Article
Times cited : (29)

References (38)
  • 1
    • 77949507309 scopus 로고    scopus 로고
    • Robust biomarker identification for cancer diagnosis with ensemble feature selection methods
    • Abeel T, Helleputte T, Van de Peer Y, Dupont P, Saeys Y: Robust biomarker identification for cancer diagnosis with ensemble feature selection methods. Bioinformatics. 2010, 26 (3): 392-398. 10.1093/bioinformatics/btp630.
    • (2010) Bioinformatics , vol.26 , Issue.3 , pp. 392-398
    • Abeel, T.1    Helleputte, T.2    Van de Peer, Y.3    Dupont, P.4    Saeys, Y.5
  • 4
    • 33645825183 scopus 로고    scopus 로고
    • Thousands of samples are needed to generate a robust gene list for predicting outcome in cancer
    • Ein-Dor L, Zuk O, Domany E: Thousands of samples are needed to generate a robust gene list for predicting outcome in cancer. Proceedings of the National Academy of Sciences. 2006, 103 (15): 5923-5928. 10.1073/pnas.0601231103.
    • (2006) Proceedings of the National Academy of Sciences , vol.103 , Issue.15 , pp. 5923-5928
    • Ein-Dor, L.1    Zuk, O.2    Domany, E.3
  • 5
    • 33745712124 scopus 로고    scopus 로고
    • Joint National Cancer Institute-Food and Drug Administration Workshop on Research Strategies, Study Designs, and Statistical Approaches to Biomarker Validation for Cancer Diagnosis and Detection
    • Maruvada P, Srivastava S: Joint National Cancer Institute-Food and Drug Administration Workshop on Research Strategies, Study Designs, and Statistical Approaches to Biomarker Validation for Cancer Diagnosis and Detection. Cancer Epidemiology Biomarkers & Prevention. 2006, 15 (6): 1078-1082. 10.1158/1055-9965.EPI-05-0432.
    • (2006) Cancer Epidemiology Biomarkers & Prevention , vol.15 , Issue.6 , pp. 1078-1082
    • Maruvada, P.1    Srivastava, S.2
  • 6
    • 83755163963 scopus 로고    scopus 로고
    • The Influence of Feature Selection Methods on Accuracy, Stability and Interpretability of Molecular Signatures
    • Haury AC, Gestraud P, Vert JP: The Influence of Feature Selection Methods on Accuracy, Stability and Interpretability of Molecular Signatures. PLoS ONE. 2011, 6 (12): e28210+-10.1371/journal.pone.0028210.
    • (2011) PLoS ONE , vol.6 , Issue.12
    • Haury, A.C.1    Gestraud, P.2    Vert, J.P.3
  • 7
    • 33748961513 scopus 로고    scopus 로고
    • A comparison of univariate and multivariate gene selection techniques for classification of cancer datasets
    • Lai C, Reinders M, Veer LV, Wessels L: A comparison of univariate and multivariate gene selection techniques for classification of cancer datasets. BMC Bioinformatics. 2006, 7 (235):
    • (2006) BMC Bioinformatics , vol.7 , Issue.235
    • Lai, C.1    Reinders, M.2    Veer, L.V.3    Wessels, L.4
  • 8
    • 10444280144 scopus 로고    scopus 로고
    • An extensive comparison of recent classification tools applied to microarray data
    • Lee JW, Lee JB, Park M, Song SH: An extensive comparison of recent classification tools applied to microarray data. Computational Statistics & Data Analysis. 2005, 48 (4): 869-885. 10.1016/j.csda.2004.03.017.
    • (2005) Computational Statistics & Data Analysis , vol.48 , Issue.4 , pp. 869-885
    • Lee, J.W.1    Lee, J.B.2    Park, M.3    Song, S.H.4
  • 9
    • 84863910171 scopus 로고    scopus 로고
    • CellMiner: A Web-Based Suite of Genomic and Pharmacologic Tools to Explore Transcript and Drug Patterns in the NCI-60 Cell Line Set
    • Reinhold WC, Sunshine M, Liu H, Varma S, Kohn KW, Morris J, Doroshow J, Pommier Y: CellMiner: A Web-Based Suite of Genomic and Pharmacologic Tools to Explore Transcript and Drug Patterns in the NCI-60 Cell Line Set. Cancer Research. 2012, 72 (14): 3499-3511. 10.1158/0008-5472.CAN-12-1370.
    • (2012) Cancer Research , vol.72 , Issue.14 , pp. 3499-3511
    • Reinhold, W.C.1    Sunshine, M.2    Liu, H.3    Varma, S.4    Kohn, K.W.5    Morris, J.6    Doroshow, J.7    Pommier, Y.8
  • 12
    • 34047270440 scopus 로고    scopus 로고
    • Characterization of MicroRNA Expression Levels and Their Biological Correlates in Human Cancer Cell Lines
    • Gaur A, Jewell DA, Liang Y, Ridzon D, Moore JH, Chen C, Ambros VR, Israel MA: Characterization of MicroRNA Expression Levels and Their Biological Correlates in Human Cancer Cell Lines. Cancer Res. 2007, 67 (6): 2456-2468. 10.1158/0008-5472.CAN-06-2698.
    • (2007) Cancer Res , vol.67 , Issue.6 , pp. 2456-2468
    • Gaur, A.1    Jewell, D.A.2    Liang, Y.3    Ridzon, D.4    Moore, J.H.5    Chen, C.6    Ambros, V.R.7    Israel, M.A.8
  • 14
    • 84883791316 scopus 로고    scopus 로고
    • Genome-wide discovery of genetic variants affecting tamoxifen sensitivity and their clinical and functional validation
    • Weng L, Ziliak D, Im HK, Gamazon ER, Philips S, Nguyen AT, Desta Z, Skaar TC, the Consortium on Breast Cancer Pharmacogenomics COBRA, Flockhart DA, Huang RS: Genome-wide discovery of genetic variants affecting tamoxifen sensitivity and their clinical and functional validation. Annals of Oncology. 2013, 24 (7): 1867-1873. 10.1093/annonc/mdt125.
    • (2013) Annals of Oncology , vol.24 , Issue.7 , pp. 1867-1873
    • Weng, L.1    Ziliak, D.2    Im, H.K.3    Gamazon, E.R.4    Philips, S.5    Nguyen, A.T.6    Desta, Z.7    Skaar, T.C.8    Flockhart, D.A.9    Huang, R.S.10
  • 16
    • 0036161259 scopus 로고    scopus 로고
    • Gene Selection for Cancer Classification using Support Vector Machines
    • Guyon I, Weston J, Barnhill S, Vapnik V: Gene Selection for Cancer Classification using Support Vector Machines. Machine Learning. 2002, 46 (1-3): 389-422.
    • (2002) Machine Learning , vol.46 , Issue.1-3 , pp. 389-422
    • Guyon, I.1    Weston, J.2    Barnhill, S.3    Vapnik, V.4
  • 18
    • 33646430006 scopus 로고    scopus 로고
    • Extremely Randomized Trees
    • Geurts P, Ernst D, Wehenkel L: Extremely Randomized Trees. Machine Learning. 2006, 63 (1): 3-42. 10.1007/s10994-006-6226-1.
    • (2006) Machine Learning , vol.63 , Issue.1 , pp. 3-42
    • Geurts, P.1    Ernst, D.2    Wehenkel, L.3
  • 19
    • 0003250435 scopus 로고
    • Single-layer learning revisited: a stepwise procedure for building and training a neural network
    • NATO ASI Series, Springer-Verlag
    • Knerr S, Personnaz L, Dreyfus G: Single-layer learning revisited: a stepwise procedure for building and training a neural network. Neurocomputing: Algorithms, Architectures and Applications. NATO ASI Series. 1990, Springer-Verlag, 68: 41-50.
    • (1990) Neurocomputing: Algorithms, Architectures and Applications , vol.68 , pp. 41-50
    • Knerr, S.1    Personnaz, L.2    Dreyfus, G.3
  • 21
    • 34548125448 scopus 로고    scopus 로고
    • Logistic regression for disease classification using microarray data: model selection in a large p and small n case
    • Liao JGG, Chin KVV: Logistic regression for disease classification using microarray data: model selection in a large p and small n case. Bioinformatics. 2007, 23 (15): 1945-51. 10.1093/bioinformatics/btm287.
    • (2007) Bioinformatics , vol.23 , Issue.15 , pp. 1945-1951
    • Liao, J.G.G.1    Chin, K.V.V.2
  • 23
    • 67249139015 scopus 로고    scopus 로고
    • Balanced gradient boosting from imbalanced data for clinical outcome prediction
    • Teramoto R: Balanced gradient boosting from imbalanced data for clinical outcome prediction. Statistical Applications in Genetics and Molecular Biology. 2009, 8 (1): 1-19.
    • (2009) Statistical Applications in Genetics and Molecular Biology , vol.8 , Issue.1 , pp. 1-19
    • Teramoto, R.1
  • 24
    • 77949539217 scopus 로고    scopus 로고
    • Pitfalls of supervised feature selection
    • Smialowski P, Frishman D, Kramer S: Pitfalls of supervised feature selection. Bioinformatics. 2010, 26 (3): 440-443. 10.1093/bioinformatics/btp621.
    • (2010) Bioinformatics , vol.26 , Issue.3 , pp. 440-443
    • Smialowski, P.1    Frishman, D.2    Kramer, S.3
  • 25
    • 34247558132 scopus 로고    scopus 로고
    • Preventing Over-Fitting during Model Selection via Bayesian Regularisation of the Hyper-Parameters
    • Cawley GC, Talbot NLC: Preventing Over-Fitting during Model Selection via Bayesian Regularisation of the Hyper-Parameters. J Mach Learn Res. 2007, 8: 841-861.
    • (2007) J Mach Learn Res , vol.8 , pp. 841-861
    • Cawley, G.C.1    Talbot, N.L.C.2
  • 26
    • 84961664917 scopus 로고    scopus 로고
    • Analysis Overview for Colon Adenocarcinoma (Primary solid tumor cohort). Tech rep, 2014
    • Broad Institute of MIT and Harvard
    • Broad Institute TCGA Genome Data Analysis Center (2014): Analysis Overview for Colon Adenocarcinoma (Primary solid tumor cohort). Tech rep. 2014, Broad Institute of MIT and Harvard
    • (2014)
  • 27
    • 84961664917 scopus 로고    scopus 로고
    • Analysis Overview for Rectum Adenocarcinoma (Primary solid tumor cohort). Tech rep, 2014
    • Broad Institute of MIT and Harvard
    • Broad Institute TCGA Genome Data Analysis Center (2014): Analysis Overview for Rectum Adenocarcinoma (Primary solid tumor cohort). Tech rep. 2014, Broad Institute of MIT and Harvard
    • (2014)
  • 28
    • 84961664917 scopus 로고    scopus 로고
    • Analysis Overview for Kidney Renal Clear Cell Carcinoma (Primary solid tumor cohort). Tech rep, 2014
    • Broad Institute of MIT and Harvard
    • Broad Institute TCGA Genome Data Analysis Center (2014): Analysis Overview for Kidney Renal Clear Cell Carcinoma (Primary solid tumor cohort). Tech rep. 2014, Broad Institute of MIT and Harvard
    • (2014)
  • 29
    • 84961664917 scopus 로고    scopus 로고
    • Analysis Overview for Kidney Renal Papillary Cell Carcinoma (Primary solid tumor cohort). Tech rep, 2014
    • Broad Institute of MIT and Harvard
    • Broad Institute TCGA Genome Data Analysis Center (2014): Analysis Overview for Kidney Renal Papillary Cell Carcinoma (Primary solid tumor cohort). Tech rep. 2014, Broad Institute of MIT and Harvard
    • (2014)
  • 30
    • 84961664917 scopus 로고    scopus 로고
    • Analysis Overview for Lung Adenocarcinoma (Primary solid tumor cohort). Tech rep, 2014
    • Broad Institute of MIT and Harvard
    • Broad Institute TCGA Genome Data Analysis Center (2014): Analysis Overview for Lung Adenocarcinoma (Primary solid tumor cohort). Tech rep. 2014, Broad Institute of MIT and Harvard
    • (2014)
  • 31
    • 84961664917 scopus 로고    scopus 로고
    • Analysis Overview for Lung Squamous Cell Carcinoma (Primary solid tumor cohort). Tech rep, 2014
    • Broad Institute of MIT and Harvard
    • Broad Institute TCGA Genome Data Analysis Center (2014): Analysis Overview for Lung Squamous Cell Carcinoma (Primary solid tumor cohort). Tech rep. 2014, Broad Institute of MIT and Harvard
    • (2014)
  • 32
    • 84961664917 scopus 로고    scopus 로고
    • Analysis Overview for Brain Lower Grade Glioma (Primary solid tumor cohort. Tech rep, 2014
    • Broad Institute of MIT and Harvard
    • Broad Institute TCGA Genome Data Analysis Center (2014): Analysis Overview for Brain Lower Grade Glioma (Primary solid tumor cohort. Tech rep. 2014, Broad Institute of MIT and Harvard
    • (2014)
  • 33
    • 84961664917 scopus 로고    scopus 로고
    • Analysis Overview for Glioblastoma Multiforme (Primary solid tumor cohort). Tech rep, 2014
    • Broad Institute of MIT and Harvard
    • Broad Institute TCGA Genome Data Analysis Center (2014): Analysis Overview for Glioblastoma Multiforme (Primary solid tumor cohort). Tech rep. 2014, Broad Institute of MIT and Harvard
    • (2014)
  • 34
    • 84961664917 scopus 로고    scopus 로고
    • Analysis Overview for Ovarian Serous Cystadenocarcinoma (Primary solid tumor cohort). Tech rep, 2014
    • Broad Institute of MIT and Harvard
    • Broad Institute TCGA Genome Data Analysis Center (2014): Analysis Overview for Ovarian Serous Cystadenocarcinoma (Primary solid tumor cohort). Tech rep. 2014, Broad Institute of MIT and Harvard
    • (2014)
  • 36
    • 33646023117 scopus 로고    scopus 로고
    • An introduction to ROC analysis
    • Fawcett T: An introduction to ROC analysis. Pattern Recognition Letters. 2006, 27 (8): 861-874. 10.1016/j.patrec.2005.10.010.
    • (2006) Pattern Recognition Letters , vol.27 , Issue.8 , pp. 861-874
    • Fawcett, T.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.